基于半导体电化学理论的镁合金阳极氧化成膜机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对含氟、铬、磷镁合金阳极氧化液的污染问题和阳极氧化工艺不易控制的问题,本文以AZ31镁合金为研究对象,开发了环境友好型AZ31镁合金阳极氧化电解液配方及工艺,从半导体电化学理论为基础讨论了镁合金阳极氧化的成膜机制,最后考察了镁合金阳极氧化膜的腐蚀性能与电偶腐蚀行为,这将有助于促进镁合金的广泛实际应用。
     经过大量试验,开发了环境友好型镁合金阳极氧化电解液配方及工艺,电解液由氢氧化钠、硅酸钠、植酸、聚天冬氨酸(PASP)组成。优化工艺下,AZ31镁合金阳极氧化膜具有灰白色、多孔状、裂纹状特点,由MgO和Mg_2SiO_4组成。
     作为环境友好型除垢剂,聚天冬氨酸较少用于镁合金阳极氧化的有机添加剂。当PASP浓度从0g/L到28.8g/L时,AZ31镁合金阳极氧化膜的槽压、膜生长速度、组分含量明显提高,但当PASP浓度大于28.8/L时,反而抑制氧化膜生长。提出了“吸附构型转变”机制,并用量子化学计算解释了PASP浓度对AZ31镁合金阳极氧化膜生长的作用行为,即“站立式吸附”和“平躺式吸附”之间的转变。
     热力学计算发现镁合金阳极氧化液中氢氧化物和硅酸盐的浓度将很大程度决定氧化膜的种类。从成膜现象和厚度变化来看,AZ31镁合金阳极氧化膜生长符合“抛物线规律”。从结构和成分变化来看,氧化膜主要有多孔层和冶金层组成,并且氧化膜中MgO和Mg_2SiO_4的物质量不断增加,膜外层以Mg_2SiO_4为主,膜内层以MgO为主,说明阳极氧化初期,氧化膜以外延生长为主,受界面电化学反应控制;阳极氧化中后期,氧化膜以内延生长为主,受扩散速度控制。从表面形貌和断面形貌来看,表面微孔不断减小,断面孔洞越来越大。最后,在半导体电化学理论和PMD模型基础上,提出了有关“能带模型”和“缺陷模型”的电化学成膜机制。AZ31镁合金及其阳极氧化膜在阳极氧化液中能带发生弯曲是发生火花放电的重要原因。AZ31镁合金阳极氧化膜的生长是氧离子空位迁移而形成,镁合金的溶解是由于镁离子空位扩散的净结果。
     采用半导体电化学技术,建立了AZ31镁合金阳极氧化成膜因素与半导体特性有关联性。在3.5%NaCl溶液中,氧化膜呈n型半导体。随着氧化时间的增加,载流子密度逐渐减小,平带电位变负,半导体特性减弱;随着电流密度的增加,载流子密度几乎逐渐增大,平带电位几乎变正,半导体特性减弱;随着温度的升高,载流子密度几乎逐渐增大,平带电位几乎变正,半导体特性略减。当阳极氧化条件为20min、10mA/cm~2、20℃时,AZ31镁合金阳极氧化膜表现出较强的半导体特性和耐腐蚀性能。
     最后,采用电化学技术和全浸实验,得出AZ31镁合金阳极氧化膜比空白镁合金的耐腐蚀性能明显提高,以及封孔的AZ31镁合金阳极氧化膜与有机涂层处理的铝合金、低碳钢之间的电偶腐蚀效应明显降低。
For these issues of the pollution problem of anodizing electrolyte including F, Cr and P and the difficulty of controlling the process conditions, this paper developed the environment-friendly anodizing oxidation electrolyte and process based on magnesium alloy of AZ31.With the theory of semiconductor electrochemistry, the formation mechanism of AZ31 was discussed and evaluated the corrosion performance and galvanic corrosion behavior of the anodic film formed on AZ31.This research will be promote the practical applications.
     After a lot of trial, a kind of environment-friendly anodizing oxidation electrolyte and process was developed. And the electrolyte consists of NaOH, Na_2SiO_3,Phytic acid and sodium of polyaspartic acid(PASP).With the optimal process, the anodic film with micro-cracks was grey white and porous. And the composition of the anodic film is MgO and Mg_2SiO_4.
