搅拌铸造SiC颗粒增强镁基复合材料高温变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文探索了SiCp/AZ91镁基复合材料的搅拌铸造工艺,并对复合材料开展了高温压缩和热挤压变形行为研究。采用光学显微镜、扫描电镜和透射电镜等方法,研究了铸态复合材料的显微组织和界面结构、高温压缩和热挤压变形过程中颗粒和基体显微组织的演变规律,分析了复合材料在高温压缩变形的变形机制,采用原位拉伸技术研究了铸态复合材料的断裂机制,并采用中子衍射技术研究了复合材料挤压织构的演变规律,并对铸态和挤压态的复合材料的力学性能开展了研究。
     镁基复合材料不宜采用液态搅拌铸造工艺,但是特别适合半固态搅拌铸造工艺;采用半固态涡流搅拌铸造工艺可以制备尺寸细小的颗粒增强镁基复合材料,且所制备的复合材料颗粒分布均匀和空隙率较小。显微组织研究表明SiCp在基体晶界附近偏聚,呈“项链状”颗粒分布,这是搅拌铸造复合材料一种典型特征。SiCp在AZ91合金熔体中稳定性较好,没有发生界面反应。随着颗粒尺寸的减小和体积分数的升高,铸态复合材料的屈服强度明显升高。复合材料的弹性模量随着体积分数升高而升高,但是随颗粒尺寸的变化不明显。动态SEM原位拉伸试验结果表明:“项链状”颗粒分布导致微裂纹主要以界面脱粘机制在颗粒偏聚区内形成,且裂纹扩展倾向于经过颗粒偏聚区域;“项链状”颗粒分布及其所致的弱界面是搅拌铸造复合材料的断裂强度不高的主要原因,必须通过热变形消除这种颗粒分布和改善界面结合。
     采用带有门槛应力修正的幂指数方程计算得到复合材料的高温压缩变形真激活能为91 kJ/mol,应力因子n=5,表明复合材料的高温压缩变形的控制机制为晶界位错攀移机制。本文压缩试验数据和W.D. Nix等人建立的晶界位错攀移蠕变模型(slip band模型)吻合较好;通过显微组织观察证实SiCp及其“项链状”分布使得本文复合材料的高温压缩变形条件更加符合slip band模型,并建立了适合本文复合材料的变形条件slip band模型。压缩温度和应变速率对复合材料的基体的动态再结晶(DRX)、位错和孪晶有重要影响。室温压缩表明在SiCp附近位错塞积严重,所形成的颗粒变形区是DRX的优先形核部位;高温压缩变形时,DRX首先在有颗粒偏聚的铸态晶粒的晶界区域发生,逐渐向原始晶粒内部区域延伸;“项链状”颗粒分布导致复合材料的DRX机制为“项链状”再结晶机制。
     热挤压能够消除铸态复合材料的颗粒偏聚和改善颗粒分布;挤压温度越高和挤压比越大,越有利于改善颗粒分布。挤压过程中SiCp可能发生断裂,挤压温度越低,挤压比越大,颗粒尺寸越大,颗粒越容易发生断裂。而且颗粒断裂对局部颗粒含量具有敏感性。SiCp能够促进DRX形核,降低基体的DRX温度。挤压过程中,SiCp对晶粒长大存在两种作用:首先,SiCp能够促进DRX晶粒的长大;但是当晶粒长大到与颗粒相接触时颗粒又能够阻碍DRX晶粒的长大。
     挤压态复合材料中基体的织构为(1010)纤维织构。挤压温度越高和挤压比越大,复合材料中基体的(1010)纤维织构越强。SiCp的加入没有改变基体的主要织构组分,但是对基体织构的强度有两种影响:当体积分数为5%,复合材料的织构强度高于单一基体合金的织构;当体积分数大于10%时,复合材料的基体织构变得越来越弱。复合材料中基体织构的强度不随颗粒尺寸单调变化,而是在10μm时出现一个织构强度的峰值。
     热挤压显著提高了复合材料的力学性能。在250-350℃温度区间内,复合材料的屈服强度和断裂强度都随着挤压温度的升高而升高;350R5挤压的复合材料的力学性能比350R12挤压的低,这与合金的力学性能随挤压温度和挤压比的变化规律相反。挤压过程中基体的显微组织和织构的演化不是挤压态复合材料力学能的决定性因素,SiCp在挤压过程中的演变(颗粒分布和颗粒断裂)才是主导因素。随着颗粒体积分数的升高和颗粒尺寸的减小,挤压态复合材料的屈服强度和断裂强度都明显升高。
The stir casting processing, hot compression and extrusion behaviors of SiCp/AZ91 magnesium matrix composites were studied in this paper. Optical microscope, scanning electronic microscope (SEM) and transmission electronic microscope (TEM) were employed to observe microstructure and interface structure of as-cast composites and to investigate the microstructure evolution of particle and matrix during hot compression and extrusion. The deformation mechanism for hot compression was analyzed and discussed. The fracture mechanism of as-cast composites was studied using in-situ tensile technique. The evolution of extrusion textures was investigated using neutron diffraction. And the mechanical properties of as-cast and as-extruded composites were studied.
