涂层碳纤维镁基复合材料的界面控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强镁基复合材料(C/Mg复合材料),具有密度低、比强度、比模量高、热膨胀系数可以接近于零、在较大温度范围内具有很好的尺寸稳定性等突出的特性,在航空、航天、国防等领域将具有广阔的应用背景。然而C/Mg复合材料体系本身的一些特性因素制约了它的发展,主要包括(1)碳纤维和镁基体不润湿给C/Mg复合材料的制备造成很大困难;(2)严重界面反应使得C/Mg复合材料无法获得理想的界面结合状态,同样制约着复合材料的力学性能。
     本文通过对C/Mg复合材料界面结构的理论分析,制备工艺及界面的优化设计,成功制备出碳纤维增强镁基复合材料,并对其微观组织结构、界面反应层的形成规律及机理和力学性能进行了系统的研究;揭示了不同纤维涂层造成的界面反应产物对界面结构和断裂行为的影响规律,并在TiO2涂层C/Mg复合材料中实现了设计的新界面结构;在此基础上,研究了基体中铝含量以及涂层厚度对新界面结构及力学性能的影响规律,初步探讨了TiO2涂层C/Mg复合材料的界面形成机制及其断裂行为。
     为了实现C/Mg复合材料的理想界面结合,本文提出了一个具体的界面结构:微反应层界面结构来获得适度界面结合的状态。在这个结构中,首先碳纤维周围存在一层扩散阻挡层以保护碳纤维不受基体合金的反应侵蚀而造成力学性能下降。其次,涂层材料和镁基体之间反应产物不是以有针状界面相存在,而是以极薄的纳米级厚度反应物层的形式存在于界面区域,这样可以避免针状界面产物在界面区域造成应力集中而导致整体复合材料力学性能急剧下降的现象。
     本文通过溶胶凝胶法实现碳纤维表面MgO,SiO2和TiO2涂层的涂敷,通过控制溶胶、涂胶过程、烧结过程可以实现连续、厚度均匀、无突起、不开裂的纤维涂层。SiO2和TiO2等润湿涂层能够显著降低C/Mg复合材料的浸渗压力。采用具有规则球形外形的空心微珠作为混杂颗粒,在降低浸渗压力的同时又提高了碳纤维的分散均匀性。
     MgO涂层不能改善碳纤维和镁之间的润湿问题,所制备的涂层C/Mg复合材料中很容易生成明显的浸渗缺陷,其弯曲模量和弯曲强度分别为86GPa和643MPa;SiO2涂层改善了C/Mg的润湿性,复合材料的弯曲模量提高到116GPa,但由于SiO2涂层和镁基体之间的界面反应严重,在碳纤维周围生成大量的针状界面相,其弯曲强度为676MPa,没有显著提高。TiO2涂层C/Mg复合材料的界面洁净,未发现针织界面产物,其弯曲力学性能显著提高,弯曲模量和弯曲强度分别提高到132GPa和1009MPa。TEM分析结果表明,TiO2涂层和镁基体的反应产物并没有以颗粒或者针状的形式聚集在界面区域,而是以一层20-30nm界面反应层的形式存在于界面区域。这是因为Ti和Mg之间不互溶也不反应,因此被基体Mg置换出的单质Ti不会和Mg生成金属间化合物,由界面反应产物Ti和MgO组成的反应物层隔绝了TiO2涂层和镁基体之间的继续接触,界面反应进度得以控制,最终在C/Mg复合材料中形成了微反应层界面结构,并且这种新的界面结构提高了复合材料的力学性能。
     镁基体中的铝含量以及涂层厚度对TiO2涂层C/Mg复合材料的界面结构及力学性能具有显著影响。
     当基体从AZ91(9%Al)变成Mg-2%Al合金时,C/Mg复合材料的弯曲强度了26%,从1009MPa提高了到1277MPa(对比中涂层厚度为150nm)。
     在TiO2涂层C/Mg复合材料中存在最小界面层厚度。最小界面层厚度受基体中铝含量的影响。本研究中Mg-2%Al和AZ91的最小界面层厚度分别为30nm和40nm。本质上说,界面层能够阻止基体中Al扩散到碳纤维生成Al4C3相。因此,界面层需要达到最小界面层厚度才能发挥作用。
     当涂层厚度大于最小界面层厚度时,复合材料力学性能随涂层厚度的降低而增加。碳纤维表面TiO2涂层厚度分别为150nm,60nm和30nm时,Cf-TiO2/Mg-2%Al复合材料的对应弯曲强度随涂层的增加而提高,分别为1277MPa,1309MPa和1391MPa;
     当TiO2涂层厚度小于最小界面层厚度时,TiO2涂层过薄,无法形成有效的扩散阻挡层保护碳纤维,在界面区域生成的Al4C3相会显著降低复合材料的力学性能。如TiO2涂层厚度从50nm降低到30nm时,Cf-TiO2/AZ91复合材料的弯曲强度没有提高,反而从1108MPa降低到874MPa,降幅超过20%。
Carbon fiber reinforced magnesium alloy composites (C/Mg composites) have exhibitedhigh mechanical properties, good thermal conductivity and zero or near-zero coefficient ofthermal expansion. It has been suggested that composites based on ultra-high modulus carbonfibers possess specific stiffnesses higher than any known metallic material. Unfortunately, theintrinsic disadvantage of C/Mg composites restrict its development, including:(1) Poorwettability of C-Mg system, the fabrication process of C/Mg composites are suffered from thepoor wettability.(2) Harmful interfacial reactions, these reactions between carbon fiber andmagnesium matrix can introduce unexpected interface bonding.