     As a scale inhibitor, PASP barely is used in anodizing magnesium alloy as the organic agent. With the regime of PASP from 0g/L to 28.8g/L, the cell voltage, the formation rate and the content of the constituents were improved obviously. But over 28.8g/L, PASP decreased the development of the anodic film. Thus, a plausible model we propose that the anodizing process is regulated by two main plausible adsorption orientations of PASP at the surface anode. Furthermore, the quantum chemistry calculation was adopted to explain this model including flat-on configuration and end-on configuration.
     From the thermodynamic analysis, the constituent was decided on the concentration of NaOH, Na_2SiO_3 in anodizing electrolyte. From the experimental phenomenon and the variation of the thickness, there were three stages in anodizing process and the growth curve was in keeping with the tendency of parabolic curve. With the structure and composition test, the anodic film has two layers of porous lay and metallurgical coating. And the amount of substance of MgO and Mg_2SiO_4 was increased. Mg_2SiO_4 was the main constituent in outer coating and MgO was the main constituent in inner coating. These results implied that in the initial stage, the anodic film was formed with epitaxial growth with the control of electrochemistry reaction and in the later stage, the anodic film was formed with topotaxy with the control of diffusion process. From the surface and cross-sectional morphologies, the dimension of micro-pore became smaller and the dimension of cavities became larger. Finally, based on the semi-conductor electrochemical theory and PMD model, the electrochemical mechanism about energy band model and defect model was proposed. The bending of energy band of Mg alloy in anodizing electrolyte is very important reason for the discharge of sparks. The anodic film formed on AZ31 originated from the migration of Oxygen ion vacancy and the dissolution of Mg alloy originated from the Magnesium ion vacancy.
     We have used semiconductor electrochemistry technique, a correlation of the formation conditions and semiconductor properties was established. In 3.5% NaCl solution, the anodic film formed on AZ31 was n-semiconductor. With the increasing of anodizing time, the carrier concentration decreased gradually and the flat band potential shifted to the negative direction, while the characteristics of the semiconductor declined. With the increasing of current density and temperature, the carrier concentration almost increased and the flat band potential almost shifted to the positive direction, while the characteristics of the semiconductor declined. The anodic coating formed on AZ31 showed stronger semiconductor characteristics and good corrosion performance.
     Finally, using electrochemical technique and immersion experiment, the corrosion performance of the anodic film was better than that of Mg ally AZ31.And the galvanic effect of the sealed anodic film and the aluminium alloy and low-carbon steel treated with organic coating declined evidently.
引文
[1]陈振华,严红革,陈吉华.镁合金[M].北京:化学工业出版社出版, 2004.
    [2] B L Mordike, T Ebert, Magnesium Properties-applications-potential [J]. Materials Science and Engineering,2001(A302):37-45.
    [3]宋光铃.镁合金腐蚀与防腐[M].北京:化学工业出版社, 2006.
    [4]黎文献.镁及镁合金[M].长沙:中南大学出版社, 2005,6.
    [5] Z Koren, H Rosenson, E M Gutman, Ya B Unigovski, A Eliezer. Development of semisolid casting for AZ91 and AM50 magnesim alloys [J]. Journal of Light Metals, 2002(2):81-87.
    [6] R F Zhang, D Y Shan, En H Han, Sh B Guo. Development of microarc oxidation process to improve corrosion resistance on AZ91HP magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2006(430):S685-688.
    [7] Kim Shae K, Lee Jin K, Y Y Ok, J H Ho. Development of AZ31 Mg alloy wrought process route without protective gas [J]. Journal of Materials Processing Technology, 2007(187-188):757-760.
    [8]高崧,屈伟平.镁合金的特点及应用现状[J].铝镁通讯, 2010:41-45.
    [9] R G Song, C Blawert, W Dietzel, A Atrens. A study on stress corrosion cracking and hydrogen embrittlement of AZ31 magnesium alloy [J]. Materials Science and Engineering A, 2005, 399:308-317.
    [10]霍宏伟,李瑛,王赫男等.镁合金的腐蚀与防护[J].材料导报,2001,15(7):25-27.