     Stir casting in liquid condition is not suitable for fabrication of magnesium matrix composites, but compocasting method is very fit. Compocasting with vortex formation is able to fabricate fine particle reinforced magnesium matrix composites with uniform particle distribution and low porosity. Most SiCp are segregated at a microscopic scale near grain boundary regions, which is typical“necklace-type”particle distribution for metal matrix composite fabricated by stir casting. SiCp are very stable in the AZ91 melt, and chemical reactions don’t take place at the interfaces. The yield strength (YS) of as-cast composites increases with decreasing particle size and increasing volume fraction. The elastic modulus of composites increases as volume fraction increases, but particle size doesn’t have significant effect on elastic modulus. The investigations using in-situ SEM tensile technique reveal that“necklace-type”particle distribution results in that the dominant microcrack nucleation mode is interface decohesion in particle segregation regions, and that microcrack propagation tends to pass through particle segregation regions. The“necklace-type”particle distribution, which results in the weak interface between SiCp and matrix, is the main reason for the low ultimate tensile strength (UTS) of as-cast composite fabricated by stir casting, so it is necessary to employ hot deformation to improve particle distribution and interface bonding.
     According to the power law equation modified by threshold stress, the true activation energy for hot compression deformation of composite is calculated to be 95 kJ/mol, and stress exponent n=5, which indicates that the controlled deformation mechanism is dislocation climb controlled by grain boundary diffusion. Our compression experiment data agree with the slip band model established by W.D. Nix et. al, which is a model for creep based on the climb of dislocation at grain boundaries. Microstructure investigations have demonstrated that SiCp and their“necklace-type”distribution make the composite under study more suitable for the slip band model. A modified slip band model, which is based on the deformation condition of the composite under study, has been established. Compression temperature and strain rate have significant influence on dynamic recrystallization (DRX), dislocation and twins in the matrix. The results of room temperature compression experiments show that dislocations pile up in the matrix near particles, and particle deformation zones (PDZ) which are preferential site for DRX nucleation are formed. During hot compression, DRX takes place first in the regions near particle segregation at the original grain boundaries, and then extends to the interior of original grains. The“necklace-type”particle distribution leads to the“necklace”DRX mechanism of the composites.
     Hot extrusion can eliminate particle segregation in as-cast composites and improve particle distribution. Higher extrusion temperatures and larger extrusion ratios are favorable for improving particle distribution. SiCp can be cracked during extrusion. Particles are easy to be cracked when low extrusion temperature and large extrusion ratios are employed and the particle size is large. What’s more, particle cracking is sensitive to the local particle content. SiCp can stimulate DRX nucleation and lower DRX temperature of matrix. SiCp influence the growth of DRX grains during extrusion in two ways: SiCp promote the growth of DRX grains, whereas SiCp hinder grain growth when DRX grains grow to the point to get in touch with the surfaces of SiCp.
     As-extruded alloys and composites exhibit (1010) fiber texture. When SiCp is introduced into a Mg alloy, the main component of texture is not modified, but the intensity of texture evolves with the SiCp content with two ways: in the composite with 5% SiCp the intensity of Mg is higher than in the non-reinforced alloy, whereas for an SiCp volume fraction higher than 10% becomes more and more isotropic. The intensity of Mg texture doesn’t vary monotonically with particle size, and there is a peak of intensity when particle size is 10μm.
     Hot extrusion significantly improves the mechanical properties of composites. In temperature range from 250 to 350℃, the YS and UTS of composites increase with increasing extrusion temperature. The mechanical properties of 350R5 composites are lower than that of 350R12 composites. The variation of mechanical properties of AZ91 alloy with extrusion temperature and ratio is contrary to that of composites. The evolution of microstructure and texture in matrix during extrusion is not the leading factor of the mechanical properties of as-extruded composite, and the leading factor is the evolution of SiCp during extrusion. Both YS and UTS increase evidently with increasing SiCp volume fraction and decreasing particle size.