     In present work, C/Mg composits have been successfully fabricated with optimizated oninterfacial structure using squeeze casting method. The interfacial reactions andmicrostructure in C/Mg composites have been studied. The results showed that the interfacialstructure can be tuned by different fiber coatings. The optimized interfacial structure has beenachieved in TiO2coated C/Mg composites. Further, the effect of Al content in Mg matrix andthickness of fiber coating on the interfacial structures and mechanical properties ofCf-TiO2/Mg composites have been investigated.
     A specific model of interface structure:“the thin reaction layer interface structure” isproposed to accomplish the improved interface bonding in C/Mg composites. In this novelinterface structure, a diffusion barrier around carbon fiber is existed to protect the fiber fromdegradation for harmful interface reactions. The interface reaction products can form acontinue uniform transition layer under nanoscale between fiber coating and metal matrix,rather than aggregating around interface to form needle-like interphases or particles, which can avoid stress concentration caused by those harmful interphases.
     Carbon fibers were coated with MgO, SiO2and TiO2films respectively using the sol-gelmethod. The uniform, adherent, crack-free and non-bridging fiber coatings can be achieved bycontrolling sol-gel precursors, coating processes and heating parameters.
     MgO coated C/Mg composites are tend to progegate infiltration defect due to the poorwettability between Mg and C. flexural strength are86GPa and643MPa. SiO2coating canimprove the wettability of C/Mg composites. The needle-like Mg2Si phase is formed as theinterfacial react product at the same time. The flexural modulus and flexural strength are116GPa and676MPa. The interfacial zone of TiO2coated C/Mg composites is clean and withoutany brittle phase observed. The flexural modulus and flexural strength increase to132GPaand1009Mpa respectively. The TEM results showed that the interfacial structure is formed a20-30nm thick reaction layer. Since Ti is highly compatible with Mg, and the characteristic ofTi and Mg is benefit to control the extent of interface reaction, the designed interfacialmicrostructure is thus achieved. This novel interface structure can improve the mechanicalproperties of C/Mg composites.
     The interfacial structure and mechanical properties are found on dependence of both Alcontent in Mg-Al alloy matrix and the thickness of TiO2coating.
     When the Al content increases in Mg alloy from Mg-2%Al matrix to AZ91matrix, theflexural strength decreased from1277MPa in to1009MPa (The thickness of TiO2coating is150nm in this comparison).
     A minimum thickness of interfacial layeris found existed in C/Mg composites in ourstudy. This minimum thickness is affected by Al content in matrix. The minimumthicknesses of C/Mg-2%Al and C/AZ91composites are30nm and40nmrespectively in the experiments. Fundamentally,this interfacial layer is a barrier layerfor the Al diffusing from Mg matrix to carbon fiber to form Al4C3phase. Thus, aminimum thickness of interfacial layer is required to take into effect.