    [11] A Eliezer, O Medlinsky, J Haddad. Corrosion fatigue behavior of magnesium alloys under oil environments [J]. Materials Science and Engineering A, 2008,477:129-136.
    [12]徐越,陈湘,吕祖舜.镁合金表面的腐蚀特性及其防护基础[J].哈尔滨工业大学学报, 2001,33(6):753-757.
    [13]张永君,严川伟,王福会等.镁的应用及其腐蚀与防护[J].材料保护, 2002,35(4): 4-6.
    [14] G L Song. Recent Progress in corrosion and protection of magnesium alloys [J]. Advanced Engineering material, 2005,7:563-586.
    [15] C Blawert, W Dietzel, E Ghali, G L Song. Anodizing Treatments for magnesium alloys and their effection corrosion resistance in various environments [J]. Advanced engineering materials,2006(8):511-533.
    [16] J E Gray, B Luan. Protective coatings on magnesium and its alloy—a critical review [J]. Journal of Alloys and Compounds, 2002(336):88-113.
    [17] K Ott. Method of Coating Article of Magnesium and an Electrolytic Bath Therefore [P]. USPat:4620904,1986.
    [18]李国英.表面工程手册[M].北京:机械工业出版社,1997.
    [19] J E Hillis. Surface Engineering of Magnesium Alloys [ASM Handbook Volume 5 ] [M]. OH: ASM International Materials Park , 1994. 819~834.
    [20] J H Hawkins. Assessment of Protective Finishing Systems for Magnesium [C]. Washington D C: Annual Conf Proc International Magnesium Association, 1993.
    [21] Dow Chemical Co. Bath for and method f producing a corrosion resistant coating upon light metals [P]. G B Patent:762195, 1956-11-28.
    [22] H A Evans,U.S.Pat.2723952,1955
    [23] J Z Alex, E B Duane. Anodized Coatings for Magnesium Alloy [J]. Metal Finishing.1994,92(3):39-44.
    [24] J E Gray, B Luan. Protective coating on magnesium and its alloys-a critical review[J].Journal of alloys and compounds,2002,336:88-113.
    [25]赵明,吴树森,罗吉荣,毛有武.镁合金无铬表面处理现状和前景[J].铸造, 2003,52,7:462-465.
    [26]张永君,严川伟,楼翰一,王福会,曹楚南.镁及镁合金阳极氧化工艺综述[J].材料保护, 2001,34(9):24-26,29.
    [27] T F Barton. Anodization of magnesium and magnesium based alloys [P]. US5792335, 1998.
    [28] V Tchevryakov, G Gao, J Bomback, A P Pchelnikov, G Cole. Laboratory evaluation of corrosion resistance of anodized magnesium. The Minerals, Metals and Materials Society, 2000, p. 143.
    [29] H Campe, D Liedtke, B Schum. Method and device for forming a layer by plasma-chemical process. US4915978 (1990).
    [30] D E Bartak, B E Lemieux, E R Woolsey. Two-step electrochemical process for coating magnesium alloys. US5264113 (1993).
    [31]曹建春,郭忠诚,周晓龙.镁合金表面耐蚀涂层研究进展[J].云南冶金,2003,32(6):28-32,43.
    [32]张永君,严川伟,王福会,楼翰一.镁及镁合金环保型阳极氧化电解液及其工艺[J].材料保护,2002,35(2):39-40,46.
    [33]周玲伶,易丹青,邓姝皓,王斌.镁合金环保型阳极氧化工艺研究[J].中国腐蚀与防护学报,2006,26(3):176-179.
    [34]席晓光. AZ91D镁合金脉冲阳极氧化处理及腐蚀性能评价[J].表面处理,2007,36(1):8-10.
    [35]李建三,唐海龙,丘垂青.镁合金环保型阳极氧化工艺[J].电镀与环保,2006,26(5):26-28.
    [36]钱建刚,李荻,郭宝兰.环保型镁合金阳极氧化工艺研究[J].航空材料学报,2003,23S:109-112.
    [37]惠华英,余刚,叶立元.环保型镁合金阳极氧化工艺的研究[J].电镀与环保,2005,25(6):34-38.
    [38]罗胜联,戴磊,周海晖,柴立元,旷亚非.镁合金环保型阳极氧化工艺研究[J].湖南大学学报(自然科学版), 2005,32(3):15-18.
