鲁西早白垩世火成岩中异剥橄榄岩和辉石岩捕虏体的成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以鲁西早白垩世火成岩中的异剥橄榄岩和辉石岩类捕虏体为研究对象,运用岩石学、矿物学与地球化学研究手段,尤其是岩相学和矿物原位微区痕量元素与同位素研究,确定了鲁西早白垩世火成岩中异剥橄榄岩和辉石岩类捕虏体的成因——即异剥橄榄岩是再循环陆壳物质部分熔融的熔体与地幔橄榄岩反应的产物,而辉石岩具有三种成因类型:岩浆演化早期堆积成因的辉石岩、岩浆上升过程中捕获的下地壳麻粒岩相变质的辉石岩和再循环陆壳物质部分熔融形成的熔体与地幔橄榄岩反应形成的辉石岩;通过对熔体-橄榄岩反应成因辉石岩中锆石进行的SIMS U-Pb定年,结合受熔体改造纯橄岩中锆石的SHRIMP U-Pb定年结果,确定了华北克拉通东部岩石圈地幔被改造的时间——主体为晚侏罗世-早白垩世早期;通过对熔体-橄榄岩反应成因异剥橄榄岩和辉石岩中矿物原位微区痕量元素和Sr-O同位素的研究,查明了改造岩石圈地幔熔体的性质与来源——既有富硅质熔体又有碳酸盐质熔体,这些熔体均来自于再循环的陆壳物质;此外,熔体-橄榄岩反应成因捕虏体的岩相学,与矿物化学和全岩化学一起,揭示了华北克拉通东部岩石圈地幔的改造过程与机制——橄榄石被斜方辉石所取代和相继发生的斜方辉石被单斜辉石所取代的过程以及熔体-橄榄岩反应是岩石圈地幔被改造的机制。该项研究对全面了解华北东部克拉通破坏的时间、深部过程与机制具有十分重要的意义。
The thesis reports the petrographic, mineralogical and whole rock geochemical data forthe wehrlite and pyroxenite xenoliths from the Early Cretaceous Tietonggou intrusion,Jinling intrusion, Feixian and Fangcheng basalts in western Shandong Province, eastern partof the North China Craton (NCC), with the aim of determining their petrogenesis. In addition,based on the petrography, mineralogy and isotopic geochemistry for the selected wehrlite andpyroxenite xenoliths with the suggested genesis of melt-peridotite reaction, the nature andorigin of the melts modifying the lithospheric mantle are discussed. Based on the SIMS U-Pbdating and the oxygen isotopic data of zircons from the pyroxenite xenoliths in Fangchengbasalt, the destruction timing of the NCC has been determined. Taken together, this thesisfinally elucidates the deep processes and mechanism of the destruction of the eastern NCCduring the Mesozoic. Main achievements are as follows:
     1. The origin of wehrlite xenoliths
     The petrographic and mineral geochemical data of the wehrlite xenoliths from theTiegonggou high-Mg diorites, Feixian and Fangcheng basalts indicate that the wehrlitexenoliths in our study area could be formed by melt-peridotite reaction. Evidences are asfollows:
     The olivines in the wehrlite xenoliths generally occur as an isolated residue withinclinopyroxene, and orthopyroxene was modified by clinopyroxene. The forsterite (Fo) contentand nickel concentration of the olivines from the wehrlite xenoliths mainly range from88.9to90.8and from2200to3285ppm, respectively, implying their mantle genesis. However, someof these values are lower than those of olivines derived from the lithospheric mantle.Combined with their oxygen isotopic compositions (δ18O=5.41‰-7.3‰) and the highCaO concentrations, it is suggested that the olivines experienced the modification of melts.The clinopyroxenes in the wehrlite xenoliths have Al2O3=0.7wt%-1.19wt%, TiO2=0.04 wt%-0.12wt%, Na2O=0.26wt%-0.41wt%, and Mg#=91.2-94.1(Mg#=100Mg/(Mg+Fetotal)), and are characterized by enrichment in the light rare earth elements (LREEs),depletion in the heavy rare earth elements (HREEs) and high field strength elements (HFSEs),and no Eu anomalies. The87Sr/86Sr,143Nd/144Nd, and187Os/188Os ratios of the wehrlitexenoliths range from0.70737to0.71403, from0.51218to0.51241, and from0.12661to0.57650, respectively. These lines of evidence suggest that the wehrlite xenoliths in our studyarea could be formed by the interaction between the recycled continental crust-derived meltsand the mantle peridotite.
     2. The origin of pyroxenite xenoliths
     The pyroxenite xenoliths are found in Tietonggou and Jinling high-Mg intrusions,Fiexian and Fangcheng basalts. According to their petrography and mineral chemistry, thepyroxenite xenoliths can be subdivided into three types of origins:Cumulate pyroxenite:
     This type of pyroxenite xenoliths is found in Tietonggou and Jinling diorites, and arecharacterized by cumulus texture. Clinopyroxenes in the pyroxenite xenoliths have Mg#=81.7-90.1, Al2O3=1.01wt%-4.58wt%, Na2O=0.30wt%-0.92wt%, and TiO2=0.05wt%-0.39wt%, and are characterized by enrichment in LREEs and depletion in HREEs,similar to the clinopyroxene phenocrysts from Cenozoic basalts in eastern China.Pyroxenite xenoliths from deep continental crust:
     These pyroxenite xenoliths are found in Tietonggou and Jinling intrusions, and displayslaty structure and granoblastic texture. The clinopyroxenes from this type of pyroxeniteshave Al2O3=0.64wt%-2.92wt%, Na2O=0.48wt%-1.23wt%, TiO2=0.02wt%-0.26wt%, and Mg#=72.0-80.6, and have exhibit relatively flat rare earth element (REE) patterns,as well as negative Eu and Sr anomalies. They are also enriched in LILEs, and depleted inHFSEs (such as Nb, Ta, Zr, Hf), similar to the clinopyroxenes from the Archean granuliteterranes, suggesting that they could be originated from deep crust.Pyroxenites originated from melt-peridotite reaction:
     Abundant melt-peridotite pyroxenite xenoliths are hosted in Tietonggou and Jinlinghigh-Mg diorites, Feixian and Fangcheng basalts. The petrographic observations indicate thatolivine is replaced by orthopyroxene, and the orthopyroxene is subsequently replaced byclinopyroxene. In some xenoliths, metasomatic amphibole, mica and carbonate veins can bealso observed under microscope.
     Compared with the mantle-derived olivines, the olivines from this type of pyroxenitexenoliths have relatively lower Fo (79.1-86.4) and nickel contents (1167ppm-2468ppm),and distinctively high δ18O values (6.58‰-8.40‰), indicating that the mantle-derivedolivines had been modified by silica-rich melt. Similarly, the orthopyroxenes andclinopyroxenes from the pyroxenite xenolith have much higher nickel concentrations thanthose of orthopyroxenes and clinopyroxene from mantle-derived peridotite xenoliths andphenocrysts within Cenozoic basalts, the nickel contents of these orthopyroxenes andclinopyroxenes range from1097to1491ppm and from581to809ppm, respectively. Themuch high Ni contents in orthopyroxenes and clinopyroxenes from the pyroxenite xenolithsindicate that they inherited the composition of previous olivines, revealing the existence of thereaction between melts and the mantle-derived olivines.
     3. The modification timing of modifying lithosperic mantle
     Zircons from the pyroxenite xenoliths via melt-peridotite reaction in Fangcheng basaltsare mainly euhedral-subheduel in shape and display fine-scale oscillatory growth zoning,implying their magmatic origin. SIMS U-Pb dating indicates that the youngest population of206Pb/238U ages rangs from153to157Ma. In addition, the metamorphic zircon with the ageof215Ma, and a large amount of Paleozoic (508Ma-512Ma) and Paleoproterozoic as wellas Neoarchean magmatic zircons are found in these xenoliths. Combined with the SHIMPU-Pb dating results of zircons from dunite xenoliths in the Tietonggou high-Mg diorites (theyoungest age populations are143and160Ma), it is suggested that the most intensivemodification of the lithospheric mantle beneath the eastern NCC took place during LateJurrassic to early Early Cretaceous.
     4. The nature and origin of the melts modifying the lithospheric mantle
     The trace element compositions of cilnopyroxenes suggest that the wehrlite andpyroxenite xenoliths formed by melt-peridotite reaction in the Tietonggou intrusion were theproducts of Archen lithospheric mantle modified by silica-rich melts, whereas the pyroxenitexenoliths from Feixian and Fangcheng basalts represent the lithospheric mantle modified bycarbonate melt.