     When the thickness of TiO2coating is larger than minimum thickness, the mechanicalstrength is decreasing. For example, it is found if the thickness of TiO2coating inCf-TiO2/Mg-2%Al composites is150nm,60nm and30nm, the flexural strength ofcomposites is1277MPa,1309MPa and1391MPa, respectively.
     When the thickness of TiO2coating is smaller than minimum thickness, the TiO2fibercoating is too thin to work as diffusion barrier to protect carbon fiber. The brittleAl4C3phase reacted in interface zone decreases mechanical properties of C/Mgcomposites. When the thickness of TiO2coating decreases from50nm to30nm inCf-TiO2/AZ91composites, the flexural strength decreases by21%from1108MPa to874MPa.
引文
1.沃丁桂主编,复合材料大全.2000:化学工业出版社.
    2.吴人杰,复合材料.2000:天津大学出版社.
    3.张国定,赵昌正,金属基复合材料.1995,上海:上海交通大学出版社.
    4.王茂章,碳纤维及其复合材料.1995:科学技术出版社.
    5.赵浩峰,王玲,金属基复合材料及其浸渗制备的理论和实践.2005,北京:冶金工业出版社.
    6. Miracle, D.B., Metal matrix composites–From science to technological significance.Composites Science and Technology,2005.65(15–16): p.2526-2540.
    7. Prewo, K.M. and W.K. Tredway, Ceramic Matrix Composites: Applications, inEncyclopedia of Materials: Science and Technology (Second Edition), K.H.J.B.Editors-in-Chief:, et al., Editors.2001, Elsevier: Oxford. p.1056-1059.
    8. Beukers, A., Polymer Matrix Composites: Applications, in Encyclopedia of Materials:Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief:, et al.,Editors.2001, Elsevier: Oxford. p.7384-7388.
    9. Mallick, P.K.,2.09-Particulate and Short Fiber Reinforced Polymer Composites,in Comprehensive Composite Materials, K. Editors-in-Chief: Anthony and Z. Carl,Editors.2000, Pergamon: Oxford. p.291-331.
    10. Sherwood, P.M.A., Surface analysis of carbon and carbon fibers for composites.Journal of Electron Spectroscopy and Related Phenomena,1996.81(3): p.319-342.
    11. Zhandarov, S. and E. M der, Characterization of fiber/matrix interface strength:applicability of different tests, approaches and parameters. Composites Science andTechnology,2005.65(1): p.149-160.
    12.鲁云,朱世杰,马鸣图等,先进复合材料.2003:机械工业出版社.
    13. Clyne T W, W.P.J., An Introduction to Metal Matrix Composites.1995: CambridgeUniversity Press.
    14. Degischer, H.P., Metal Matrix Composites, Recycling of, in Encyclopedia of Materials:Science and Technology (Second Edition), K.H.J.B. Editors-in-Chief:, et al.,Editors.2001, Elsevier: Oxford. p.5452-5455.
    15.贺福,碳纤维的制造、性质及其应用.1984:科学出版社.
    16. Donnet, J.B., et al., Carbon Fibers, in Encyclopedia of Physical Science andTechnology (Third Edition), A.M. Editor-in-Chief: Robert, Editor.2003,Academic Press: New York. p.431-455.
    17. Carbon Fibers in Metal Matrices, in Carbon Fibers and Their Composites.2005, CRCPress. p.629-656.
    18. Bionetics Corp, H., Carbon fiber data base. Data base review and assessment of carbonfiber release into the environment. Rep. No: EPS-600/2-83-038.
    19. DiBenedetto, A.T., Tailoring of interfaces in glass fiber reinforced polymercomposites: a review. Materials Science and Engineering: A,2001.302(1): p.74-82.
    20. Warrier, S.G., C.A. Blue, and R.Y. Lin, CONTROL OF INTERFACES IN AL-C FIBER COMPOSITES.Journal of Materials Science,1993.28(3): p.760-768.
    21. Gao, S.L., E. Mader, and R. Plonka, Nanostructured-coatings of glass fibers:Improvement of alkali resistance and mechanical properties. Acta Materialia,2007.55(3): p.1043-1052.
    22. Bunsell, A.R. and M.H. Berger, Inorganic fibres for composite materials. CompositesScience and Technology,1994.51(2): p.127-133.