    [37]曹发和,张昭,施彦彦,张鉴清.镁合金阳极氧化膜的微观结构与耐蚀性能的研究[J].浙江大学学报(工学版),2006,40(4):629-633.
    [40] Zh M Shi, G L Song, A Atrens. The corrosion performance of anodized magnesium alloys [J].Corrosion Science,2006,48:3531-3546.
    [41] H L Wu, Y L Cheng, L L Li. The anodization of ZK60 magnesium alloy in alkaline solution containing silicate and the corrosion properties of the anodized films[J].Applied Surface Science,2007,5:1-34(ACCEPTED ).
    [42] H Fukuda, Y Matsumoto. Effects of Na_2SiO_3 on anodization of Mg-Al-Zn alloy in 3M KOH solution[J].Corrosion Science,2004,46:2135-2142.
    [43] Y Mizutani, S J Kim, R Ichino, M Okido. Anodizing of Mg alloys in alkaline solutions [J].Surface and Coating Technology,2003,169-170:143-146.
    [44]张荣发,单大勇,韩恩厚,曾志良.镁合金阳极氧化的研究进展与展望[J].中国有色金属学报, 2006,16(7):1136-1148.
    [45] F A Bonilla, A Berkani, P Skeldon, G E Thompson, J Piekoszewski, A G Chimielewski. Enrichment of alloying elements in anodized magnesium alloys[J]. Corrosion Science, 2002, 44: 1941-1948.
    [46]于霞.镁合金AZ31环保型阳极氧化工艺及基础理论研究.博士学位论文,中南大学,2006.
    [47]陈显明.镁合金微弧氧化热力学和动力学分析[J].兵器材料科学与工程,2006,(3):17-20.
    [48]梁永政.镁合金表面微弧氧化工艺的研究.硕士学位论文,兰州理工大学, 2004.
    [49] L M Chang. Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation [J]. Journal of Alloys and Compounds,2009(468):462-465.
    [50] L L Li, Y L Cheng, H M Wang, Zh Zhao. Anodization of AZ91 magnesium alloy in alkaline solution containing silicate and corrosion properties of anodized film[J]. Trans. Nonferrous Met.Soc.China, 2008(18):722-727.
    [51] S Ikonopisov,Theory of electrical breakdown during formation of barrier anodicfilm[J].Electrochim.Acta,1977(22):1077-1082.
    [52] J M Albella, I Montero, J M Martinez Duart.A theory of avalanche breakdown during anodic oxidation[J].Electrochim.Acta,1987(32)255.
    [53] J Liang, L T Hu, J C Hao. Characterization of microarc oxidation coatings formed on AM60B magnesium alloy in silicate and phosphate electrolytes[J]. Applied surface science,2007(253):4490-4496.
    [54] H F Guo, M Z An .Growth of ceramic coatings on AZ91D magnesium alloys by micro-arc oxidation in aluminate-fluoride solutions and evaluation of corrosion resistance[J].Applied surface science,2005(246):229-238.
    [55] A L Yerokhin, A Leyland, A Matthews. Kinetic aspects of aluminium titanate layer formation on titanium alloys by plasma electrolytic oxidation [J]. Applied Surface Science, 2002 (200):172-184.
    [56] J Yahalom, J Zahavi. Experimental evaluation of some electrolytic breakdown hypotheses. Electrochim.Acta 16(1971)603–607.
    [57] A V Timoshenko, V Yu, T Magurova. Investigation of plasma electrolytic oxidation processes of magnesium alloy MA2-1 under pulse polarisation modes[J]. Surface&Coatings Technology, 2005 (199):135-140.
    [58] J A Curran, T W Dyne. Surface coat technology, 2005(199):177.
    [59] A K Sharma, R R Uma, A Malek, K S N Acharya, M Muddu, S Kumar. Black anodizing of a magnesium-lithium alloy [J]. Metal Finishing,1996(94):16-27.
    [60] A Bai, Z J Chen.Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D[J].Surface & Coatings Technology,2009(203):1956-1963
    [61] J G Qian, C Wang, D Li, B L Guo, G L Song. Formation mechanism of pulse current anodized film on AZ91D Mg alloy[J].Trans.Nonferrous Met.Soc.China,2008(18):19-23.