     The ISrand εNd(t) ratios of wehrlite xenoliths from the Tietonggou intrusion range from0.70596to0.70737and from0.512181to0.512416, respectively. Their initial187Os/188Os(125Ma) ratios range from0.12661to0.57650. The average δ18O values of olivines is6.5‰±0.4. These features imply that the metasomatic melts could be derived from the partial melting of recycled crust. The δ18O values of olivines in pyroxenite xenoliths from Feixianand Fangcheng basalts range from6.58‰to8.40‰. The87Sr/86Sr ratios of clinopyroxenesin the websterite xenoliths vary from0.70862to0.70979. Combined with the δ18O values ofzircons in pyroxenite xenoliths, it is suggested that the some of metasomatic melts could be atleast derived from the partial melting of the deep-subducted Yangtze slab.
     5. The process and mechanism of the modification of the lithospheric mantle in theeastern NCC
     The petrography of wehrlite and pyroxenite xenoliths from western Shangdong Provincein the eastern NCC provides insights into the processes resulting in the destruction of theNCC during the Mesozoic. The following reactions can represent the deep processesmodifying the lithospheric mantle during the destruction of the NCC:
     Mg2SiO4(olivine)+SiO2—2MgSiO3(orthopyroxene)
     Mg2Si2O6(orthopyroxene)+2CaCO3+2SiO2—2CaMgSi2O6(clinopyroxene)+2CO2
     The above modification processes, together with in situ trace element and isotopecompositions of minerals from pyroxenite and wehrlite xenoliths, indicate that the mechanismmodifying the lithospheric mantle in the eastern NCC is a reaction between the melts derivedfrom the recycled continental crust and the mantle peridotite.
引文
1. Allegre C, Turcotte DL. Implications of a Two Component Marble-cake Mantle[J].Nature,1986,323:123-127.
    2. Andersen T. Correcteion of common lead in U-Pb analyses that do not report204Pb[J].Chemical Geology,2002,192(1-2):59-79.
    3. Arzamastsev AA, Dahlgren, S. Plutonic mineral assemblages in Palaeozoic dikes andexplosion pipes of the Alkaline Province of the Baltic Shield[J]. GeochemistryInternational,1994,31(3):57-68.
    4. Beard AD, Downes H, Mason PRD, et al. Depletion and enrichment processes in thelithospheric mantle beneath the Kola Peninsula (Russia): Evidence from spinel lherzoliteand wehrlite xenoliths[J]. Lithos,2007,94(1-4):1-24.
    5. Beck AR, Morgan ZT, Liang Y, et al. Dunite channels as viable pathways for mare basalttransport in the deep lunar mantle[J]. Geophysical Research Letters,2006,33: L01202.
    6. Beck SL, Zandt G. The nature of orogenic crust in the central Andes[J]. Journal ofGeophysical Research: Solid Earth,2002,107(B10):2230.
    7. Bodinier JL, Vasseur G, Vernieres J, et al. Mechanisms of mantle metasomatism:geochemical evidence from the Lherz orogenic peridotite[J]. Journal of Petrology,1990,31(3):597-628.
    8. Boynton WV. Cosmochemistry of the rare earth elements: meteorite studies[M]. In:Henderson P, ed. Rare earth element geochemistry. New York, Elsevier SciencePublishing Company Inc,1984,63-114.
    9. Brandon AD, Snow JE, Walker RJ, et al.190Pt-186Os and187Re-187Os systematics ofabyssal peridotites[J]. Earth and Planetary Science Letters,2001,177(3-4):319-335.
    10. Carroll MR, Wyllie PJ. Experimental Phase Relations in the SystemTonalite-Peridotite-H2O at15kb; Implications for Assimilation and DifferentiationProcesses near the Crust-Mantle Boundary[J]. Journal of Petrology.1989,30(6):1351-1382.
    11. Carswell DA. Mantle derived lherzolite nodules associated with kimberlite, carbonatiteand basalt magmatism: A review[J]. Lithos,1980,13(2):121–138.
    12. Chen JF, Jahn BM. Crustal evolution of southeastern China: Nd and Sr isotopicevidence[J]. Tectonophysics,1998,284:101-133.
    13. Chen JF, Xie Z, Li HM, et al. U-Pb zircon ages for a collisionrelated K-rich complex atShidao in the Sulu ultrahigh pressure terrane, China[J]. Geochemical Journal,2003,37:35-46.
    14. Chen L. Lithospheric structure variations between the eastern and central North ChinaCraton from S-and P-receiver function migration[J]. Physics of the Earth PlanetaryInteriors,2009,173:216-227.
    15. Chen LH, Zhou XH. Subduction-related metasomatism in the thinning lithosphere:evidence from a composite dunite-orthopyroxenite xenolith entrained in Mesozoic Laiwuhigh-Mg diorite, North China Craton[J]. Geochemistry Geophysics Geosystems,2005,6(6):1-20.
    16. Chen YD, O’Reilly SY, Kinny PD, et al. Dating lower crust and upper mantle events: anion microprobe study of xenoliths from kimberlitic pipes, South Africa[J]. Lithos,1994,32:77-94.
    17. Cohen AS, Waters FJ. Separation of osmium from geological materials by solventextraction for analysis by thermal ionisation mass spectrometry[J]. Analytica ChimicaActa,1996,332(2-3):269-275.
    18. Coltorti M, Bonadiman C, Hinton RW, et al. Carbonatite metasomatism of the oceanicupper mantle: Evidence from clinopyroxenes and glasses in ultramafic xenoliths ofGrande Comore, Indian Ocean[J]. Journal of Petrology,1999,40(1):133-165.
    19. Cooper KM, Eiler JM, Asimow PD, et al. Oxygen isotope evidence for the origin ofenriched mantle beneath the mid-Atlantic ridge[J]. Earth and Planetary Science Letters,2004,220,297-316.
    20. Daines MJ, Kohlstedt DL. The transition from porous to channelized flow due tomelt/rock reaction during melt migration[J]. Geophysical Research Letters,1994,21:145-148.
    21. Deng JF, Su SG, Niu YL, et al. A possible model for the lithospheric thinning of the NorthChina Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism andtectonism[J]. Lithos,2007,96:22-35.
    22. Dessai AG, Markwick A, Vaselli O, et al. Granulite and pyroxenite xenoliths from theDeccan Trap: insight into the nature and composition of the lithosphere beneath cratonicIndia[J]. Lithos,2004,78:263-290.
    23. Dobbs PN, Duncan DJ, Hu S. et al. The geology of the mengyin kimberlites, Shandong,China[C]. In: Meyer HOA, Leonardos OH (eds). Fifth International KimberliteConference, Vol1, Companhia de Pesquisa de Recursos Minerais, Araxa,1994,40-61.
    24. Fan Q, Hooper PR. The mineral chemistry of ultramafic xenoliths of eastern China:Implication for upper matnle composition and the paleogeotherms[J]. Journal ofPetrology,1989,30(5):1117-1158.
    25. Fan WM, Menzies MA. Destruction of aged lower lithosphere and accretion ofasthenosphere mantle beneath eastern China[J]. Geotectonica Metallogenia,1992,16:171-180.
    26. Fan WM, Zhang HF, Baker J, et al. On and off the North China Craton: where is theArchean keel [J]? Journal of Petrology,2000,41:933-950.
    27. Frey FA, Prinz M. Ultramafic Inclusions from San Carlos, Arizona-petrologic andGeochemical Data Bearing on their Petrogenesis[J]. Earth and Planetary Science Letters,1978,38(1):129-176.
    28. Gao S, Luo TC, Zhang BR, et al. Chemical composition of the continental crust asrevealed by studies in East China[J]. Geochimica et Cosmochimica Acta,1998b,62:1959-1975.
    29. Gao S, Rudnick RL, Carlson R W, et al. Re-Os evidence for replacement of ancientmantle lithosphere beneath the North China craton[J]. Earth and Planetary Science Letters,2002,198(3-4):307-322.
    30. Gao S, Rudnick RL, Xu WL, et al. Recycling deep cratonic lithosphere and generation ofintraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters,2008,270:41-53.
    31. Gao S, Rudnick RL, Xu WL, et al. Recycling deep cratonic lithosphere and generation ofintraplate magmatism in the North China Craton[J]. Earth and Planetary Science Letters,2008,270:41-53.
    32. Gao S, Rudnick RL, Yuan HL, et al. Recycling lower continental crust in the North ChinaCraton[J]. Nature,2004,432(7019):892-897.
