镁锂合金表面CrN薄膜的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁锂合金是目前为止最轻的金属结构材料,具有密度小,比刚度、比强度高,减震性好等优点,广泛应用于电子产品、汽车及航空航天等领域;但是镁锂合金的耐腐蚀性差,阻碍了它本身的广泛应用。目前许多研究者对镁锂合金的腐蚀做了相关的研究,主要采用的处理方法有:物理方法、化学转化、化学镀、阳极氧化等。磁控溅射技术具有沉积速率高、薄膜质量好、工艺简单、对环境友好等优点成为薄膜工业化应用的主要方法。
     本文采用磁控溅射法在镁锂合金表面制备了CrN薄膜,分析了氮气流量,基底温度,溅射功率等参数对薄膜结构和性能的影响,优化了薄膜制备工艺。利用优化后的工艺参数制备了CrN/ZrN多层膜,并与单层CrN和单层ZrN薄膜进行对比,利用X射线衍射仪(XRD)、S-4800冷场发射电子显微镜(SEM)、原子力显微镜(AFM)来表征薄膜的物相结构、以及表面形貌。利用电化学工作站和析氢实验来评价薄膜在腐蚀溶液中的抗腐蚀性能。讨论了合金以及薄膜的腐蚀机制。研究结果表明:
     (1)在制备CrN薄膜时,氮气流量、基底温度及溅射功率都存在一最佳参数,过高和过低的工艺参数均使薄膜质量变差,薄膜的防腐性能也因工艺参数对薄膜缺陷、孔隙密度和膜基附着力产生作用而受到影响,工艺参数分别为20sccm、100℃和200W时,薄膜防腐性能最佳。
     (2)镁锂合金表面溅射沉积的氮化铬和氮化锆薄膜都呈柱状结构,且都存在择优取向生长。
     (3)单层氮化铬薄膜对镁锂合金的保护效果要优于单层氮化锆薄膜,薄膜沉积过程中产生的微裂纹是膜基系统发生腐蚀的主要场所,而析氢反应加快了这些缺陷处膜层的破坏,最终导致整个膜基系统的失效。
     (4)在由多靶磁控溅射制备的氮化铬/氮化锆多层膜中,膜层在微观尺度上是致密的。多层膜中的氮化铬薄膜与单层氮化铬膜相比更倾向于(111)面择优生长。
     (5)腐蚀试验表明,多层膜的防护性能优于单层膜,多层膜中制备工艺引起的随机缺陷是导致其破坏的主要因素,膜层的缺陷是膜基系统腐蚀破坏的快速通道,整个系统的失效由腐蚀源的扩展速度决定,而认为膜基系统的腐蚀破坏是一种短路腐蚀破坏行为。
Magnesium-lithium alloy is the lightest metal material, with excellent properties, such as low density, high specific stiffness and strength, with good shock absorption ability, etc. It is widely used in the automotive, aerospace and microelectronics and many other fields. However, its poor corrosion resistance has hindered the wider use of Magnesium-lithium alloy. At present many researchers make the survey about corrosion resistance on Mg-Li alloy, the surface treatments are: physical methods, chemical conversion coating, chemical plating ,anodic oxidation treatment, and so on. Magnetron sputtering is the main method for the industrial application of film owing to its high deposition rate, simple process, and good film quality and environmentally friendly.
     In this paper, we used magnetron sputtering to prepare CrN coatings on Mg-Li alloy. The influences of deposition parameters were analyzed, such as nitrogen flow; substrate temperature and sputtering power on the properties and structure of the coatings and the preparation technological parameters were optimized. Using the optimized technological parameters deposited CrN/ZrN multiple coatings and compared with both Single-layer CrN films and ZrN films. X-ray diffraction (XRD), Scanning electron microscope (SEM), and Atomic formic microscope (AFM) were used to characterize the phase structure and the surface morphology of the coatings. Electrochemical methods and Hydrogen evolution experiment were applied to study the corrosion behavior of these coatings. In addition, their corrosion mechanism was analyzed .The main results include:
     (1)During the preparation of the CrN coatings, there was only one optimal parameter for nitrogen flow, deposition temperature and power. Too higher or too lower these parameters would lead to worse coating properties. Coatings’anti-corrosion property was decided in the coatings defects, pore density and adhesion between coatings and matrix; in single parameter factor experiment, anti-corrosion property of the coatings was the best when nitrogen flow, deposition temperature and power was 20sccm,100℃and 200W.