引文
1 V. Laurent, P. Jarry, G. Regazzoni and D. Apelian. Processing-Microstructure Relationships in Compocast Magnesium/SiC. J. Mater. Sci.1992, Vol.27. 4447- 4459
    2 G..A. Rozak, Ph.D thesis, Case Western Reserve University, 1993
    3 B. Inem. Dynamic Recrystallization in a Thermomechanically Processed Metal Matrix Composite. Mater. Sci. Eng. A. 1995,197:91-95
    4 T.E. Wilks. Cost-Effective Magnesium MMCs. Adv. Mater. Processes. 1992,8: 27-29
    5 D.J. Lloyd. Particle Reinforced Aluminum and Magnesium Matrix Composites. Int. Mater. Rev. 1994,39(1):1-23
    6 T.E Wilks. The Development of A Cost-Effective Particulate Reinforced Magnesium Composites. International Congress & Exposition. Detroit. Michigan. February 24-28. 1992. SAE paper No.920457
    7 M.R. Krishnadev, R.Angers, C.G. Krishnadas Nair and G. Huard. The Structure and Properties of Magnesium-Matrix Composites. JOM, August. 1993:52-54
    8 B.A. Mikucki, S.O. Shook, W.E.Mercer and W.G. Green. Magnesium Matrix Composites at Dow: Status Update. Light. Met. Age. 1986, 44(9-10):16-20
    9王春艳. Al18B4O33w/Mg复合材料热压缩变形行为与微观机制.哈尔滨工业大学博士论文. 2007:58-67 106-108
    10李淑波. AZ91合金和SiCwAZ91复合材料的高温压缩变形行为,哈尔滨工业大学博士论文. 2004:1-26 117-118
    11 A. Luo. Processing, Microstructure, and Mechanical Behavior of Cast Magnesium Metal Matrix Composites. Metall. Mater. Trans. A. 1995,26: 2445-2455
    12 E.M. Klier, A. Mortensen, J.A. Cornie, and M.C. Flemings. Fabrication of Cast Particle-Reinforced Metals via Pressure Infiltration. J. Mater. Sci. 1999, 26:2519-2526
    13 R. Oakley, R.F. Cochrane and R. Stevens. Recent Developments in Magnesium Matrix Composite. Key. Eng. Mater. 1995,104-107:387-416
    14 R.A. Saravanan, M.K. Surappa. Fabrication and Characterisation of Pure Magnesium-30 vol.% SiCp Particle Composite. Mater. Sci. Eng. A. 2000, 276:108–116
    15 M.C. Gui, J.M. Han and P.Y Li. Fabrication and Characterization of Cast Magnesium Matrix Composites by Vacuum Stir Casting Process. J. Mater. Eng. Perform. 2004,12(2):128-134
    16陈培生,孙扬善,蒋建清.工艺因素对SiCp/Mg复合材料中颗粒分布的影响.东南大学学报. 1997.27(5): 17-22
    17 A. Luo. Development of Matrix Grain Structure during the Solidification of A Mg (AZ91) /SiCp Composite. Script. Metall. Mater. 1994, 31(3):1253-1258
    18谭彦显,周劲晖,蔡叶.SiCp/Mg (AZ81)镁基复合材料制备工艺的优化.热加工工艺.1998,4: 22-24
    19 Palash Poddar, V.C. Srivastava, P.K. De and K.L. Sahoo. Processing and Mechanical Properties of SiC Reinforced Cast Magnesium Matrix Composites by Stir Casting Process. Mater. Sci. Eng. A. 2007,460-461:357-364
    20 J. Hashim, L. Looney and M.S.J. Hashmi. Metal Matrix Composites. Production by the Stir Casting Method. J. Mater. Proc. Techol. 1999,92-93: 1-7
    21 D. L. Albright. Review of Magnesium Matrix Composites. Proceedings of 46th Annual World Magnesium Conference. Mclean. VA. 1989:33-44
    22 S. Seshan, M. Jayamathy, S.V. Kailas and T.S. Srivatsan. The Yensile Behavior of Two Magnesium Alloys Reinforced with Silicon Carbide Particulates. Mater. Sci. Eng. A. 2003, 363:345-351
    23 B.A. Mikucki, W.E. Mercer and W.G. Green. Extruded Magnesium Alloys Reinforced with Ceramic Particles. Light. Met. Age. 1990, 6:12-16
    24 R. Mehrabian, R.G.riek and M.C.Flemings. Preparation and Casting of Metal-Particulate Non-Metal Composite, Metall.Trans. 1974,5:1899-1905
    25谢国宏.搅拌铸造法制造颗粒增强铝基复合材料的研究与发展.材料工程. 1994(12):5-7
    26 A. Banerji, M.K. Surappa and P.K. Rohatgi. Cast Aluminum Alloys Containing Dispersions of Ziron Particles. Metall. Trans. B. 1983,14:273-283
    27梅志,崔昆,顾明原,吴人洁.液态搅拌铸造SiCp及SiO2p增强Al-4wt%Mg基复合材料的界面反应研究.复合材料学报. 1998,15(4):43-47
    28郝远,陈体军,马颖. SiCp/ZA27复合材料的制备及力学性能.特种铸造及有色合金. 1997,2: 25-27
    29周世权,沈豫立,程晓敏,申庆,王从祥.颗粒增强铝基复合材料的搅熔复合工艺及机制.武汉汽车工业大学学报. 1997,19(1):29-33
    30张守魁,王丹虹.搅拌铸造制备颗粒增强复合材料.兵器材料科学与工程. 1997,20(6):35-39
    31任德亮,齐海波,丁占来,樊云昌. SiCp/Al复合材料搅拌铸造制备工艺的研究.铸造技术.1999,2:41-43
    32金燕鸣,方立高,陈赛克.搅拌法制造SiCp/ZL104复合材料工艺及性能.南昌航空工业学院学报.1997(1):46-49
    33申庆,贾健生,程晓敏,丁振兵,周世权,沈豫立.金属基复合材料制备装置的研制.武汉汽车工业大学学报. 1996,4: 41-43
    34 J.Hashim, L. Looney and M.S.J.Hashmi. Particle Distribution in Cast Metal Matrix Composites-PartⅡ. J. Mater. Proc. Techol. 2002,123:258-263
    35 T.W.克莱茵,P.J.威瑟斯.金属基复合材料导论(余永宁,房志刚译).北京冶金工业出版社.1996:319-323 42-110
    36吴人杰,谢国宏.颗粒MMC中颗粒推移效应的研究现状及发展.材料导报. 1993,4:69-71
    37 W. Zhou, Z.M. Xu. Casting of SiC Reinforced Metal Matrix Composites. J. Mater. Proc. Techol. 1997,63: 358-363
    38锦吴波,杨全.铸造复合材料研究进展.铸造. 1991,6:1-5
    39刘立新.金属-陶瓷粒子型铸造复合材料.宇航材料工艺. 1988,1:11-18
    40 Y. Cai, M.J. Tan, G.J. Shen and H.Q. Su. Microstructure and Heterogenous Nucleation Phenomena in Cast SiC Particles Reinforced Magnesium Composite. Mater. Sci. Eng. A. 2000,282:232-239.