    33. Gao S, Zhang BR, Jin ZM, et al. How mafic is the lower continental crust[J]? Earth andPlanetary Science Letters,1998a,161:101-117.
    34. Gao S, Zhang BR, Luo TC, et al. Chemical composition of the continental crust in theQinling Orogenic Belt and its adjacent North China and Yangtze cratons[J]. Geochimicaet Cosmochimica Acta,1992,56:3933-3950.
    35. Garrido CJ, Bodinier JL. Diversity of Mafic Rocks in the Ronda Peridotite: Evidence forPervasive Melt-rock Reaction during Heating of Subcontinental Lithosphere byUpwelling Asthenosphere[J]. Journal of Petrology,1999,40(5):729-754.
    36. Gebauer D. Alpine geochronology of the Central and Western Alps: new constraints for acomplex geodynamic evolution[J]. Schweizer Mineralogische PetrographischeMitteilungen,1999,79:191-208.
    37. Gorring M, Kay SM. Carbonatite metasomatized peridotite xenoliths from southernPatagonia: implications for lithospheric processes and Neogene plateau magmatism[J].Contributions to Mineralogy and Petrology,2000,140(1):55-72.
    38. Green DH, Wallace ME. Mantle metasomatism by ephemeral carbonatite melts[J]. Nature,1988,336:459-462.
    39. Green DH, Wallace ME. Mantle metasomatism by ephemeral carbonatite melts[J]. Nature,1988,336:459-462.
    40. Griffin WL, O’Reilly SY, Ryan CG. Compostion and thermal structure of the lithospherebeneath South Africa, Siberia and China: porton microprobe studies[C]. Abstract of theinternational Symposium on Cenozoci Volcanic Rocks and Deep-seated Xenoliths ofChina and its Environs. Beijing,1992,65-66.
    41. Griffin WL, Zhang A, O’Reilly SY, et al. Phanerozoic evolution of the lithospherebeneath the Sino-Korean craton[M]. In: Flower MFJ, Chung SL, Lo CH, et al.(eds).Mantle dynamics and plate interaction in east Asia. American Geophysical Union,Geodynamics Series,1998,27:107-126.
    42. Guo F, Fan WM, Wang YJ, et al. Late mesozoic mafic intrusive complexes in NorthChina Block: constraints on the nature of subcontinental lithospheric mantle[J]. Physicsand Chemistry of the Earth, Part A: Solid Earth and Geodesy,2001,26(9-10):759-771.
    43. Guo JT, Guo F, Wang CY, et al. Crustal recycling processes in generating the earlyCretaceous Fangcheng basalts, North China Craton: New constraints from mineralchemistry, oxygen isotopes of olivine and whole-rock geochemistry[J]. Lithos,2013,170-171:1-16.
    44. Holm PM, Praegel NO. Cumulates from primitive rift-related East Greenland Paleogenemagmas: petrological and isotopic evidence from the ultramafic complexes atKaelvegletscher and near Kaerven[J]. Lithos,2006,92:251-275.
    45. Huang XL, Xu YG, Liu DY. Geochronology, petrology and geochemistry of the granulitexenoliths from Nushan, east China: implication for a heterogeneous lower crust beneaththe Sino-Korean Craton[J]. Geochimica et Comochimica Acta,2004,68:127-149.
    46. Huang XL, Zhong JW, Xu YG. Two tales of the continental lithospheric mantle prior tothe destruction of the North China Craton: Insights from Early Cretaceous maficintrusions in western Shandong, East China[J]. Geochimica et Cosmochimica Acta,2012,96:193-214.
    47. Irving AJ, Price RC. Geochemistry and Evolution of Highpressure Phonolitic Lavas fromNigeria, Australia, Eastern Germany, and New Zealand[J]. Geochimica et CosmochimicaActa,1980,45:1309-1320.
    48. Jahn BM, Auvray B, Shen QH, et al. Archean crustal evolution in China: The Taishancomplex, and evidence for Juvenile crustal addition from long-term depleted mantle[J].Precambrian Research,1988,38:381-403.
    49. Jahn BM, Wu FY, Lo CH, et al. Crust-mantle interaction induced by deep subduction ofthe continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisionalmafic-ultramafic intrusions of the northern Dabie complex, central China[J]. ChemicalGeology,1999,157:119-146.
    50. Jahn BM. Sm-Nd isotope tracer study of UHP metamorphic rocks: Implication forcontinental subduction and collisional tectonics[J]. International Geology Review,1999,41:859-885.
    51. Jiang N, Chen JZ, Guo JH, et al. In situ zircon U-Pb, oxygen and hafnium isotopiccompositions of Jurassic granites from the North China craton: Evidence for Triassicsubduction of continental crust and subsequent metamorphism-related18O depletion[J].Lithos,2012,142-143:84-94.
    52. Johnston AD, Wyllie PJ. Constraints on the origin of Archean trondhjemites based onphase relationships of N k gneiss with H2O at15kbar[J]. Contributions to Mineralogyand Petrology,1988,100(1):35-46.
    53. Kelemen PB, Dick HJB, Quick JE. Rormation of harzburgite by pervasive melt/rockreaction in the upper mantle[J]. Nature,1992,358:635-641.
    54. Kelemen PB, Ghiorso MS. Assimilation of peridotite in zoned calc-alkaline plutoniccomplexes: evidence from the Big Jim complex, Washingon Cascades[J]. Contributionsto Mineralogy and Petrology,1986,96(1):12-28.
    55. Kelemen PB, Hart SR, Bernstein S. Silica enrichment in the continental upper mantle viamelt/rock reaction[J]. Earth and Planetary Science Letters,1998,164:387-406.
    56. Kelemen PB. Genesis of high Mg#andesites and the continental crust[J]. Contributionsto Mineralogy and petrology,1995,120(1),1-19.
    57. Kelemen PB. Reaction between ultramafic rock and fractionating basaltic magma I. phaserelations, the origin of calc-alkaline magma series, and the formation of diacordantdunite[J]. Journal of Petrology,1990,31:51-98.
    58. King DSH, Holtzman BK, Kohlstedt DL. An experimental investigation of theinteractions between reaction-driven and stress-driven melt segregation:2.Disaggregation at high melt fraction[J]. Geochemistry, Geophysics, Geosystems,2011,12(12):12020-12031.
    59. Klugel A. Prolonged reactions between harzburgite xenoliths and silica-undersaturtedmelt: implications for dissolution and Fe-Mg interdiffusion rates of orthopyroxene[J].Contributions to Mineralogy Petrology,2001,141:1-14.
    60. Koga KT, Kelemen PB, Shimizu N. Petrogenesis of the crust-mantle transition zone andthe origin of lower crustal wehrlite in the Oman ophiolite[J]. Geochemistry GeophysicsGeosystems,2001,2:1525-2027.
    61. Koschek G. Origin and significance of the SEM cathodoluminescence from zircon[J].Journal of Microscopy,1993,171:223-232.
    62. Lambart S, Laporte D, Schiano P. An experimental study of focused magma transport andbasalt-peridotite interactions beneath mid-ocean ridges: implications for the generation ofprimitive MORB compositions[J]. Contributions to Mineralogy and Petrology,2009,157:429-451.
    63. Leake BE. Nomenclature of amphiboles. Canadian Mineralogist[J]. The CanadianMineralogist,1978,16:501-520.
    64. Lee CT, Rudnick RL. Compositionally Stratified Cratonic Lithosphere: Petrology andGeochemistry of Peridotite Xenoliths the Labait volcano, Tanzania[C]. In: Gurney JJ,Gurney JL, Ascoe MD,(eds).7th International Kimberlite Conference. RedRoof Design,Cape Town,1999,503-521.
    65. Lemarchand F, Villemant B. Trace element distribution coefficients in alkaline series[J].Geochimica et Cosmochimica Acta.1987,51(5):1071-1081.
    66. Li SZ, Zhao GC, Sun M, et al. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zirconages of two Liaoji granites, eastern block, North China Craton[J]. International GeologyReview,2004,46:162-176.
    67. Li XH, Li WX, Li QL, et al. Petrogenesis and tectonic significance of the850MaGangbian alkaline complex in South China: evidence from in situ zircon U-Pb dating,Hf-O isotopes and whole-rock geochemistry[J]. Lithos,2010,114:1-15.
    68. Li XH, Li WX, Wang XC, et al. Role of mantle-derived magma in genesis of earlyYanshanian granites in the Nanling Range, South China: in situ zircon Hf-O isotopicconstraints[J]. Science in China (Series D: Earth Sciences),2009,52(9):1262-1278.