    [62] Y J Zhang, Ch W Yan. Development of anodic film on Mg alloy AZ91D[J]. Surface&coatings Technology,2006(201):2381-2386.
    [63] P Schmutz, V Guillaumin, R S Lillard. Influence of Dichromate Ions on Corrosion Processes on Pure Magnesium[J]. Journal of the Electrochemical Society, 2003, 150(4):B99-B110.
    [64] G H Lv, H Chen , X Q Wang, H Pang, G L Zhang, B Zou, H J Lee, S Z Yang. Effect of additives on structure and corrosion resistance of plasma electrolytic oxidation coatings on AZ91D magnesium alloy in phosphate based electrolyte [J]. Surface&Coatings Technology, 2010.
    [65] R F Zhang, S F Zhang. Formation of micro-arc oxidation coatings on AZ91D magnesium alloys [J].Corrosion Science,2009(51):2820-2825.
    [67] M Abulsain, A Berkani, F A Bonilla, Y Liu, M A Arenas, P Skeldon, G E Thompson, P Bailey, T C Q Noakes, K Shimizu, H Habazaki. Anodic oxidation of Mg-Cu and Mg-Zn alloys [J]. Electrochimica Acta, 2004(49):899-904
    [68]蒋百灵,张淑芬,吴国建,雷廷权.镁合金微弧氧化陶瓷层显微缺陷与相组成及其耐蚀性[J].中国有色金属学报,2002(12):454-457.
    [69]王燕华.镁合金微弧氧化膜的形成过程及腐蚀行为研究.博士论文,中国科学院研究生院,2005.
    [70]陈显明,罗承平,刘江文.镁合金微弧氧化中的传质研究[J].肇庆学院学报,2009(30):46-50.
    [71] G D Davis, B A Shaw, B J Rees, C A Pecile. Electrochemical behavior and surface chemistry of non-equilibrium aluminum–tantalum alloys: Solute-rich interphase mechanisms[J]. Surface & Interface Analysis, 1995(23):609.
    [72] H Habazaki, K Shimizu, P Skeldon, G E Thompson, G C Wood. The incorporation of metal ions into anodic films on aluminium alloys[J]. Philosophical Magazine Part B, 1996(73):445-446.
    [73]张荣发,黄隆,胡长员,柯科,巢强花,王为.纯镁和AZ91HP镁合金微弧氧化膜性能比较[J].稀有金属材料与工程,2009(38):560-563.
    [74]陈显明,罗承萍,刘江文.镁合金微弧氧化过程中的成膜规律[J].材料工程,2009(12):53-57.
    [75] G R Kotler, D L Hawke, E N Aqua. SDEC-77:9th SDEC International Die Casting Exposition and Congress 9(1977)G-T77-022.
    [76] Zh M Shi, G L Song, A Atrens. Influence of theβphase on the corrosion performance of anodised coatings on magnesium–aluminium alloys[J]. Corrosion Science, 2005(47):2760-2777.
    [77] G H Lv, H Chen, L Li, Er W Niu, H Pang, B Zou, S Z Yang. Investigation of plasma electrolytic oxidation process on AZ91D magnesium alloy[J]. Current applied physics,2009(9):126-130.
    [78] O Khaselev, J Yahalom. Corrosion Science 40(1998)1149–1160.
    [79] R Arrabal, E Matykina, F Viejo, P Skeldon, G E Thompson. Corros.Sci.2008(50):1744.
    [80]刘斌,张普亮,王金清,张东,周金芳,杨生荣. AZ91D镁合金在不同电解液体系中的微弧氧化行为[J].上海交通大学学报,2010(44):16-20.
    [81]薛文斌,邓志威,来永春,陈如意,张通和. ZM5镁合金微弧氧化膜的生长规律[J].金属热处理学报,1998(19):42-45.
    [82] L J Zhang, J J Fan, Z Zhang, F H Cao, J Q Zhang, C N Cao. Study on the anodic film formation process of AZ91D magnesium alloy[J].Electrochimica Acta,2007(52):5325-5333.
    [83]陈显明,罗承萍,刘江文,李文芳.镁合金微弧氧化膜层形成过程探讨[J].中国表面工程,2006(19):14-21.