    41 Y. Cai, G.J. Shen and H.Q. Su. The Interface Characteristics of As-cast SiCp/Mg (AZ80) Composite. Scripta. Mater. 1997,37:737-742.
    42 S. Ray. Casting of Metal Matrix Composites. Key. Eng.Mat. 1995,104-107: 417-446
    43 P.K. Rohatgi, J. Sobczak, R. Asthana and J.K. Kim. Inhomogeneities in Silicon Carbide Distribution in Stirred Liquids-A Water Model Study for S ynthesis of Composites. Mater.Sci. Eng.A.1998,252:98-108
    44 N. El-Kaddah, K.E.Chang. On the Dispersion of SiC-Al Slurries in the Rotating Flows. Mater. Sci. Eng. A.1999,144:221-227
    45 J. Hashim, L. Looney and M.S.J. Hashmi. Particle Distribution in Cast Metal Matrix Composites-PartⅠ. J. Mater. Proc. Techol. 2002,123:251-257
    46 S.B. Li, M.Y. Zheng, W.M. Gan and K. Wu, Hot Deformation Behavior of SiCw/AZ91 Magnesium Matrix Composite in Compression. Mater. Sci. Forum. 2005,( 475-479): 893-896
    47陈礼清,董群,郭金花,毕敬,徐永波. TiC/AZ91D镁基复合材料高温压缩变形行为.金属学报. 2005, 41:326-332.
    48胡连喜,李小强,王尔德,丛飞.挤压变形对SiCw/ZK51A镁基复合材料组织和性能的影响.中国有色金属学报. 2000,10:680-68
    49谢文,刘越,张振伟,李德松,毕敬.挤压温度对15vol%SiCp/Mg-9Al镁基复合材料拉伸性能与断口形貌的影响.复合材料学报. 2006,23: 127-133
    50张文龙,王红,王德尊.热挤压变形对SiCw/6A02复合材料中晶须状态的影响.轻合金加工技术. 2001,29:28-30
    51张文龙,付卫红,王德尊,姚忠凯.热挤压对SiCW/Al复合材料塑性的影响.材料工程. 2001,6:13-15
    52张文龙,王德尊,姜传海,丁冬雁,姚忠凯.热挤压工艺参数对挤压铸造SiCw/L3复合材料组织和性能的影响.中国有色金属学报. 1999,9:35-40
    53李建辉,李春峰.正挤压对SiCw/6061Al晶须形貌的影响.材料科学与工艺. 2004,12:449-452
    54 J.C. Ehrstom, W.H. Kool. Migration of Particles during Extrusion of Metal Matrix Composites. J. Mater. Sci. Lett. 1988,7:578-580
    55 M.K. Surappa. On the Nature of Particle Flow during Extrusion of Cast 6061 Al/SiCp Composites. J. Mater. Sci. Lett. 1993,12:1272-1273.