    69. Li XH, Tang GQ, Guo B, et al. Qinghu zircon: A working reference for microbeamanalysis of U-Pb age and Hf and O isotopes[J]. Chinese Science Bulletin,2013,58(36):4647-4654.
    70. Liati A, Franz L, Gebauer D, et al. The timing of mantle and crustal events in SouthNamibia as defined by SHRIMP-dating of zircon domains from a garnet peridotitexenolith of the Gibeon kimberlite province[J]. Journal of African Sciences,2004,39:147-157.
    71. Liati A, Gebauer D. U-Pb SHRIMP-dating of zircon domains from xenoliths of the RioGrande Rift (Kilbourne Hole): implications for the timing of mantle events[J].Geochimica et Cosmochimica Acta,2002, Special Supplement66(S1), A455.
    72. Liu JG, Rudnick RL, Walker RJ, et al. Mapping lithospheric boundaries using Os isotopesof mantle xenoliths: An example from the North China Craton[J]. Geochimica etCosmochimica Acta,2011,75(13):3881-3902.
    73. Liu YS, Gao S, Hu ZC, et al. Continental and oceanic crust recycling-inducedmelt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopesand trace elements in zircons of mantle xenoliths[J]. Journal of Petrology,2010,51:537-571.
    74. Liu YS, Gao S, Kelemen PB, et al. Recycled crust controls contrasting sourcecompositions of Mesozoic and Cenozoic basalts in the North China Craton[J].Geochimica et Cosmochimica Acta,2008b,72:2349-2376.
    75. Liu YS, Gao S, Lee CT, et al. Melt-peridotite interactions: Links between garnetpyroxenite and high-Mg#signature of continental crust[J]. Earth and Planetary ScienceLetters,2005,234(1-2):39-57.
    76. Liu YS, Hu ZC, Gao S, et al. In situ analysis of major and trace elements of anhydrousminerals by LA-ICP-MS without applying an internal standard[J]. Chemical Geology,2008a,257(1-2):34-43.
    77. Lu FX, Wang Y, Chen MH, et al. Geochemical characteristics and emplacement ages ofthe Mengyin kimberlites, Shandong Province, China[J]. International Geology Review,1998,40:998-1006.
    78. Ludwig KR. Users manual for Isoplot/Ex (rev.2.49): A geochronological toolkit forMicrosoft Excel[M]. Berkeley Geochronology Center, Special Publication,2001.
    79. Lundstrom CC. An experimental investigation of the diffusive infiltration of alkalis intopartially molten peridotite: implications for mantle melting processes[J]. Geochemistry,Geophysics, Geosystems,2003,4:8614.
    80. Lundstrom CC. Rapid diffusive infiltration of sodium into partially molten peridotite[J].Nature,2000,403:527-530.
    81. Mattey D, Lowry D, Macpherson C. Oxygen isotope composition of mantle peridotite[J].Earth and Planetary Science Letters,1994,128(3-4):231-241.
    82. McInnes BIA, Gregoire M, Binns RA, et al. Hydrous metasomatism of oceanic sub-arcmantle, Lihir, Papua New Guinea: petrology and geochemistry of fluid-metasomatisedmantle wedge xenoliths[J]. Earth and Planetary Science Letters,2001,188:169-183.
    83. Menzies MA, Fan W, Zhang M. Paleaozoic and Cenozoic lithoprobes and the loss of120km of Archean lithosphere, Sino-Korean craton, China[J]. Geological Society ofLondon Special Publication,1993,76:71-81.
    84. Menzies MA, Xu YG. Geodynamics of the North China craton[J]. In: Flower MFJ, ChungSL, Lo CH, et al.(eds). Mantle dynamics and plate interaction in east Asia. AmericanGeophysical Union, Geodynamics Series27,1998,100:155-164.
    85. Morgan Z, Liang Y. An experimental and numerical study of the kinetics of harzburgitereactive dissolution with applications to dunite dike formation[J]. Earth and PlanetaryScience Letters,2003,214:59-74.
    86. Morgan Z, Liang Y. An experimental study of the kinetics of lherzolite reactivedissolution with applications to melt channel formation[J]. Contributions to Mineralogyand Petrology,2005,150:369-385.
    87. Morimoto N. Nomenclature of Pyroxenes[J]. Mineralogy and Petrology,1988,39:55-76.
    88. Neumann ER, Pedersen EW, Pearson NJ, et al. Mantle xenolith from Tenerife (CanaryIslands): evidence for reactions between mantle peridotites and silicic carbonatite meltsinducing Ca metasomatism[J]. Journal of Petrology,2002,43(5):825-857.
    89. Niu YL. Generation and evolution of basaltic magmas: Some basic concepts and a newview on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China[J].Geological Journal of China Universities,2005,11:9-46.
    90. Niu YL. Mantle melting and melt extraction processes beneath ocean ridges: Evidencefrom abyssal peridotites[J]. Journal of Petrology,1997,38:1047-1074.
    91. Pei FP, Xu WL, Yang DB, et al. Geochronology and geochemistry of Mesozoicmafic-ultramafic complexes in the southern Liaoning and southern Jilin provinces, NEChina: Constraints on the spatial extent of destruction of the North China Craton[J].Journal of Asian Earth Science,2011,40(2):636-650.
    92. Pokhilenko NP, Sobolev NV, Cherny SD, et al. Pyrope and chromite from kimberlites ofthe Nakyn Field (Yakutia) and the Snap Lake region (Slave Craton, Canada): evidence foranomalous lithospheric structure[J]. Doklady Earth Sciences,2000,372:356-360.
    93. Pokhilenko NP, Sobolev NV, McDonald JA, et al. Crystalline inclusions in diamondsfrom kimberlites of the Snap Lake area (Slave Craton, Canada): new evidences for theanomalous lithospheric structure[J]. Doklady Earth Sciences,2001,380:806-811.
    94. Pouchou JL, Pichoir F. A new model for quantitative X-ray microanalysis.PartⅠ.Application to the analysis of homogeneous samples[J]. Rech Aerosp,1984,5:13-38.
    95. Quick JE, Albee AL, Chodos AA. Detection of small, systematic compositional variationsin peridotite by automated electron microprobe point counting analysis (PCA) using anenergy dispersive detector[C]. Proc16th Natl Conf on Electron Probe Analysis,1981,143-147.
    96. Ramos FC, Wolff JA, Tollstrup DL. Measuring87Sr/86Sr variation in minerals andgroundmass from basalts using LA-MC-ICP-MS[J]. Chemical Geology,2004,21:135-158.
    97. Rehfeldt T, Foley SF, Jacob DE, et al. Contrasting types of metasomatism in dunite,wehrlite and websterite xenoliths from Kimberley, South Africa[J]. Geochimica etCosmochimica Acta,2008,72,5722-5756.
    98. Roden MF, Shimizu N. Ion microprobe analyses bearing on the composition of the uppermantle beneath the Basin and Range and Colorado Plateau Provinces[J]. Journal ofGeophysical Research: Solid Earth,1993,98(B8):14091-14108.
    99. Rudnick RL, Gao S, Ling WL, et al. Petrology and geochemistry of spinel peridotitexenoliths from Hannuoba and Qixia, North China craton[J]. Lithos,2004,77:609-637.
    100.Rudnick RL, Ireland TR, Gehrels G, et al. Dating mantle metasomatism; U-Pbgeochronology of zircons in cratonic mantle xenoliths from Montana and Tanzania[C]. In:Gurney JJ, Gurney JL, Pascoe MD, et al.(eds). Proceedings of the VII InternationalKimberlite Conference,1999,2:728-735.
    101.Rudnick RL, Mcdonough WF, Chappell B W. Carbonatite metasomatism in the northernTanzanian mantle: petrographic and geochemical characteristics[J]. Earth and PlanetaryScience Letters,1993,114(4):463-475.
    102.Sablukov SM, Sablukova LI, Shavyrina MV. Mantle xenoliths from the Zimnii Beregkimberlite deposits of rounded diamonds, Arkhangelsk diamondiferous provincePetrologia[J]. Petrology,2000,8(5):466-494.
    103.Sanchez-Rodriguez L, Gebauer D. Mesozoic formation of pyroxenites and gabbros in theRonda area (southern Spain), followed by Early Miocene subduction metamorphism andemplacement into the middle crust: U-Pb sensitive high-resolution ion microprobe datingof zircon[J]. Tectonophysics,2000,316,19-44.
    104.Schmidberger SS, Simonetti A, Francies D. Small-scale Sr isotope investigation ofclinopyroxenes from peridotite xenoliths by laser ablation MC-ICP-MS-implications formantle metasomatism[J]. Chemical Geology,2003,199:317-329.