    [84]章志友,赵晴,陈宁.镁合金微弧氧化陶瓷层的生长过程研究[J].电镀与涂饰,2007,26(7):5-8.
    [85] A K Vijh. Sparking Voltagts and Side Reactions During Anodization of Valve Metals in Terms of Electron Tunnelling[J]. Sci.1971(11):411-417.
    [86] J Yahalo. Proc.Shmp.Oxie-Electrolyte Interfaces(Edited by Aluitt R.S)[J].The Journal Electrochem. Inc,1973.
    [87] T B Van, S D Burn, G P Write. Anodic spark reaction products in aluminum,tungstate and silicate[J].Bulletions America society,1977,56(6):563.
    [88] W Krysmann, P Kurze, K H Dittrich. Process characteristics and parameters of anodic oxidation by spark discharge[J].Crystal Res.&Technol,1984,19(7):973.
    [89] A V Nikolaev, G A Markov, B I Peshchevitskii. A new phenomenon electrolysis, Izv sib Otd Akad Nauk SSSR,Ser Khim,1977(5):22.
    [90] H P Duan, Ch W Yan, F H Wang. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D[J].Electrochimica Acta, 2007,52:3785-3793.
    [91] S P Harrington, F Wang, M D Thomas. The structure and electronic properties of passive and prepassive films of iron in borate buffer[J]. Electrochimica Acta, 2010 (55):4092–4102.
    [92]赵景茂,谷丰,赵旭辉,左禹.铝阳极氧化膜的半导体特性[J].物理化学学报,2008, 24(1):147–151.
    [93] L L Kirill, D E Tallman, G P Bierwagen. Mott-Schottky analysis of aluminium oxide formed in the presence of different mediators on the surface of aluminium alloy 2024-T3[J]. Journal of Materials Processing Technology,2008 (199):321–326.
    [94] H J Janga, ChanJin Parkb, HyukSang Kwon. Photoelectro-chemical analysis on the passive film formed on Ni in pH 8.5 buffer solution[J]. Electrochimica Acta, 2005 (50):3503–3508.
    [95]林玉华,林荣归,胡融刚,林昌健.不锈钢钝化膜耐蚀性与半导体特性的关联研究[J].物理化学学报,2005,21(7):740.
    [96] A Fattah-alhosseini, M A Golozar, A Saatchi, K Raeissi. Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels[J]. Corrosion Science,2010(52):205–209.
    [97] H P Duan, Ch W Yan , F H Wang. Growth process of plasma electrolytic oxidation films formed on magnesium alloy AZ91D in silicate solution[J]. Electrochimica Acta,2007,52:5002-5009.
    [98]袁芳.镁合金与铝合金连接腐蚀行为的研究[D].西安:西安理工大学材料加工工程, 2006.
    [99]陈昌华.镁合金环保型等离子体电解氧化工艺及膜层性能研究.西华大学,硕士论文,2008,5.
    [100]张涛.镁及其合金表面抑弧阳极氧化研究.湖南大学,硕士论文,2004.
    [101]蒋永峰,李均明,蒋百灵.铝合金微弧氧化陶瓷层形成因素的分析[J].表面技术,2001,30(2):37.
    [102] S I Bulyshev, V A Fedorov. The kinetic of coating formation in microarc oxidation process[J]. Fiz Khim Obrob Mater,1993,17(6):93~95.
    [103]徐群杰,单贞华,朱律均,曹为民,周国定.聚天冬氨酸与钨酸钠复配对黄铜缓蚀作用的光电化学研究[J].化学学报,2009(67):618-622.
    [104]仵茜,王海平,陈丽,谷宁,李春梅.碳钢-磷酸体系中聚天冬氨酸的缓蚀性能及系统缓蚀作用[J].河北师范大学学报,2009(33):344-346.
    [105] L Y Chai , X Yu, Zh H Yang, Y Y Wang, M Okido. Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking[J]. Corrosion Science,2008(50):3274-3279.
    [106]文斯雄.改进铝和铝合金阳极氧化的工艺[J].腐蚀与防护,2004(25):35,46.
    [107]钱建刚,李荻,郭宝兰.氢氧化钠浓度对镁合金阳极氧化的影响[J].航空材料学报,2005,25(4):53-58.