     (2)Both CrN coating and ZrN coating prepared with sputtering technique had a developed columnar microstructure and existed preferred orientation.
     (3)CrN coating had a better protection for Mg-Li alloy than ZrN. The defects which formed in the deposition process were the main sites for corrosion. The evolution of hydrogen which took place at these defects accelerated the damage of the coating. Finally, it led to the failure of the coating/substrate system.
     (4)CrN/ZrN coatings were dense in a microcosmic scope. The (111) texture of CrN layer was strongly strengthened in CrN/ZrN coating compared with that in CrN coating.
     (5)Corrosion test indicated that multiple coatings had better protection effect than monolayer. The defect in PVD coating was a short cut for corrosion and the failure of the system was determined by the enlargement of corrosion sources. Therefore, the corrosion failure of the system was considered as a kind of short circuit corrosion behavior.
引文
[1]黎文献.镁及镁合金[M].长沙:中南大学出版社,2005.
    [2]李德辉,董杰,曾小勤,等.高性能稀土镁合金研究进展[J].材料导报,2005,19(8):51-53P.
    [3]张宇辉,高德民,华勤等.铸造镁合金的应用与研究进展[J].铸造技术,2005,26(5):423-425P.
    [4]许振明,徐孝勉.铝和镁的表面处理[M].上海:上海科学技术文献出版社,2005.
    [5]韩夏云,龙晋明,薛方勤,等.镁及镁合金应用与表面处理现状及发展[J].轻金属,2003,2:45-51P.
    [6]杨光,郝启堂.镁锂系合金的研究现状[J].铸造技术,2004,25(1):19-21P.
    [7] Chang Tienchan, Wang Jianyih, Chu Chunlen. Mechanical microstructures of various Mg-Li alloys [J]. Materials Letters, 2006, 60: 3272-3276P.
    [8] S. J. Wang, G. Q. Wu, R. H. Li. Microstructures and mechanical properties of 5wt. % Al2YP/Mg-Li composite [J]. Materials Letters, 2006, 60: 1863-1865P.
    [9] S. Mathieu, C. Rapin, J. Hazan, et al. Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys[J].Corrosion Science,2002,44: 2737-2756P.
    [10]宋光铃.镁合金腐蚀与防护[M].北京:化学工业出版社,2006.
    [11] G. Song, A. Atrens. Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials [J], 1999.1:11.
    [12] G. Song. Corrosion and protection of magnesium alloys-An overview of research undertaken by cast [J]. Materials Science Forum, 2005, 488-489: 649-652P.
    [13]许振明,徐孝勉.铝和镁的表面处理[M].上海科学技术文献出版社,2005:12-54P.
    [14]余刚,刘跃龙,李瑛等.Mg合金的腐蚀与防护[J].中国有色金属学报,2002, 12(6):1087- 1098P.
    [15] J. E. Grav, B. Luan. Protective coatings on magnesium and its alloys-a critical review [J].Journal of Alloys and Compounds, 2002, 336:88-113P.
    [16]郑润芬,梁成浩,邵林.AZ91D镁合金植酸转化膜组成与耐蚀性能研究[J].大连理工大学学报,2006,46(l):16-19P.
    [17] Liu J R, Guo Y N, Huang W D. Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys[J].Surface and Coating Technology,2006,201(3-4);1536-1541P.
    [18] Zucchi F,Grassi V,Frignani T A,et al. Influence of a saline treatment on the corrosion resistance of a WE43 magnesium alloy[J] .Surface and Coatings Technology,2006,200(12-13):4136-4143P.
    [19] Anieai L,Masi R,Santamaria M,et al. A photo electro chemical investigation of conversion coatings on Mg substrates [J].Corrosion Science, 2005, 47(12):2883-2900P.
    [20] Zhao M, Wu S S, Luo J R, et al. A chromium-free conversion coating of Magnesium alloy by a phosphate-permanganate solution [J].Surface andCoatings technology, 2006, 200(18-19):5407-5412P.
    [21] Kwo Z C, Teng S S. Conversion-coating treatment for magnesium alloys by a permanganate-phosphate solution [J].Materials Chemistry and Physics, 2003, 80(1):191-200P.
    [22] Umehara H, Takaya M, Terauchi S.Chrome-free surface treatments for magnesium alloy [J]. Surface and Coatings Technology, 2003, 169-170:666-669P.
    [23] Brunelli K, Dabal? M, Calliari I, et al. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys [J].Corrosion Science, 2005, 47(4):989-1000P.