    105.Schulze DJ, Harte B, Valley JW, et al. Extreme crustal oxygen isotope signaturespreserved in coesite in diamond[J]. Nature,2003,423:68-70.
    106.Sekine T, Wyllie PJ. Experimental simulation of mantle hybridization in subductionzones[J]. The Journal of Geology,1983,91:511-528.
    107.Shirey SB, Walker RJ. Carius tube digestions for low-blank rhenium-osmium analysis[J].Analytical Chemistry,1995,67(13):2136-2141.
    108.Sláma J, Ko ler J, Condon DJ, et al. Ple ovice zircon-A new natural reference materialfor U-Pb and Hf isotopic microanalysis[J]. Chemical Geology,2008,249:1-35.
    109.Sobolev NV, Logvinova AM, Zedgenizov DA, et al. Petrogenetic significance of minorelements in olivines from diamonds and peridotite xenoliths from kimberlites ofYakutia[J]. Lithos,2009,112(2):701-713.
    110.Sonder LJ, Jones CH, Western United States extension: How the West was widened[J].Annu Review of Earth Planetary Sciences,1999,27:417-462.
    111.Song TRA, Helmberger DV. A depleted, destabilized continental lithosphere near the RioGrande rift[J]. Earth and Planetary Science Letters,2007,262:175-184.
    112.Streckeisen A. To each plutonic rock its proper name[J]. Earth-Science Reviews,1976,12:1-33.
    113.Suen CJ, Frey FA. Origins of the Mafic and Ultramafic Rocks in the Ronda Peridotite[J].Earth and Planetary Science Letters,1987,85(1-3):183-202.
    114.Sun H, Xiao YL, Gao YJ, et al. Fluid and melt inclusions in the Mesozoic Fangchengbasalt from North China Craton: implications for magma evolution andfluid/melt-peridotite reaction[J]. Contributions to Mineralpgy and Petrology,2013,165:885-901.
    115.Sun JF, Yang JH, Wu FY, et al. Magma mixing controlling the origin of the EarlyCretaceous Fangshan granitic pluton, North China Craton: In situ U-Pb age and Sr-, Nd-,Hf-and O-isotope evidence[J]. Lithos,2010,120:421-438.
    116.Sun SS, McDonough, WF, Chemical and isotopic systematics of oceanic basalts;implications for mantle composition and processes[M]. In: Saunders AD, Norry MJ (eds).Magmatism in the ocean basins. Colorado: Geological Society Special Publications,1989,42:313-345.
    117.Takahashi E, Nakajima K. Melting process in the Hawaiian plume: an experimentalstudy[M]. In: Takahashi E, Lipman P, Garcia M, et al.(eds). AGU Monograph, vol.128.Hawaiian Volcanoes, Deep Underwater Perspectives, AGU,2002,403-418.
    118.Tang YJ, Zhang HF, Ying JF, et al. Refertilization of ancient lithospheric mantle beneaththe central Norht China Craton: Evidence from petrology and geochemistry of peridotitexenoliths[J]. Lithos,2008,101:435-452.
    119.Tatsumoto M, Basu AR, Huang WK, et al. Sr, Nd, and Pb isotopes of ultramafic xenolithsin volcanic rocks of Eastern China. Enriched components EMI and EMII insubcontinental lithosphere[J]. Earth and Planetary Science Letters,1992,113:107-128.
    120.Thompson R N, Gibson S A. Transient high temperatures in mantle plume heads inferredfrom magnesian olivines in Phanerozoic picrites[J]. Nature,2000,407:502-506.
    121.Tursack E, Liang Y. A comparative study of melt-rock reactions in the mantle: laboratorydissolution experiments and geological field observations[J]. Contributions to Mineralogyand Petrology,2012,163:861-876.
    122.Upton BGJ, Aspen P, Hinton RW. Pyroxenite and granulite xenoliths from beneath theScottish Northern Highlands Terrane: evidence for lower-crust/upper mantlerelationships[J]. Contributions to Mineralogy and Petrology,2001,142:178-197.
    123.Valley JW, Graham CM, Harte B, et al. Applications of microanalytical techniques tounderstanding mineralizing processes[J]. In: McKibben MA, Shanks III WC, Ridley WI(eds). SEG Reviews in Economic Geology,7. Society of Economic Geolohists.1998,73-98.
    124.Van den Bleeken G, Muntener O, Ulmer P. Melt variability in percolated peridotite: anexperimental study applied to reactive migration of tholeiitic basalt in the upper mantle[J].Contributions to Mineralogy and Petrology,2011,161:921-945.
    125.Van den Bleeken G, Muntener O, Ulmer P. Reaction processes between tholeiitic melt andresidual peridotite in the uppermost mantle: an experimental study at0.8GPa[J]. Journalof Petrology,2010,51:153-183.
    126.Walker RJ, Carlson RW, Shirey SB, et al. Os, Sr, Nd and Pb isotope systematics ofsouthern African peridotite xenoliths: implications for the chemical evolution ofsubcontinental mantle[J]. Gemochimica et Cosmochimica Acta,1989,53(7):1583-1595.
    127.Walker RJ, Prichard HM, Ishiwatari A, et al. The osmium isotopic composition ofconvecting upper mantle deduced from ophiolite chromites[J]. Geochimica etCosmochimica Acta,2002,66(2):329-345.
    128.Wallace ME, Green DH. An experimental deterniaton of primary carbonatite magmacomposition[J]. Nature,1988,335:343-346.
    129.Wang CG, Liang Y, Xu WL, et al. Effect of melt composition on basalt and peridotiteinteraction: laboratory dissolution experiments with applications to mineralcompositional variations in mantle xenoliths from the North China Craton[J].Contributions to Mineralogy and petrology,2013,166(5):1469-1488.
    130.Wang LG, Yiu YM, McNaughton NJ, et al. Constraints on crustal evolution and goldmetallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zirconstudies of granitoids[J]. Ore Geology Reviews,1998,13:275-291.
    131.Well ML, Hoisch TD. The role of mantle delamination in widespread Late Cretaceousextension and magmatism in the Cordilleran orogen, western United States[J]. GeologicalSociety of America,2008,120(5-6):515-530.
    132.Wernicke B, Clayton R, Ducea M, et al. Origin of high mountains in the continerts:Thesouthern Sierra Nevada[J]. Science,1996,271:190-193.
    133.Wu FY, Lin JQ, Wilde SA, et al. Nature and significance of the Early Cretaceous giantigneous event in Eastern China[J]. Earth and Planetary Science Letters,2005b,233(1-2):103-119.
    134.Wu FY, Walker RJ, Ren XW, et al. Osimium isotopic constraints on the the age oflithospheric mantle beneath northeastern China[J]. Chemical Geology,2003,196:107-129.
    135.Wu FY, Walker RJ, Yang YH, et al. The chemical-temporal evolution of lithosphericmantle underlying the North China Craton. Geochim[J]. Geochimica et CosmochimicaActa,2006,70:5013-5034.
    136.Wu FY, Yang JH, Wilde SA, et al. Geochronology, petrogenesis and tectonic implicationsof the Jurassic granites in the Liaodong Peninsula, NE China[J]. Chemical Geology,2005a,221:127-156.
    137.Wulff-pedersen E, Neumann ER, Jensen JJ. The upper mantle under La Palma, CanaryIslands: formation of Si-K-Na-rich melt and its importance as a metasomatic agent[J].Contributions to Mineralogy and Petrology,1996,125:113-139.
    138.Xiao Y, Zhang HF, Fan WM, et al. Evolution of lithospheric mantle beneath the Tan-Lufault zone, eastern North China Craton: Evidence from petrology and geochemistry ofperidotite xenoliths[J]. Lithos,2010,117:229-246.
    139.Xu WL, Gao S, Wang QH, et al. Mesozoic crustal thickening of the eastern North ChinaCraton: Evidence from eclogite xenoliths and petrologic implications[J]. Geology,2006,34(9):721-724.
    140.Xu WL, Hergt JM, Gao S, et al. Interaction of adakitic melt-peridotite: Implications forthe high-Mg#signature of Mesozoic adakitic rocks in the eastern North China Craton[J].Earth and Planetary Science Letters,2008,265:123-137.
    141.Xu WL, Wang CG, Yang DB, et al. Dunite xenoliths and olivine xenocrysts in gabbrofrom Taihang Mountains: characteristics of Mesozoic lithospheric mantle in CentralChina[J]. Journal of Earth Science,2010b,21(5):692-710.