    23. Blucher, J.T., Discussion of a liquid metal pressure infiltration process to producemetal matrix composites. Journal of Materials Processing Technology,1992.30(3):p.381-390.
    24. Li, Q., et al., Improved processing of carbon nanotube/magnesium alloy composites.Composites Science and Technology,2009.69(7-8): p.1193-1199.
    25. Bos, R., H.C. van der Mei, and H.J. Busscher, Physico-chemistry of initial microbialadhesive interactions–its mechanisms and methods for study. FEMS MicrobiologyReviews,1999.23(2): p.179-230.
    26. Bouix, J., et al., Physico-chemistry of interfaces in inorganic-matrix composites.Composites Science and Technology,2001.61(3): p.355-362.
    27. Bouix, J., et al., Titanium diboride-coated boron fibre for aluminium matrixcomposites. Journal of the Less Common Metals,1986.117(1–2): p.83-89.
    28.东丽公司,碳纤维产品说明书.2000.
    29.赵稼祥,日本石墨纤维公司的沥青基碳纤维.高科技纤维与应用,2001(4).
    30. Armin Feldhoff, Eckhard Pippel, J.W., Interface Engineering of Carbon-fiberReinforced Mg-Al Alloys. Advanced Engineering Materials,2000.2(8): p.10.
    31. Feldhoff, A., E. Pippel, and J. Woltersdorf, Interface engineering of carbon fiberreinforced Mg-Al alloys. Advanced Engineering Materials,2000.2(8): p.471-480.
    32. Feldhoff, A., E. Pippel, and J. Woltersdorf, TiN coatings in C/Mg-Al composites:Microstructure, nanochemistry and function. Philosophical Magazine A: Physics ofCondensed Matter, Structure, Defects and Mechanical Properties,2000.80(3): p.659-672.
    33. H hnel, A., et al., Reaction layers in MMCs and CMCs: structure, composition andmechanical properties. Materials Science and Engineering: A,1997.237(2): p.173-179.
    34. Hall, I.W., The Interface in Carbon-Magnesium Composites-Fiber and Matrix Effects.Journal of Materials Science,1991.26(3): p.776-781.
    35. Hall, I.W., Tem Observations of a Ni-Coated Carbon-Fiber Reinforced Metal MatrixComposite. Metallography,1987.20(2): p.237-246.
    36. Katzman, H.A., FIBER COATINGS FOR THE FABRICATION OF GRAPHITE-REINFORCED MAGNESIUMCOMPOSITES. Journal of Materials Science,1987.22(1): p.144-148.
    37. Baumli, P., et al., Fabrication of carbon fiber reinforced aluminum matrix compositesvia a titanium-ion containing flux. Composites Part A: Applied Science andManufacturing,2013.44(0): p.47-50.
    38. Bhav Singh, B. and M. Balasubramanian, Processing and properties of copper-coatedcarbon fibre reinforced aluminium alloy composites. Journal of Materials ProcessingTechnology,2009.209(4): p.2104-2110.
    39. Contreras, A., et al., Structural, morphological and interfacial characterizationof Al–Mg/TiC composites. Materials Characterization,2007.58(8–9): p.685-693.
    40. Contreras, A., E. Bedolla, and R. Pérez, Interfacial phenomena in wettability ofTiC by Al-Mg alloys. Acta Materialia,2004.52(4): p.985-994.
    41. Contreras, A., et al., Wettability and spreading kinetics of Al and Mg on TiC. ScriptaMaterialia,2003.48(12): p.1625-1630.
    42. Uozumi, H., et al., Fabrication process of carbon nanotube/light metal matrixcomposites by squeeze casting. Materials Science and Engineering a-StructuralMaterials Properties Microstructure and Processing,2008.495(1-2): p.282-287.
    43. Urena, A., et al., Characterization of interfacial mechanical properties in carbonfiber/aluminium matrix composites by the nanoindentation technique. CompositesScience and Technology,2005.65(13): p.2025-2038.
    44. Wu, F., et al., The effects of processing on the microstructures and properties ofGr/Mg composites. Materials Science and Engineering a-Structural MaterialsProperties Microstructure and Processing,2000.277(1-2): p.143-147.
    45. Xia Z, Z.Y., Mao Z, Fabrication of Fiber-reinforced Metal-Matrix composites byVariable Pressure Infiltration. Metallurgical and Materials Transactions B,1992.2313(6): p.7.