    [108]张荣发,巢强花,赵芳,王为,聂新兵,周冲,张洪,胡长员,朱光宇.植酸在镁合金防护中的应用现状[J].材料工程,2008(11):71-74.
    [109]惠华英.AZ31镁合金环保阳极氧化工艺的研究.硕士论文,湖南大学,2006.
    [110] Y H Wang, J Wang, J B Zhang, Zh Zhang. Effects of spark discharge on the anodic coatings on magnesium alloy[J]. Materials letters,2006(60):474-478.
    [111] L Ch Mei, N Gu. Corrosion inhibition ability of PASP to carbon steel in acid environment [J]. Corrosion&Protection, 2007(28):20-22,29.
    [112] X H Guo, M Zh An, P X Yang, H X Li, C N Su. Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte[J].Journal ofAlloys and compounds,2009(482):487-497.
    [113] S J Splinter, W S McIntyre. Surface Science 314 (1994) 157–171.
    [114] J Liu, Y Lu, X .Jing, Y Yuan, M Zhang. Characterization of plasma electrolytic oxidiation coatings formed on Mg-Li alloy in an alkaline silicate electrolyte containing silica sol[J]. Materials Corrosion,2009(60):865-870.
    [115] L Kang, J Gao, H R Xu, S Q Zhao, H Chen, P H Wu. Epitaxial Mg2SiO4 thin films with a spinel structure grown on Si substrates[J].Journal of Crystal Growth,2006(297):100-104.
    [116] http://www.lasurface.com/database/elementxps.php.
    [117]杨潇薇.镁锂合金阳极氧化成膜及其耐蚀性能研究.硕士论文,哈尔滨工业大学,2009.
    [118] H K Hwang, C H Jeong, Y J Lee, Y W Ko, G Y Yeom. Effect of plasma cleanings on the characteristics of MgO layer for plasma display panel[J].Surface and Coatings Technology, 2004,117-178:705-710.
    [119] D Caceres,I Colera,I Vergara,R Gonzalez,E Roman.Vacuum.2002(67):577.
    [120] PHI 5300 Instrument Manual,Perkin-Elmer Corporation,USA, 1979.
    [121] X H Guo, M An, P X Yang, H X Li, C N Su. Appl. Surf. Sci.2009(482): 487–497.
    [122] X Yang, F Sh Pan, D F Zhang. Appl. Surf. Sci. 2008(255): 1782–1789.
    [123] Zh Ch Zhang, Y Ch Zhang, L Y Yue, Chin. J. Light. Scatt.2006(17): 406–411.
    [124] Zh L Zhu, L L Yuan, J Y Gao, R H Zhu, F T Li, Chin. J. Appl. Chem.2004(21): 969–970.
    [125] Zh L Zhu, L X Ming, R R Zhang, H Zhang, Y L Qiu, Chin. J. Appl. Chem.2006(23): 366–369.
    [126]毛海英.循环冷却水系统中缓蚀阻垢剂的缓蚀阻垢机理的量子化学研究及其应用.硕士论文,华东师范大学,2008.
    [127]李大枝,张士国,卞贺,张立超.苯并咪唑类化合物缓蚀性能的量子化学研究[J].计算机与应用化学,2009(26):324-328.
    [128]蒋百灵,张淑芬,吴建国,雷廷权.镁合金微弧氧化陶瓷层纤维缺陷与相组成及其耐蚀性[J].中国有色金属学报,2002(3):454-457.
    [129]徐用军,李康,姜兆华,姚忠平,张密林.镁锂合金表面陶瓷膜的制备工艺及耐蚀性能[J].材料科学与工艺,2010(18):133-136.
    [130]周玉.陶瓷材料学[M].北京:科学出版社,2004.
    [131]陈肇友.化学热力学与耐火材料[M].北京:冶金出版社,2005.
    [132]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [133]陆佩文.无机材料科学基础[M].武汉:武汉理工大学出版社,2007.
    [134]张先锋.镁合金微弧氧化陶瓷层生长过程及耐蚀性能的研究.硕士论文,西安理工大学, 2004.
    [135]李文彬.混合稀土阻燃镁合金氧化动力学的研究.硕士论文,重庆大学,2008.