    142.Xu WL, Wang DY, Gao S, et al. Discovery of dunite and pyroxenite xenoliths inMesozoic diorite at Jinling, western Shandong and its significance[J]. Chinese ScienceBulletin,2003,48(15):1599-1604.
    143.Xu WL, Wang QH, Liu XC, et al. Chronology and sources of Mesozoic intrusivecomplex in Xu-Huai region, central China: Constraints from SHRIMP zircon U-Pbdating[J]. Acta Geologica Sinica,2004,78(1):96-106.
    144.Xu WL, Wang QH, Wang DY, et al. Mesozoic adakitic rocks from the Xuzhou-Suzhouarea, eastern China: evidence for partial melting of delaminated lower continental crust[J].Journal of Asian Earth Science,2006a,27:230-240.
    145.Xu WL, Wang QH, Yang DB, et al. SHRIMP zircon U-Pb dating in Jingshan“migmatiticgranite”, Bengbu and its geological significance[J]. Science in China (Series D),2005,48(2):185-191.
    146.Xu WL, Yang DB, Gao S, et al. Geochemistry of peridotite xenoliths in Early Cretaceoushigh-Mg#diorites from the Central Orogenic Block of the North China Craton: Thenature of Mesozoic lithospheric mantle and constraints on lithospheric thinning[J].Chemical Geology,2010a,270:257-273.
    147.Xu WL, Zhou QJ, Pei FP, et al. Destruction of the North China Craton: delamination orthermal/Chemical erosion? Mineral chemistry and oxygen isotope insights fromwebsterite xenoliths[J]. Gondwana Resrearch,2013,23(1):119-129.
    148.Xu YG, Huang XL, Ma JL, et al. Crust-mantle interaction during the tectono-thermalreactivation of the North China Craton: Constraints from SHRIMP zircon U-Pbchronology and geochemistry of Mesozoic plutons from western Shandong[J].Contributions to Mineralogy and Petrology,2004,147:750-767.
    149.Xu YG, Menzies MA, Bodinier JL, et al. Melt percolation-reaction atop the plume:evidence from spinel harzburgite poikiloblastic xenoliths from Boree Massif, CentralFrance[J]. Contributions to Mineralogy and petrology,1998,132:65-84.
    150.Xu YG, Mercier JC, Menzies MA, et al. K-rich glass-bearing wehrlite xenoliths fromYitong, Northeastern China: petrological and chemical evidence for mantlemetasomatism[J]. Contributions to Mineralogy and Petrology,1996,125:406-420.
    151.Xu YG. Diachronous lithospheric thinning of the North China Craton and formation ofthe Daxin'anling–Taihangshan gravity lineament[J]. Lithos,2007,96(1-2):281-298.
    152.Xu YG. Thermo-tectonic destruction of the Archean lithospheric keel beneath easternChina: Evidence, timing and mechanism[J]. Physics and Chemistry of the Earth,2001,26:747-757.
    153.Yang CH, Xu WL, Yang DB, et al. Petrogenesis of Mesozoic high-Mg diorites in westernShandong: Evidence from chronology and petro-geochemistry[J]. Journal of ChinaUniversity of Geoscience,2005,16(4):297-308.
    154.Yang CH, Xu WL, Yang DB, et al. Petrogenesis of Shangyu gabbro-diorites in westernShandong: Geochronological and geochemical evidence[J]. Science in China (Series D),2008,51(4):481-492.
    155.Yang DB, Xu WL, Gao S, et al. Repeated modification of lithospheric mantle in theeastern North China Craton: Constraints from SHRIMP zircon U-Pb dating of dunitexenoliths in western Shandong[J]. Chinese Science Bulletin,2012b,57:651-659.
    156.Yang DB, Xu WL, Pei FP, et al. Spatial extent of the influence of the deeply subductedSouth China Block on the southeastern North China Block: Constraints from Sr-Nd-Pbisotopes in Mesozoic mafic igneous rocks[J]. Lithos,2012a,136-139:246-260.
    157.Yang JH, Chung SL, Wilde SA, et al. Petrogenesis of post-orogenic syenites in the SuluOrogenic Belt, East China: Geochronology, geochemical and Nd-Sr isotopic evidence[J].Chemical Geology,2005,214:99-125.
    158.Yang JH, O’Reilly S, Walker RJ, et al. Diachronous decratonization of the Sino-Koreancraton: geochemistry of mantle xenoliths from North Korea[J]. Geology,2010,38:799-802.
    159.Yang JH, Sun JF, Chen FK, et al. Sources and petrogenesis of the late Triassic doleritedikes in the Liaodong Peninsula: Implications for the post-collisional lithosphere thinningof the eastern North China Craton[J]. Journal of Petrology,2007a,48:1973-1997.
    160.Yang JH, Wu FY, Wilde SA, et al. Mesozoic decratonization of the North China block[J].Geology,2008,36:467-470.
    161.Yang JH, Wu FY, Wilde SA, et al. Mesozoic decratonization of the North China block[J].Geology,2008,36:467-470.
    162.Yang JH, Wu FY, Wilde SA. Geodynamic setting of large-scale Late Mesozoic goldmineralization in the North China Craton: an association with lithosperic thinning[J]. OreGeology Reviews,2003,23:125-152.
    163.Yang JH, Wu FY, Wilde SA. Petrogenesis of the Late Triassic granitoids and theirenclaves with implications for post-collisional lithospheric thinning of the LiaodongPeninsula, North China Craton[J]. Chemical Geology,2007b,242:155-175.
    164.Yang W, Li SG. Geochronology and geochemistry of the Mesozoic volcanic rocks inWestern Liaoning: Implications for lithospheric thinning of the North China Craton[J].Lithos,2008,9-18.
    165.Yang YH, Wu FY, Wilde SA, et al. In situ perovskite Sr-Nd isotopic constraints on thepetrogenesis of the Ordovician Mengyin kimberlites in the North China Craton[J].Chemical Geology,2009,264:24-42.
    166.Yaxley GM, Green DH. Reactions between eclogite and peridotite: mantle refertilisationby subduction of oceanic crust[J]. Schweizerische Mineralogische und PetrographischeMitteilungen,1998,78:243-255.
    167.Ying JF, Zhang HF, Kita N, et al. Nature and evolution of Late Cretaceous lithosphericmantle beneath the eastern North China Craton: Constraints from petrology andgeochemistry of peridotitic xenoliths from Junan, Shandong province, China[J]. Earthand Planetary Science Letters,2006,244:622-638.
    168.Ying JF, Zhang HF, Tang YJ, et al. Diverse crustal components in pyroxenite xenolithsfrom Junan, Sulu orogenic belt: Implications for lithospheric modification invoked bycontinental subduction[J]. Chemical Geology.2013,356:181-192.
    169.Yu JJ, Wang F, Xu WL, et al. Early Jurassic mafic magmatism in the LesserXing’an-Zhangguangcai Range, NE China, and its tectonic implications: constraints fromzircon U-Pb chronology and geochemistry[J]. Lithos,2012,142-143:256-266.
    170.Yu SY, Xu YG, Ma JL, et al. Remnants of Oceanic Lower Crust in the SubcontinentalLithospheric Mantle: Trace Element and Sr-Nd-O Isotope Evidence from AluminousGarnet Pyroxenite Xenoliths from Jiaohe, Northeast China[J]. Earth and PlanetaryScience Letters,2010,297:413-422.
    171.Yu Y, Xu WL, Pei FP, et al. Mesozoic volcanic rocks in Linjiang area, Jilin Province:Chronology, geochemistry and their tectonic implications[J]. Acta Geologica Sinica,2009,83(2):801-813.
    172.Yu Y, Xu WL, Wang CG. Experimental studies of melt-peridotite reactions at1-2GPa and1250-1400°C and their implications for transforming the nature of lithospheric mantleand for high-Mg signatures in adakitic rocks[J]. Science China (Earth Sciences),2014,57(3):415-427.
    173.Zhang HF, Goldstein S, Zhou XH, et al. Evolution of subcontinental lithospheric mantlebeneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoickimberlites and Mesozoic basalts[J]. Contributions to Mineralogy and Petrology,2008,155:271-293.
    174.Zhang HF, Nakamura E, Kobayashi K, et al. Recycled crustal melt injection intolithospheric mantle: implication from cumulative composite and pyroxenite xenoliths[J].International Journal of Earth Sciences,2010,99(6):1167-1186.
    175.Zhang HF, Nakamura E, Sun M, et al. Transformation of subcontinental lithosphericmantle through peridotite-melt reaction: evidence from a highly fertile mantle xenolithfrom the North China Craton[J]. International Geology Review,2007,49:658-679.