    [24] Amy L R, Garmel BB. Corrosion Protection Afforded by Rare Earth Conversion Coatings Applied to Magnesium [J].Corrosion Science, 2000, 429(2):275-288P.
    [25] Dabala M, Brunelli K, Napolitani E, et al. Cerium-based chemical conversion coatings on AZ63 magnesium alloy[J].Surface and Coatings technology,2003, 172(2-3):227-232P.
    [26] L.Kouisni,M.Azzi,M Zertoubi,et al. Phosphate coatings on magnesium alloy AM60 Partl: Study of the formation and the growth of zinc Phosphate films [J] .Surface and Coatings Technology, 2004, 185(1):58-67P.
    [27] KouisniL,Azzi M,Dalard F,et al. Phosphate coatings on magnesium alloy AM60 Part2: Electrochemical behavior in borate buffer solution [J].Surface and Coatings Technology, 2005, 192:239-246P.
    [28] Li G Y,Lian J S,Niu L Y,et al. Growth of zinc phosphate coatings on AZ91D magnesium alloy [J]. Surface and Coatings Technology, 2006, 201(3-4):1814-1820P.
    [29] Liu Jianrui, Guo Yina, Huang Weidong. Study on the corrosion resistance of phytic acid conversion coating for magnesium alloys [J].Surface and Coatings Technology, 2006, 201:1536-154lP.
    [30]高丽丽,张春红,张密林.镁锂合金无铬植酸化学转化膜研究[J].功能材料.2008,39(7):1134-1137P.
    [31]张春红,镁锂合金表面锡酸盐转化膜研究[J],电镀与装饰2008.10
    [32] Manuele Dabala , Lidia Armelao , Alberto Buchberger. Cerium-based conversion layers on aluminum alloys [J]. Applied Surface Science, 2001, 72:312-322P.
    [33] F. Berny, Y. Benedict, J. Johnson. Deposition and characterization of cerium oxide conversion coatings on aluminum alloy 7075-T6 [J]. Surface and Coating Technology, 2004, 176:349-356P..
    [34] R. W. Hinton, L. Wllson. The corrosion inhibition of zinc with cerous chloride [J].Corrosion Science, 1989, 29(8):967-985P.
    [35]王济奎,方景礼.镀锌层表面混合稀土转化膜的研究[J].中国稀土学报,1997,15(1):31-34P.
    [36] Rudd A L, Breslin C B, Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium [J].Corrosion Science, 2000, 42(2):275-288P.
    [37] Montemor M F, Slmoes A M, Carmezim M J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection[J].Applied Surface Science,2007,253(16):6922-6931P.
    [38] Yang Li-hui, Li Jun-qing, Yu xiang. Lanthanum-based conversion coating on Mg-8Li alloy [J].Applied Surface Science, 2008, 255(5):2338-2341P.
    [39]周雪华,陈秋容,卫中领等.镁合金化学转化膜[J].腐蚀与防护,2004,25(11):468-472,482P.
    [40]郭洪飞,安茂忠.镁及镁合金阳极氧化技术[J].轻合金加工技术,2003,31(12):l-5,22P.
    [41]罗胜联,戴磊,周海晖等.镁合金新型阳极氧化工艺的研究[J].电镀与环保,2005,25(l):24-27P.
    [42]钟涛生,蒋百灵,李均明.微弧氧化技术的特点、应用前景及其研究方向[J].电镀与涂饰,2005 , 24(6): 47-50P.
    [43] Hoche H, Blawert C, Broszeit E, et al. Galvanic corrosion properties of differently PVD treated magnesium die cast alloy AZ[J].Surface and Coatings Technology,2005,193(1-3):223-229P.
    [44] Altun H,Sen S. .The effect of DC magnetron sputtering AIN coatings on the corrosion behaviour of magnesium alloy [J]. Surface and Coatings Technology, 2005, 197(2-3):193-200P.
    [45] Fracassif F, Agostino R D, Palum B F, et al. Application of plasma deposited oregano-silicon thin films for the corrosion protection of metals[J].Surface and Coatings Technology,2003,174-175:107-111P.
    [46]张通和,吴瑜光.离子注入表面优化技术[M].北京:冶金工业出版社,1993.
    [47] L.E. Toth, Transition Metal Carbides and Nitrides [M]. New York: Academic Press, 1971, 120P.
    [48] H. Pierson, Handbook of Refractory Carbides and Nitrides [M]. New Jersey: Noyes Publications, 1996, 181P.