    46. Vincent, H., M. Boubehira, and J. Bouix, Preparation of aluminium matrix compositematerials reinforced by titanium diboride-coated boron fibers. Materials Chemistryand Physics,1986.15(2): p.113-130.
    47. Kondoh, K., et al., Wettability of pure Ti by molten pure Mg droplets. Acta Materialia,2010.58(2): p.606-614.
    48. Levitt, A., E. Cesare, and S. Wolf, Fabrication and properties of graphite fiberreinforced magnesium. Metallurgical and Materials Transactions B,1972.3(9): p.2455-2459.
    49.张国定,蔡卫东,合金元素对碳/铝复合材料拉伸性能的影响.第五届全国复合材料会议论文集,1988: p.8.
    50. Xiuqing, Z., et al., The mechanical properties of magnesium matrix compositesreinforced with (TiB2 + TiC) ceramic particulates. Materials Letters,
    2005.59(17): p.2105-2109.
    51. Rawal, S.P., Interface structure in graphite-fiber-reinforced metal-matrixcomposites. Surface and Interface Analysis,2001.31(7): p.692-700.
    52. Pei, Z.L., et al., Micro-structural and tensile strength analyses on the magnesiummatrix composites reinforced with coated carbon fiber. Journal of Materials Science,2009.44(15): p.4124-4131.
    53. Tiwari, S., J. Bijwe, and S. Panier, Optimization of surface treatment to enhancefiber–matrix interface and performance of composites. Wear,2012.274–275(0): p.326-334.
    54. Chen, R. and X. Li, A study of silica coatings on the surface of carbon or graphitefiber and the interface in a carbon/magnesium composite. Composites Science andTechnology,1993.49(4): p.357-362.
    55. Diwanji, A.P. and I.W. Hall, Fiber and Fiber-Surface Treatment Effects in CarbonAluminum Metal Matrix Composites. Journal of Materials Science,1992.27(8): p.2093-2100.
    56. Russell-Stevens, M., R. Todd, and M. Papakyriacou, Microstructural analysis of acarbon fibre reinforced AZ91D magnesium alloy composite. Surface and InterfaceAnalysis,2005.37(3): p.336-342.
    57. Tang, Y., et al., Improvement of interface between Al and short carbon fibers byα-Al2O3coatings deposited by sol–gel technology. Ceramics International,2008.34(7): p.1787-1790.
    58. Zheng, M., K. Wu, and C. Yao, Effect of interfacial reaction on mechanical behaviorof SiCw/AZ91magnesium matrix composites. Materials Science and Engineering: A,2001.318(1–2): p.50-56.
    59. Bhagat, R.B., et al., ELEVATED-TEMPERATURE STRENGTH, AGING RESPONSE AND CREEP OFALUMINUM MATRIX COMPOSITES. Journal of Composite Materials,1992.26(11): p.1578-1593.
    60. Kim, J.-K. and Y.-W. Mai, Surface treatments of fibers and effects on compositeproperties, in Engineered Interfaces in Fiber Reinforced Composites.1998, ElsevierScience Ltd: Oxford. p.171-237.
    61. Piquero, T., et al., Influence of carbide coatings on the oxidation behavior of carbonfibers. Carbon,1995.33(4): p.455-467.
    62. Vincent, H., et al., Chemical interaction between carbon and titanium dissolved inliquid tin: crystal structure and reactivity of Ti2SnC with Al. Materials Scienceand Engineering: A,1998.256(1–2): p.83-91.
    63. Dorner-Reisel, A., et al., Investigation of interfacial interaction between uncoatedand coated carbon fibres and the magnesium alloy AZ91. Analytical and BioanalyticalChemistry,2002.374(4): p.635-638.
    64. Popovska, N., et al., Chemical vapor deposition of titanium nitride on carbon fibresas a protective layer in metal matrix composites. Materials and Design,1997.18(4-6):p.239-242.
    65. Lancin, M. and C. Marhic, TEM study of carbon fibre reinforced aluminium matrixcomposites: influence of brittle phases and interface on mechanical properties.Journal of the European Ceramic Society,2000.20(10): p.1493-1503.