    56 L.M. Tham, M. Gupta, L. Cheng. Effect of Reinforcement Volume Fraction on the Evolution of Reinforcement Size during the Extrusion of Al-SiC Composites. Mater.Sci. Eng.A. 2002,326:355–363
    57严峰,吴昆,赵敏,杨德庄.热挤压对SiCw/MB15镁基复合材料组织和性能的影响.稀有金属材料与工程. 2003,32: 647-649
    58程羽,郭生武,郭成,陈金德.热挤压对颗粒增强金属基复合材料组织和性能的影响.兵器材料科学与工程. 2000,23:31-34
    59郑晶,马光,王智民,王枫.热挤压对铝基复合材料力学性能的影响,稀有金属. 2006,30:133-136
    60吴昆,神尾彰彦.挤压态SiCw/AZ91镁基复合材料的组织及其性能.兵器材料科学与工程. 1993,6:3-6
    61 V. V. Bhanu Prasad, B. V. R. Bhat, Y. R. Mahajan and P. Ramakrishnan. Effect of Extrusion Parameters on Structure and Properties of 2124 Aluminum Alloy Matrix Composites. Mater. Manuf. Process. 2001,16(6): 841-853
    62 R. Rahmani Fard, F. Akhlaghi. Effect of Extrusion Temperature on the Microstructure and Porosity of A356-SiCp Composites. J. Mater. Proc. Techol. 2007,187-188:433-436
    63 A. Borrego, R. Fernandez, M.D.C. Cristina, J. Ibanez and G. Gonzalez-Doncel. Influence of Extrusion Temperature on the Microstructure and the Texture of 6061Al-15 vol.% SiCw PM Composites. Compos. Sci. Technol. 2002,62:731–742
    64 W.M. Zhong, E. Goiffon, G. Lesperance, M. Suery and J.J. Blandin. Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Al-Mg(5083)/SiCp and Al-Mg(5083)/ Al2O3p Composites. Part
    1: Dynamic Recrystallization of the Composite .Mater. Sci. Eng. A. 1996, 214:84-92
    65 W.M. Zhong, E. Goiffon, G. Lesperance, M. Suery, Effect of Thermomechanical Processing on the Microstructure and Mechanical Properties of Al-Mg(5083)/SiCp and Al-Mg(5083)/ Al2O3p Composites. Part 3: Fracture Mechanisms of the Composites. Mater. Sci. Eng. A. 1996,214: 104-114
    66 C.H.J. Davies, W.C. Chen, E.B. Hawbolt, I.V. Samarasekera and J.K. Brimacombe. Particle Fracture during Extrusion of A 6061/alumina Composite. Script. Metall. Mater. 1995,32:309-314
    67 C.H.J. Davies, W.C. Chen, D.J. Lloyd, E.B. Hawbolt, I.V. Samarasekera and J.K. Brimacombe, Modeling Particle Fracture during the Extrusion of Aluminum/Alumina Composites, Metall. Trans. A. 1996,27:4113-4120
    68陈晓.原位自生颗粒增强镁基复合材料的研究.中南大学博士论文. 2005
    69 V. Sklenicka, M. Svoboda, M. Pahutová, K. Kucha?ováand T.G. Langdon. Microstructural Processes in Creep of an AZ91 Magnesium-Based Composite and Its Matrix Alloy. Mater. Sci. Eng. A. 2001,319-321:741-745
    70 M. Svoboda, M. Pahutová, K. Kucha?ová, V. Skleni?ka, T.G. Langdon. The Role of Matrix Microstructure in the Creep Behaviour of Discontinuous Fiber-Reinforced AZ91 Magnesium Alloy. Mater. Sci. Eng. A. 2002,324(1-2): 151-156
    71 Y. Li, T.G. Langdon. Creep Behavior of an AZ91 Magnesium Alloy Reinforced with Alumina Fibers. Metall. Trans. A. 1999,30:2059-2065
    72于化顺,高瑞兰,闵光辉,王执福,陈熙琛. Mg-Li合金及复合材料的抗蠕变性能.特种铸造及有色合金. 2002,(1):8-9
    73 T.G. Nieh, A.J. Schwartz and J. Wadsworth. Superplasticity in a 17 vol.% SiC Particulate-Reinforced ZK60A Magnesium Composite (ZK60/SiC/19p). Mater. Sci. Eng. A. 1996, 208:30-36
    74 M. Mabuchi, K. Higashi. High-Strain-Rate Superplasticity in Magnesium Matrix Composites Containing Mg2Si Particles. Philos. Mag. A. 1996,74: 887-905
    75 M. Mabuchi, K. Kubota and K. Higashi, High Strength and High Strain Rate Superplasticity in A Mg-Mg2Si Composite. Script. Metall. Mater. 1995,33: 331-335
    76 H. Watanabe, T. Mukai and K. Ishikawa. Superplasticity of a Particle-Strengthened WE43 Magnesium Alloy. Mater. Trans. 2001,42(1):157-162
    77严峰, SiCw/MB15复合材料的微观组织与变形断裂行为.哈尔滨工业大学博士学位论文. 2003
    78 O. Sitdikov, R. Kaibyshev, Dynamic Recrystallization in Pure Magnesium. Mater. Trans. 2001, 42:1928-1937.
    79 S. E. Ion, F. J. Homphreys and S. H. Whice. Dynamic Recrystalliastion and the Development of Microstructure during the High Temperature Deformation of Magnesium. Acta. Metall. 1982,30(10):1909-1919
    80 H. Watanabe. Study on the Deformation Mechanism of Fine-grained Superplasticity using Magnesium-Based Materials. Ph.D thesis. Osaka Prefecture University. 2002.
    81 R. Kaibyshev, O. Sitdikov. Low-Temperature Dynamic Recrystallization of Magnesium. Phys. Metals. 1994, 13(3):275-283
    82刘楚明,刘子娟,朱秀荣,周海涛.镁及镁合金动态再结晶研究进展.中国有色金属学报. 2006,16(1):1-12.
    83陈振华,许芳艳,傅定发,夏伟军.镁合金的动态再结晶.化工进展2006, 25(2):140-146.