    [136] Y J Zhang, Ch W Yan, F H Wang, H Y Lou, Ch N Cao. Study on the environmentally friendly anodizing of AZ91D magnesium alloy [J]. Surface and Coatings Technology,2002,12(1):36-43.
    [137]秦善.晶体学基础[M].北京:北京大学出版社,2004,9.
    [138] Zh M Shi, G L Song, A Atrens. Influence of anodizing current on the corrosion resistance of anodised AZ91D magnesium alloy[J].Corrosion Science, 2006,48:1939-1959.
    [139] Y F Cheng, J L Luo. Electronic structure and pitting susceptibility of passive film on carbon steel[J]. Electrochim Acta, 1999, 44(17): 2947-2957.
    [140]查全性.电极过程动力学导论[M].北京:科学出版社,2002.
    [141]张云莲,史美伦,陈志源.钢筋钝化膜半导体性能的Mott-Schottky研究[J].机械工程材料,2006(30):7-10.
    [142] D J Blackwood. Influence of the space-charge region on electrochemical impedance measurements on passive oxide films on titanium[J]. Electrochimica acta, 2000, 46 (4): 563–569.
    [143] http://ddjinyuan.cn/gysms.asp
    [144]贾瑞灵,吴承斌,严川伟,王福会. Cl-对镁--铝合金β相模型合金表面膜稳定性的影响[J].北京科技大学学报,2010,(32):466-471.
    [145]葛红花,周国定,吴文权. 316不锈钢在模拟冷却水中的钝化模型[J].中国腐蚀与防护学报,2004,24(2):65-70.
    [146] G M Abady, N H.Hilal, M EIRabiee, A B Waheed. Effect of Al content on the corrosion behavior of Mg-Al alloys in aqueous solutions of different Ph[J]. Electrochimica Acta, 2010(55): 6651-6658.
    [147] D MacDonald. The point defect model for the passive state[J]. J.Electrochem. Soc., 1992, 139(12): 3434-3449.
    [148]曹楚南,张鉴清.电化学阻抗谱导论[M].北京:科学出版社,2002.
    [149]赵旭辉.铝阳极氧化膜的电化学阻抗谱的特征研究[D].博士研究生学位论文,北京化工大学, 2005.
    [150] H H Wang, Y Li, F H Wang. Influence of cerium on passivity behavior of wrought AZ91 alloy[J]. Electrochimica Acta,2008(54):706-713.
    [151]吕博.抗凝血Ti-O薄膜的电化学行为研究[D].硕士论文,西南交通大学,2010.
    [152] S R Morrison.半导体与金属氧化膜的电化学[M].北京:科学出版社,1988.
    [153] D D Macdonald, M U Macdonald,J.Electrochem.Soc,1990(137):2395.
    [154]谷丰.铝合金阳极氧化膜半导体性质及耐蚀性的研究[D].硕士学位论文,北京化工大学,2008.
    [156]张俊喜,乔亦男,曹楚南,张鉴清,周国定,不锈钢载波钝化膜的半导体性质[J].化学学报,2002,60(1):30-36.
    [157]周琼宇,盛敏奇,钟庆东,林海,钮晓博,王毅,镁合金在含F~-的NaOH溶液中钝化行为的电化学研究[J].化学学报,2010(68):1487-1493.
    [158] D J Blackwood. Influence of the space-charge region on electrochemical impedance measurements on passive oxide films on titanium[J]. Electrochimica acta, 2000, 46 (4): 563–569.
    [159] A A Valéria, M A B Christopher. Characterisation of passive films formed on mild steels in bicarbonate solution by EIS[J]. Electrochimica Acta, 2002(47):2081–2091.
    [160] Y J Zhang,Ch W Yan,F H Wang,Wenfang Li,Electrochemical behaviour of anodized Mg AZ91D in chloride containing aqueous solution,Corrosion.Science,2005,47(11):2816-2831.
    [161]钱建刚,李荻,王纯,郭宝兰,镁合金阳极氧化膜腐蚀过程的电化学阻抗谱研究[J].稀有金属材料与工程,2006,35(8):1280-1284.
    [162]陈一胜,刘永丹等. ME20镁合金阳极氧化膜耐蚀性研究[J].轻金属, 2009, 6:53-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700