    176.Zhang HF, Sun M, Zhou XH, et al. Geochemical constraints on the origin of Mesozoicalkaline intrusive complexes from the North China Craton and tectonic implications[J].Lithos,2005,81:297-317.
    177.Zhang HF, Sun M, Zhou XH, et al. Mesozoic lithosphere destruction beneath the NorthChina Craton: Evidence from major-, trace-element and Sr-Nd-Pb isotope studies ofFangcheng basalts[J]. Contributions to Mineralogy and Petrology,2002,144:241-254.
    178.Zhang HF, Sun M, Zhou XH, et al. Secular evolution of the lithosphere beneath theeastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites[J].Geochimica et Cosmochimica Acta,2003,67:4373-4387.
    179.Zhang HF, Ying JF, Xu P, et al. Mantle olivine xenocrysts entrained in Mesozoic basaltsfrom the North China craton: Implication for replacement process of lithosphericmantle[J]. Chinese Science Bulletin,2004,49(9):961-966.
    180.Zhang XO, Cawood PA, Wilde SA, et al. Geology and timing ofmineralization at theCangshang gold deposit, north-western Jiaodong Peninsula, China[J]. MineraliumDeposita,2003,38:141-153.
    181.Zhang XO. Setting and timing of gold mineralization in the Jiaodong and LiaodongPeninsulas, North China Craton: Doctoral Dissertation[D]. Curtin University ofTechnology,2002.
    182.Zhao GC, Wilde SA, Cawood PA, et al. Archean blocks and their boundaries in the NorthChina craton: Lithological, geochemical, structural and P-T path constraints and tectonicevolution[J]. Precambrian Research,2001,107(1-2):45-73.
    183.Zheng JP, Griffin WL, O’Reilly SY, et al. Mechanism and timing of lithosphericmodification and replacement beneath the eastern North China Craton: peridotitcxenoliths from the100Ma Fuxin basalts and a regional synthesis[J]. Geochimica etCosmochimica Acta,2007,71:5203-5225.
    184.Zheng YF, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressuremetamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamicsand fluid regime[J]. Earth-Science Reviews.2003,62:105-161.
    185.Zhou MF, Robinson PT, Malpas J, et al. Melt/mantle interaction and melt evolution in theSartohay high-Al chromite deposits of the Dalabute ophiolite (NW China)[J]. Journal ofAsian Earth Sciences,2001,19(4):517-534.
    186.Zhou Qun-Jun, Xu Wen-Liang, Yang De-Bin, et al. Modification of the lithosphericmantle by melt derived from recycled continental crust: Evidence from wehrlite xenolithsin Early Cretaceous high-Mg diorites from western Shandong, China[J]. Science in China(D series),2012,55(12):1972-1986.
    187.Zinngrebe F, Foley SF. Metasomatism in mantle xenoliths from Gees, West Eifel,Germany: evidence for the genesis of calc-alkaline glasses and metasomaticCa-enrichment[J]. Contributions to Mineralogy and Petrology,1995,122(1-2):79-96.
    188.陈义贤,陈文寄.辽西及邻区中生代火山岩-年代学、地球化学和构造背景[M].北京:地震出版社.1997.
    189.池际尚,路凤香.华北地台金伯利岩及古生代岩石圈地幔特征[M].北京:科学出版社.1996.
    190.池际尚.中国东部新生代玄武岩及上地幔研究[M].武汉:中国地质大学出版社.
    1988.
    191.迟效国,林景仟.胶东中生代断裂花岗质岩浆带的Rb-Sr年代学及岩浆源区[J].地球化学,1992,3:265-272.
    192.从柏林,王清晨.大别山-苏鲁超高压变质带研究的最新进展[J].科学通报,1999,44(11):1127-1141.
    193.邓晋福,莫宣学,赵海玲,等.中国东部岩石圈根/去根作用于大陆“活化”[J].现代地质,1994,8:349-356.
    194.邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造-大陆动力学的钥匙[M].北京:地质出版社.1996.
    195.董振信.鲁中燕山期侵入岩与成矿[M].北京:地质出版社.1987.
    196.鄂莫岚,赵大升主编.中国东部新生代玄武岩及深源岩石包体[M].北京:科学出版社.1987.
    197.郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程:锆石U-Pb年代学[J].岩石学报,2005,21(4):1281-1301.
    198.韩宝福,加加美宽雄,李惠民.河北光头山碱性花岗岩的时代、Nd-Sr同位素特征及其对华北早中生代壳幔相互作用的意义[J].岩石学报,2004,20:1375-1388.
    199.韩宗珠,付强.青岛和诸城深源脉岩和包体的成因与构造背景[J].海洋湖沼通报,1993,2:50-58.
    200.胡华斌,毛景文,刘敦一,等.鲁西铜石岩体的锆石SHRIMP U-Pb年龄及其地质意义[J].地学前缘,2004,11:453-460.
    201.黄福生,薛绥洲.邯刑侵入体中幔源超镁铁质包体的发现及其矿物地球化学特征[J].岩石学报,1990,4:40-45.
    202.季强,陈文,王五力,等.中国辽西中生代热河生物群[M].北京:地质出版社,2004.
    203.姜耀辉,蒋少涌,赵葵东,等.辽东半岛煌斑岩SHRIMP锆石U-Pb年龄及其对中国东部岩石圈减薄开始时间的制约[J].科学通报,2005,50:2161-2168.
    204.靳克,许文良,王清海,等.蚌埠淮光“混合花岗闪长岩”的形成时代及源岩:锆石SHRIMP U-Pb地质年代学证据[J].地球学报,2003,24(4):331-335.
    205.李思田,路凤香,林畅松,等著.中国东部及邻区中新生代盆地演化及地球动力学背景[M].武汉:中国地质大学出版社,1997.
    206.刘福田,刘建华,何建坤,等.滇西特提斯造山带下扬子地块的俯冲板片[J].科学通报,2000,45(1):79-85.
    207.刘若新,林卓然,樊祺诚,等.地幔橄榄石流体包裹体中的微量元素[J].岩石学报,1992,8(2):185-189.
    208.柳小明.华北克拉通中生代壳幔交换作用的地球化学研究[D].博士学位论文.西安:西北大学.2004.
    209.路凤香,韩柱国,郑建平,等.辽宁复县地区古生代岩石圈地幔特征[J].地质科技情报,1991,10S:2-20.
    210.路思明,裴福萍,周群君,等.吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质[J].地球科学,2012,37(3):475-488.
    211.路思明.吉林省辽源晚中生代碱性玄武岩成因及岩石圈地幔性质[D].硕士学位论文.长春:吉林大学.2012.
    212.路孝平,吴福元,赵成弼,等.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J].科学通报,2003,48(8):843-849.
    213.罗镇宽,苗来成.胶东招莱地区花岗岩和金矿床[M].北京:冶金工业出版社,2002.
    214.穆克敏,林景仟.华北地台花岗岩石的成因[M].长春:吉林科技出版社.1989.
    215.牛宝贵,和政军,宋彪,等.张家口组火山岩SHRIMP定年及其重大意义[J].地质通报,2003,22(2):140-141.
    216.裴福萍,许文良,王清海,等.鲁西费县中生代玄武岩及幔源捕掳晶的矿物化学:对岩石圈地幔性质的制约[J].高校地质学报,2004,10(1):88-97.
    217.裴福萍,许文良,于洋,等.吉林南部晚三叠世蚂蚁河岩体的成因:锆石U-Pb年代学和地球化学证据[J].吉林大学学报(地球科学版),2008,38(3):351-362.
    218.裴福萍.吉南地区中生代火山岩的岩石学和地球化学特征[D].硕士学位论文.长春:吉林大学.2005.
    219.邱检生,王德滋,周金城,等.山东中生代橄榄安粗岩系火山岩的地质、地球化学特征及岩石成因[J].地球科学,1996,21(5):546-552.
    220.邱检生,徐夕生,罗清华.鲁西富钾火山岩和煌斑岩的40Ar-39Ar定年及源区示踪[J].科学通报,2001,46(18):1500-1508.
    221.孙德有,铃木和博,吴福元,等.吉林省南部荒沟山地区中生代花岗岩CHIME定年[J].地球化学,2005,34(4):305-310.
    222.汤艳杰,张宏福,英基丰.太行山中段新生代玄武岩中高镁橄榄石捕虏晶:残留古老岩石圈地幔样品[J].岩石学报,2004,20(5),1243-1252.
    223.王冬艳,许文良,冯宏,等.辽西中生代晚期岩石圈地幔的性质:来自玄武岩和地幔捕虏体的证据[J].吉林大学学报(地球科学版),2002,32(4):319-325.