    84 R. Kaibyshev, O. Sitdikov. Dynamic Recrystallization of Magnesium at Ambient Temperature. Z. Metallkd. 1994, 85:738-743
    85 A. Galiyev, R. Kaibyshev, G.. Gottstein. Correlation of Plastic Deformation and Dynamic Recrystallization in Magnesium Alloy ZK60. Acta. Mater. 2001, 49:1199-1207
    86 J.A. del Valle, M.T. Perez-Prado. O.A. Ruano, Texture Evolution During Large-Strain Hot Rolling of the Mg AZ61. Mater. Sci. Eng. A. 2003,355:68-78
    87 Y.N. Wang, J.C. Huang. Texture Analysis in Hexagonal Materials. Mater. Chem. Phys. 2003, 81:11-26
    88 R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen and A.D. Rollett. Current Issues in Recrystallization: a Review. Mater. Sci. Eng. A. 1997,238: 219-274
    89 M.T. Perez-Prado, O.A. Ruano. Texture Evolution during Annealing of Magnesium AZ61 alloy. Scripta. Mater. 2002, 46:149-155
    90 M.T. Perez-Prado, O.A. Ruano. Texture Evolution during Grain Growth in Annealed Mg AZ61 alloy. Scripta. Mater. 2003, 48:59-64
    91 F. J. Humphreys, P. N. Kalu, Dislocation-Particle Interactions during High Temperature Deformation of Two-Phase Aluminium Alloys Acta. Metall 1987, 35: 2815-2829
    92 N. Hansen, C. Barlow.“Microstructural Evolution in Whisker- and Particle-Containing Materials”in Fundamentals of Metal-Matrix Composites, S. Suresh, A. Mortensen, A. Needleman, Eds., Butterworth-Heinemann, 1993:109-118.
    93 Y. L. Liu, N. Hansen and D. Juul. Jensen. Recrystallization Microstructure in Cold-Rolled Aluminum Composites Reinforced by Silicom Carbide Whiskers. Metall. Trans. A. 1989, 20:1743-1753
    94 Y.L. Liu, D. Juul. Jensen and N. Hansen. Recover and recrystallization in cold-rolled Al-SiSw Composites. Metall. Trans. A. 1992, 23:807-818.
    95 H.M. Chan, F.J. Humphreys. The Recrystallization of Aluminium-Silicon Alloys Containing a Bimodal Particle Distribution. Acta. Metall.1984, 32:235-243.
    96 M. Ferry, P. R. Munore and A. Crosky, The Effect of Processing Parameters on the Recrystallized Grain Size and Shape of Particulate Reinforced Metal Matrix Composite, Script. Met. Metall. 1993, 29:741-746
    97 F. J. Humphreys. The Nucleation of Recrystallization at Second Phase Particles in Deformed Aluminium. Acta. Metall. 1977, 25:1323-1344
    98 A. Poudens, B. Bacroix and T. Bretheau. Influence of Microstructures and Particle Concentrations on the Development of Extrusion Textures in Metal Matrix Composites. Mater. Sci. Eng. A. 1995, 196:219-228
    99 A. Poudens, B. Bacroix. Recrystallization Textures in Al-SiC Metal Matrix Composites. Scripta. Mater. 1996, 34:875-855
    100 A.W. Bowen, M.G. Ardakani and F.J. Humphreys. Deformation and Recrystallization Texture in Al-SiC Metal-Matrix composites. Mater. Sci. Forum. 1994,57-162:919-926
    101 G. Garces, P. Perez and P. Adeva. Effect of the Extrusion Texture on the Mechanical Behaviour of Mg-SiCp Composites. Scripta. Mater. 2005,52: 615-619
    102 E.M. Jansen, H.-G. Brokmeier and K.U. Kainer. Texture of Ceramic Reinforced Magnesium Composites. Proceedings of the 12th International Conference on Texture of Materials (ICOTOM-12). Montreal. Canada. 1999, 1482-1487.
    103江海涛,李淼泉.半固态金属材料的制备技术及应用.重型机械. 2002,2:1-5
    104李昊,桂满昌,周彼德.搅拌铸造金属基复合材料的热力学和动力学机制.中国空间科学技术. 1997,1:9-16
    105 P. K. Rohatgi, F. M. Yarandi, Y. Liu and R. Asthana. Segregation of Silicon Carbide by Settling and Particle Pushing in Cast Aluminum-Silicon-Carbide Particle Composites. Mater. Sci. Eng. A. 1991,147:L1-L6
    106 R. Asthana, S. N. Tewari. The Engulfment of Foreign Particles by a Freezing Interface. J. Mater. Sci. 1993,28:5414-5424
    107 A.M. Samuel, A. Gotmare and F.H. Samuel. Effect of Solidification Rate And Metal Feedability on Porosity And SiC/Al2O3 Particle Distribution in An Al-Si-Mg (359) Alloy. Compos. Sci. Technol. 1995,53:301-315
    108 C. Tekmen, I. Ozdemir, U. Cocen and K. Onel. The Mechanical Response of Al-Si-Mg/SiCp Composite: Influence of Porosity. Mater Sci. Eng. A. 2003, 360:365-371
    109 S. N. Ahmad, J. Hashim and M. I. Ghazali. The Effects of Porosity on Mechanical Properties of Cast Discontinuous Reinforced Metal–Matrix Composite. J. Comp. Mater. 2005,39:451-466
    110 G. Pettersen, E. Ovrelid, G. Tranell, J. Fenstad and H. Gjestland. Characterisation of the Surface Films Formed on Molten Magnesium in Different Protective Atmospheres. Mater Sci. Eng. A. 2002,332:285-294
    111 W.S. Miller, F.J. Humphrey. Strengthening Mechanisms in Particulate Metal Matrix Composites. Script. Met. Metall. 1991,25:33-38
    112 W.S. Miller, F.J. Humphrey. Strengthening Mechanisms in Particulate Metal Matrix Composites-Rely to Comments by Arsenault. Script. Met. Metall. 1991,25: 2623-2626.