    66. Wu, F. and J. Zhu, Morphology of second-phase precipitates in carbon-fiber-andgraphite-fiber-reinforced magnesium-based metal-matrix composites. CompositesScience and Technology,1997.57(6): p.661-667.
    67. Korner, C., et al., Carbon long fiber reinforced magnesium alloys. AdvancedEngineering Materials,2000.2(6): p.327-337.
    68.赵稼祥,东丽公司碳纤维及其复合材料的进展.宇航材料工艺,2000(6): p.4.
    69.赵稼祥,日本三菱化学公司炭纤维的发展.炭素,2001(3): p.5.
    70.赵稼祥,美国HEXEL公司的碳纤维及其复合材料.热固性树脂,2001.16(3): p.5.
    71.赵稼祥,日本GRAFIL公司的碳纤维现状与发展.高科技纤维与应用,2001.26(1): p.5.
    72.赵稼祥,美国卓尔泰克公司碳纤维的进展.高科技纤维与应用,2001.26(5): p.4.
    73.赵稼祥, BP AMOCO公司的碳纤维事业.高科技纤维与应用,2000(5).
    74.曹峰,彭平,李效东,氧化铝/氧化硅溶胶对碳纤维表面的处理及应用.复合材料学报,1990.16(1): p.8.
    75.储双杰,何贵玉,碳纤维表面涂层的制备方法与功用.兵器材料科学与工程,1993.16(6):p.5.
    76.李石保,李银奎,龙永福,张长瑞,碳化硼涂覆的碳纤维的抗热氧化性研究.国防科技大学学报,1998.20(6): p.4.
    77.董志军,李轩科,袁观明等,碳纤维表面陶瓷涂层的制备与应用研究.材料导报,2008.22(5): p.4.
    78.高朋召,王红浩,金志浩, SiO2溶胶-凝胶转变过程的动力学研究及应用.复合材料学报,2003.04: p.6.
    79.殷明志,姚熹,李振荣,张良莹,酸催化正硅酸乙酯溶胶凝胶二氧化硅薄膜的制备.西安交通大学学报,2002.36(8): p.4.
    80.华文君,陈大明,赵家培,阴极溅射SiC涂层碳纤维结构与特性研究. ACTA Materialiacompositae sinica,1999.16: p.5.
    81.王浩伟,商宝禄,周尧和, C/Al复合材料中镍涂层的界面行为.复合材料学报,1992.03: p.4.
    82.张积桥,杨玉国,朱红,王芳辉,碳纤维化学镀钴工艺研究.电镀与精饰,2008.05: p.3.
    83. Song, M.H., et al., DIMENSIONAL STABILITY OF2D C-f/Mg-2.0Re-0.2Zr COMPOSITES. ActaMetallurgica Sinica,2009.45(1): p.119-123.
    84.王浩伟,吴人洁,张国定,液相浸渗中纤维非润湿性的处理.上海交通大学学报,1994.28(4): p.5.
    85.王浩伟,张国定,吴人洁,纤维增强金属基复合材料液相浸渗充填过程.复合材料学报,1995.12(1): p.5.
    86. Bakkar, A. and V. Neubert, Corrosion behaviour of carbon fibres/magnesium metalmatrix composite and electrochemical response of its constituents ElectrochimicaActa,2009.54(5): p.1597-1606.
    87. Gu, J., et al., Damping behaviors of magnesium matrix composites reinforced withCu-coated and uncoated SiC particulates. Composites Science and Technology,2005.65(11-12): p.1736-1742.
    88. Gu, J.H., X.N. Zhang, and M.Y. Gu, The damping capacity of AZ91magnesium matrixcomposites reinforced with the coated carbon fiber fabric. Materials Transactions,2004.45(5): p.1743-1747.
    89. Huang, Y.D., et al., Microstructural investigations of interfaces in short fiberreinforced AlSi12CuMgNi composites. Acta Materialia,2005.53(14): p.3913-3923.
    90. Lefebvre, L., G. L'Esperance, and M. Suery, Particle degradation during remeltingof Al-1%Mg alloy reinforcedwith SiCp coated with sol-gel-produced TiO2. Journalof Materials Science,1997.32(15): p.3987-3994.
    91. Li, J., et al., Effects of TiO2coating on microstructure and mechanical propertiesof magnesium matrix composite reinforced with Mg2B2O5w. Materials&Design,2012.39(0): p.334-337.