    224.王冬艳,许文良,兰翔,等.鲁西中生代辉长闪长岩中辉石岩捕虏体的岩石成因[J].吉林大学学报(地球科学版),2004,34(2):167-173.
    225.王清晨,林伟.大别山碰撞造山带的地球动力学[J].地学前缘,2002,9(4):257-265.
    226.王松山,王元青,胡华光,等.辽西四合屯脊椎动物生存时代:锆石U-Pb年龄证据[J].科学通报,2001,46(4):330-333.
    227.王微,许文良,纪伟强,等.辽东中生代晚期和古近纪玄武岩及深源捕虏晶对岩石圈地幔性质的制约[J].高校地质学报,2006,12(1):30-40.
    228.王微.华北克拉通东部中新生代岩石圈演化-来自火成岩与深源捕虏体(晶)证据[D].博士学位论文.长春:吉林大学.2008.
    229.韦忠良,张宏,郭文敏,等. LA-ICP-MS锆石U-Pb测年对辽西-冀北地区晚中生代区域性角度不整合时代的约束[J].自然科学进展,2008,18(10):1119-1127.
    230.吴福元,葛文春,孙德有,等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,10:51-60.
    231.吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    232.吴福元,孙德有,张广良,等.论燕山运动的深部地球动力学本质[J].高校地质学报,2000,6:379-388.
    233.吴福元,孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,1999,29:313-318.
    234.吴福元,徐义刚,高山,等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,2008,24:1145-1174.
    235.吴福元,杨进辉,柳小明.辽东半岛中生代花岗质岩浆作用的年代学格架[J].高校地质学报,2005,11(3):305-317.
    236.吴福元,杨进辉,张艳斌,等.辽西东南部中生代花岗岩时代[J].岩石学报,2006,22(2):315-325.
    237.徐夕生,邱检生,主编.火成岩岩石学[M].北京:科学出版社.2010.
    238.徐义刚,李洪颜,庞崇进,等.论华北克拉通破坏的时限[J].科学通报,2009,54:1974-1989.
    239.徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报,1999,18(1):1-5.
    240.许文良,迟效国,袁朝,等.华北地台中部中生代闪长质岩石及深源岩石包体[M].北京:地质出版社.1993.
    241.许文良,王春光,王超,等.高温高压条件下单斜辉石岩-橄榄岩反应-对幔源异剥橄榄岩成因的制约[C].矿物岩石地球化学通报,2011,30(增刊):137.
    242.许文良,王冬艳,高山,等.鲁西中生代金岭闪长岩中纯橄岩和辉石岩包体的发现及意义[J].科学通报,2003b,48(8):863-868.
    243.许文良,王冬艳,王清海,等.鲁西纯橄岩捕虏体中富硅质熔(流)体的交代作用:对中生代岩石圈地幔减薄的意义[J].地质学报,2004,78(1):72-80.
    244.许文良,王冬艳,王清海,等.鲁西中生代闪长岩中两类幔源捕虏体的岩石学和地球化学[J].岩石学报,2003a,19(4):623-636.
    245.许文良,王冬艳,郑常青,等.辽西阜新中生代粗面玄武岩中地幔和下地壳捕虏体的发现及其地质意义[J].地质论评,1999,45(增刊):444-449.
    246.许文良,杨德彬,裴福萍,等.蚌埠隆起区五河杂岩的形成时代锆石LA-ICP-MSU-Pb定年证据[J].中国地质,2006,33(1):132-137.
    247.许文良,杨德彬,裴福萍,等.华北克拉通中生代拆沉陆壳物质对岩石圈地幔的改造:来自橄榄岩捕虏体中角闪石的成分制约[J].吉林大学学报(地球科学版),2009,39(4):606-617.
    248.许文良,周群君,杨德彬,等.大陆深俯冲作用对邻区岩石圈地幔改造的时间、方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据[J].科学通报,2013,58:2300-2305.
    249.闫峻,陈江峰,谢智,等.鲁东晚白垩世玄武岩中的幔源包体:对中国东部岩石圈减薄时间制约的新证据[J].科学通报,2003,48(14):1570-1574.
    250.杨承海,许文良,杨德彬,等.鲁西济南辉长岩的形成时代:锆石LA-ICP-MS U-Pb定年证据[J].地球学报,2005,26(4):321-325.
    251.杨承海,许文良,杨德彬,等.鲁西中生代高Mg闪长岩的成因:年代学与岩石地球化学证据[J].地球科学,2006,31(1):81-92.
    252.杨德彬,许文良,裴福萍,等.蚌埠隆起区花岗岩形成时代及岩浆源区性质:锆石LA-ICP MS U-Pb定年与示踪[J].地球化学,2005,34(5):443-454.
    253.杨德彬,许文良,裴福萍,等.徐淮地区早白垩世adakitic岩石的年代学和Pb同位素组成:对岩浆源区与华北克拉通东部构造演化的制约[J].岩石学报,2008,24(8):1745-1758.
    254.杨德彬.蚌埠隆起区花岗岩的年代学和地球化学:对华北克拉通东部构造演化的制约[D].博士学位论文.长春:吉林大学.2009.
    255.杨进辉,吴福元.华北东部三叠纪岩浆作用与克拉通破坏[J].中国科学(D辑:地球科学),2009,39(7):910-921.
    256.杨岳衡,吴福元,谢烈文,等.地质样品Sr同位素激光原位等离子体质谱(LA-MC-ICP-MS)测定[J].岩石学报,2009,25(12):3431-3441.
    257.杨岳衡,张宏福,吴福元,等. Neptune多接收等离子体质谱精确测定锶同位素组成[J].质谱学报,2005,(26):215-221.
    258.于宋月,徐义刚,黄小龙,等.吉林双辽地区橄榄岩包体中熔体-岩石作用特征及其对地幔交代作用的启示[J].岩石矿物学杂志,2007,23(3):213-222.
    259.张国辉,周新华,陈绍海,等.下地壳及壳幔过渡带化学不均匀性-河北汉诺坝地区深源捕虏体地球化学证据[J].地球化学,1998,27(2):153-163.
    260.张宏福,英基丰,汤艳杰,等.华北东部中、新生代岩石圈地幔的不均一性:来自橄榄石的组成填图结果[J].岩石学报,2006,22(9):2279-2288.
    261.张宏福,郑建平.华北中生代玄武岩的地球化学特征与岩石成因:以辽宁阜新为例[J].科学通报,2003,48(6):603-609.
    262.张宏福.橄榄岩-熔体的相互作用:岩石圈地幔组成转变的重要方式[J].地学前缘,2006,13(2):65-75.
    263.张瑾,张宏福.青岛地区晚白垩世基性脉岩中麻粒岩捕虏体的成分特征及其温压条件[J].岩石学报,2007,23(5):1133-1140.
    264.郑建平,路凤香, O’Reilly SY,等.华北东部地幔改造作用和置换作用:单斜辉石激光探针研究[J].中国科学(D辑),2000,30(4):373-382.
    265.郑建平,路凤香.胶辽半岛金伯利岩中地幔捕虏体岩石学特征:古生代岩石圈地幔及其不均一性[J].岩石学报,1999,15:65-74.
    266.郑建平,赵磊.华北地台金伯利岩地球化学[M].见:池际尚,路凤香,主编,华北地台金伯利岩及古生代岩石圈地幔特征.北京:科学出版社.1996.
    267.郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].北京:中国地质大学出版社,1999.
    268.周建波,郑永飞,赵子福.山东五莲中生代岩浆岩的锆石U-Pb年龄[J].高校地质学报,2003,9:185-194.
    269.周琴,吴福元,储著银,等.吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代[J].岩石学报,2010,26(04):1241-1264.
    270.周群君,许文良,王清海,等.徐淮早白垩世埃达克质岩中含橄榄石单斜辉石岩的成因及其岩石学意义[J].地球科学,2014,39(2):141-154.
    271.朱日祥,陈凌,吴福元,等.华北克拉通破坏的时间、范围与机制[J].2011,41(5):583-592.
    272.朱日祥,潘永信,史瑞萍,等.辽西白垩纪火山岩古地磁测定与陆内旋转运动[J].科学通报,2002,47:1335-1340.
    273.朱日祥,徐义刚,朱光,等.华北克拉通破坏[J].中国科学:地球科学,2012,42(8):1135-1159.
    274.宗克清,刘勇胜,高山,等.汉诺坝辉石岩包体中单斜辉石的微区微量元素组成特征及其地球动力学意义[J].岩石学报,2005,21(3):909-920.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700