    113 M. Vogelsang, R.J. Arsenault and R.M. Fisher. An in situ HREM Study of Dislocation Generation at Al/SiC Interfaces in Metal Matrix Composites. Metall. Trans. A. 1986,17:379-389
    114 R.J. Arsenault, N. Shi. Dislocation Generation Due to Differences between the Coefficients of Thermal Expansion. Mater. Sci. Eng. 1986,81:176-187
    115 P.M. Mummery, B. Derby. In-situ Scanning Electron Microscope Studies of Fracture in Particulate-Reinforced Metal-Matrix Composites. J. Mater. Sci. 1994,29: 5615-5624
    116 M.Y. Zheng, W.C. Zhang, K. Wu and C.K. Yao. The Deformation and Fracture Behavior of SiCw/AZ91 Magnesium Matrix Composite during In-situ TEM Straining. J. Mater. Sci. 2003,38:2647-2654
    117 M. Manoharan, J.J. Lewandowski. In-situ Deformation Studies of an Metal-Matrix Composite in a Scanning Electron Microscope. Scripta. Metall. 1989,23:1801-1804
    118 C.P. You, A.W. Thompson and I.M. Bernstein. Proposed Failure Mechanism in a Discontinuously Reinforced Aluminum Alloy. Scripta. Metall. 1987,21:181-815
    119 K. Sohn, K. Euh, S. Lee and I. Park, Mechanical Property and Fracture Behavior of Squeeze Cast Mg Matrix Composites. Mater. Trans. A. 1998,29: 2543-2553
    120 Z.Y. Ma, J. Liu and C.K.Yao. Fracture Mechanism in SiCw-6061 Al Composite. J. Mater. Sci. 1991,26:1971-1976
    121 Vreeling JA, Ocelik V, Hamstra GA, Pei YT and DE Hosson JThM. In-situ Microscopy Investigation of Failure Mechanisms in Al/SiCp Metal Matrix Composite Produced by Laser Embedding. Scripta. Mater. 2000,42:589-595
    122 M.J. Handianfard, J. Healy and Y.M Mai. Fracture Characteristics of a Particulate-Reinforcd Metal Matrix Composite. J. Mate. Sci. 1994;29:2321-2327
    123 P. Agrawal, C.T.Sun, Fracture in Metal-Ceramic Composites. Comp. Sci. Technol. 2004,64:1167-1178
    124 T.S. Srivatsan. Microstructure, tensile properties and fracture behaviour of Al2O3 particulate-reinforced aluminium alloy metal matrix composites. J. Mater. Sci. 1996,33:1375-1388
    125 B. Inem, G. Pollard. Interface Structure and Fractography of a Magnesium-Alloy, Metal-Matrix Composite Reinforced with SiC Particles. J. Mate. Sci. 1993,28: 4427-4434.
    126 J. Segurado, J. LLorca. Computational Micromechanics of Composites: The Effect of Particle Spatial Distribution. Mech. Mater. 2006,38: 873-883.
    127 J. Segurado, J. LLorca. A Computational Micromechanics Study of the Effect of Interface Decohesion on the Mechanical Behavior of Composites. Acta. Mater. 2005, 53: 4931-42.