    92. Park, Y., et al., Fabrication and mechanical properties of magnesium matrix compositereinforced with Si coated carbon nanotubes. Procedia Engineering,2011.10(0): p.1446-1450.
    93. Russell-Stevens, M., R.I. Todd, and M. Papakyriacou, Thermal expansion behaviourof ultra-high modulus carbon fibre reinforced magnesium composite during thermalcycling. Journal of Materials Science,2006.41(19): p.6228-6236.
    94. Song, M., et al., Mechanical Properties of Cf/Mg Composites Fabricated by PressureInfiltration Method. Journal of Materials Science&Technology,2010.26(10): p.931-935.
    95. Tredway, W.K., K.M. Prewo, and C.G. Pantano, Fiber-matrix interfacial effects incarbon-fiber-reinforced glass matrix composites. Carbon,1989.27(5): p.717-727.
    96. Wang, W.G., B.L. Xiao, and Z.Y. Ma, Evolution of interfacial nanostructures andstress states in Mg matrix composites reinforced with coated continuous carbon fibers.Composites Science and Technology,2012.72(2): p.152-158.
    97. Wu, F., et al., Analysis of the interface in graphite/magnesium composites at thenanometer scale. Composites Science and Technology,1998.58(1): p.77-82.
    98. Hufenbach, W., et al., Fabrication technology and material characterization ofcarbon fibre reinforced magnesium. Journal of Materials Processing Technology,2006.175(1-3): p.218-224.
    99. Vidal-Sétif, M.H., et al., On the role of brittle interfacial phases on the mechanicalproperties of carbon fibre reinforced Al-based matrix composites. Materials Scienceand Engineering a-Structural Materials Properties Microstructure and Processing,1999.272(2): p.321-333.
    100.许并杜,李明照,镁冶炼与镁合金熔炼工艺.2006:化学工业出版社.
    101.闫丽静, Mg-TiO2自蔓延高温合成反应研究, in材料加工工程.2007,兰州理工大学:兰州.
    102. Liu, X., et al., The effect of triangle-shape carbon fiber on the flexural propertiesof the carbon fiber reinforced plastics. Materials Letters,2012.73(0): p.21-23.
    103. Reischer, F., et al., Carbon fibre-reinforced magnesium: Improvement of bendingstrength by nanodesign of boron nitride interlayers. Materials Chemistry and Physics,2007.104(1): p.83-87.
    104. Cai, J., et al., Effect of strain rate on the compressive mechanical properties ofaluminum alloy matrix composite filled with discontinuous carbon fibers. MaterialsScience and Engineering: A,2008.485(1-2): p.681-689.
    105. Russell-Stevens, M., R. Todd, and M. Papakyriacou, The effect of thermal cyclingon the properties of a carbon fibre reinforced magnesium composite. Materials Scienceand Engineering a-Structural Materials Properties Microstructure and Processing,2005.397(1-2): p.249-256.
    106. Schaller, R., et al., Investigation of hydrogen storage in carbon nanotube-magnesiummatrix composites. Materials Science and Engineering: A,2009.521-522: p.147-150.
    107. Shalu, T., E. Abhilash, and M.A. Joseph, Development and characterization of liquidcarbon fibre reinforced aluminium matrix composite. Journal of Materials ProcessingTechnology,2009.209(10): p.4809-4813.
    108. Shimizu, Y., et al., Multi-walled carbon nanotube-reinforced magnesium alloycomposites. Scripta Materialia,2008.58(4): p.267-270.
    109. Tai, N.-H., M.-K. Yeh, and J.-H. Liu, Enhancement of the mechanical properties ofcarbon nanotube/phenolic composites using a carbon nanotube network as thereinforcement. Carbon,2004.42(12-13): p.2774-2777.
    110. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon Nanotubes--the Route TowardApplications. Science,2002.297(5582): p.787-792.
    111. Matsunaga, T., et al., Fabrication of continuous carbon fiber-reinforcedaluminum-magnesium alloy composite wires using ultrasonic infiltration method.Composites Part a-Applied Science and Manufacturing,2007.38(8): p.1902-1911.
    112.陈美怡,秦富生,王敏慧,低压浸渗法制备Gr(C)/Mg复合材料.中国有色金属学报,1996.6(3): p.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700