    128 D.J. Lloyd. Aspects of Facture in Particulate Reinforced Metal Matrix Composites, Acta Metall. Mater. 1991, 39: 59–71
    129 L. Geng, S. Ochiai, J.Q Hu and C.K. Yao. The Effect of WhiskerMisalignment on the Hot Compressive Deformation Behavior of SiCw/6061 Al Composites at 500℃. Mater Sci. Eng. A. 1998, 246:302-305
    130 Z.Y. Ma, S.C. Tjong. Creep Defeomation Characteristics of Deformation of Discontinuous Reinforced Aluminium-Matrix Composites. Compos. Sci. Technol. 2001,61:771-78
    131王德尊.金属力学性能.哈尔滨工业大学出版社. 1993:57-62
    132 R. Kaibyshev, V. Kazyhanov and F. Musin. Hot Plastic Deformation of Aluminium Alloy 2009-15%SiCw Composite. Mater. Sci. Technol. 2002l,18: 777-786
    133 H.Watanabe, M. Fukusumi, K. Ishikawa andT. Shimizu. Superpalsticity in A Fullerence-dispersed Mg-Al-Zn Alloy Composite. Scripta. Mater. 2006,54: 1575-1580
    134 I.G. Crossland, R.B. Jones. Dislocation Creep in Magnesium. Met. Sci. J. 1972,6:162-166
    135 M.E. Kassner, M.-T. Perez-Prado. Five-Power-Law Creep in Single Phase Metals and Alloys. Prog. Mater. Sci. 2000,45:1-102
    136 H. Somekawa, K. Hirai, H.Watanabe, Y. Takigawa and K. Higashi. Dislocation Creep Behavior in Mg–Al–Zn Alloys. Mater Sci. Eng. A. 2005, 407:53-61
    137 J.R. Springarn, W.D. Nix. A Model for Creep Based on the Climb of Dislocations at Grain Boundaries. Acta. Metall. 1979,22:171-177
    138 R.S. Mishra, H. Jones and G.W. Greenwood. On the threshold stress for diffusional creep in pure metals. Phil. Mag. A. 1989,60(6):581-590
    139 P. Zhang. Creep Behavior of the Die-cast Mg-Al Alloy AS21. Scripta. Mater. 2005,25:277-282
    140 B.Q. Han, D.C. Dunand. Creep of Magnesium Strengtheded with High Volume Fractions Yttria Dispersoids. Mater Sci. Eng. A. 2001,300:235-244
    141 J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature. Metall. Trans. A. 2005,36: 1689-1696
    142 B.C. Wonsiewicz, W.A. Backofen. Plasticity of Magnesium crystals. Trans. Metall. Soc. AIME. 1967, 239:1422-1431
    143 R.E. Reed-Hill. A Study of the {1011} and {1013} Twining Modes inMagnesium. Trans. Metall. Soc. AIME. 1960, 218:554-558
    144 W.H. Hartt, R.E. Reed-Hill. Internal Deformation and Fracture of Second-Order {1011} ? {1012}Twins in Magnesium. Trans. Metall. Soc. AIME. 1968,242:1127-1133
    145 D. Ponge, G. Gottstein. Necklace Formation during Dynamic Recrystallization: Mechanical and Impact on Floe Behavior. Acta. Mater. 1998,46:69-80
    146谢建新,刘静安.金属挤压理论与技术.冶金工业出版社. 2002:1-75.
    147 S.H. Hong, K.H.Chung and C.H. Lee, Effects of Hot Extrusion Parameters on the Tensile Properties Microstructures of SiCw-2124Al Composites. Mater. Sci. Eng. A. 1996,206: 225-232
    148 T. Mochida, M.Taya and D.J. Lloyd. Fracture of Particles in a Particle / Metal Matrix Composite under Plastic Straining and Its Effect on the Young's Modulus of the Composite. Mater. Trans. JIM. 1991,32:931-942
    149 W.G. Hutchison, E.J. Palmiere. Microstructural Development in a Metal Matrix Composite during Thermomechanical Processing. Mater. Trans. JIM. 1996,37(3): 330-335
    150 P. Perez, G. Garces and P. Adeva. Influence of Texture on the Mechanical Properties of Commercially Pure Magnesium Prepared by Powder Metallurgy. J. Mater. Sci. 2007,42:3969-3976.
    151 J. Kuzelke, I. Saxl. Preferred Orientation in Extruded Magnesium Compacts. J. Nucl. Mater. 1974,50:98-102.
    152 M. Mabuchi, Y. Chino, H. Jwasaki, T. Aizawa andK. Higashi. The Grain Size and Texture Dependence of Tensile Properties in Extruded Mg-9Al-1Zn. Mater. Trans. 2001,7:1182-1189
    153 L.G. Morell, J.D. Hanawald. X-Ray Study of Plastic Working of Magnesium Alloy, Physics, 1932,3:161-168
    154 D. Juul Jensen, N. Hansen and F.J. Humphreys. Texture Development during Recrystallization of Aluminium Containing Large Particles. Acta. Metall. 1985,33:2153-5162.
    155 M. Ferry, F.J. Humphreys. The Deformation and Recrystallization of Particle-containing Aluminium Crystals. Acat. Mater. 1996,44:3089-3103
    156 Y.L. Liu, N. Hansen and D. Juul Jensen. Thermomechanical Processing ofAl-SiC Composites Microstructure and Texture. Proceedings of the Riso International Symposium on Materials Science,Ⅴ, Metal Matrix Composites - Processing, Microstructure and Properties,.1992:67-80
    157 A.W. Bowen, M. Ardakani and F.J. Humphreys. Effect of Particle Size and Volume Fraction on Deformation and Recrystallisation Textures in Al-SiC Metal-Matrix composites. Proceedings of the Riso International Symposium on Materials Science,Ⅴ, Metal Matrix Composites - Processing, Microstructure and Properties.1992: 241-246
    158 P.N. Kalu, F.J. Humphreys. Some Aspects of the Plasticity and Texture of Two-Phase Polycrystals. Proceedings of the Riso International Symposium on Metallurgy and Materials Science, Materials Architecture. 1989:415-422
    159 F.J. Humphreys, P.N. Kalu. The Plasticity of Particle-Containing Polycrystals. Acta. Metar. 1990:38:917-930
    160 R.K. Goswami, R.C. Anandani, Rajiv Sikand, I.A. Malik and A.K. Gupta, Effect of Extrusion Parameters on Mechanical Properties of 2124 Al-SiCp Stir Casting MMCs. Mater. Trans. JIM. 1999,40:254-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700