    [49] Sergiy Korablov, M.A.M. Ibrahim, Masahiro Yoshimura. Hvdrothermal corrosion of TiN and CrN PVD films on stainless steel [J]. Corrosion Science, 2005, 47:1839-1854P.
    [50] Maria Nordin, Mats Larsson. Deposition and characterization of multilayered PVD TiN/CrN coatings on cemented carbide [J]. Surface and Coatings Technology, 1999, 116-119:108-115P.
    [51] KJMURA A, HASEGAWA H. Effects of Al content on hardness, lattice parameter and microstructure of Ti1-xAlxN films. Surface and Coatings Technology, 1999, 120(11):438-441P.
    [52] L EWIS D B, Structure and stress of TiAlN/CrN super lattice coatings as a function of CrN layer thickness [J]. Surface and Coatings Technology, 1999, 116:284-291P.
    [53]赵韦人等.反应磁控溅射制备的Cr-N薄膜的成相行为[J],金属功能材料2004,11(4):26-28P.
    [54] P. Panjan, B. Navinsek, A. Cvelbar, et al .Oxidation of TiN,ZrN,TiZrN,CrN, TiCrN and TiN/CrN multilayer hard coatings reactively sputtered at low temperature [J]. Thin Solid Films, 1996, 298:281-282P.
    [55] S.B.Sant, K.S.Gill, Surf.Coat. Growth and characterization of cathodic are evaporated CrN, (TiAl) N and (TiZr) N films [J]. Surface and Technology, 1994, 152:68-69P.
    [56] M. Bin-Sudin, A. Lyland,A.S.James, et al. Substrate surface finish effects in duplex coatings of PAPVD TiN and CrN with electro less nickel-phosphorus interlayer [J]. Surface and Coating Technology, 1996, 81:214-215P.
    [57] J.A.Sue, T.P.Chang. Friction and wear behavior of titanium nitride, zirconium nitride and chromium nitride coatings at elevated temperature [J]. Surface and Coating Technology, 1995, 61:76-77P.
    [58]阎洪.金属表面处理新技术[M].北京:冶金工艺出版社,1996,144-145P.
    [59] L.Cunha, M.Andritschky, K. Pischow et al. Microstructure of CrN coatings produced by PVD techniques [J]. Thin Solid Films, 1999, 355-356:465-471P.
    [60]韩增虎,戴嘉维等,磁控溅射CrNx薄膜的制备与力学性能[J],功能材料2002,33(5):500-502P.
    [61]周庆刚,白新德等,CrN/Cr镀膜改性的H13钢摩擦学性能[J],清华大学学报(自然科学版),2003,43(6):762-765P.
    [62] Saki Krishnamurthy, Ivar Reimanis. Multiple cracking in CrN and Cr2N films on brass. Surface and Coatings Technology, 2005, 192:291-298P.
    [63] Gunter B, Christoph F, Erhard B, et al. Development of chromium nitride coatings substituting titanium nitride. Surface and Coatings Technology, 1996, 86-87:184-191P.
    [64] J.J. Olava, S. E. Rodil, S. Muhl, et al. Comparative study of chromium nitride coatings deposited by unbalanced and balanced magnetron sputtering. Thin Solid fi1ms, 2005, 474:119-126P.
    [65] P. Kuppusami, A. Dasgupta, V.S. Raghunathan. A new surface treatment by pulsed plasma nitriding for chromium plated austenitic stainless steel. ISIJ Int. 2002, 42 (12):1457P
    [66] G. Bertrand, C. Savall, C. Meunier. Properties of reactively RF magnetron-sputtered chromium nitride coatings. Surface and Coatings Technology. 1997, 96:323-329P.
    [67] K.-W. Weng, Y.-C. Chen, S. Han, C.-S. Hsu, Y.-L. Chen, D.-Y. Wang, Effects of iron implantation on the microstructure and residual stress of filter arc CrN films. Thin Solid Films, 2008, 516: 5330-5332P.
    [68] H.-Y. Chen, S. Han, H.C.Shih. Microstructures and properties changes induced by a metal vapor vacuum arc chromium-interlayer in chromium nitride films. Materials Letters, 2004, 58: 2924-2926P.
    [69] Y. Shi, S. Long, L. Fang, F. Pan, H. Liao, Effects of N2 content and thickness on CrNx coatings on Mg alloy by the planar DC reactive magnetron sputtering. Applied Surface Science, 2009, 255:6515-6524P.
    [70] J.-N. Tu, J.-G. Duh, S.-Y. Tsai. Composition surface morphology mechanical properties corrosion and oxidant iron behavior of reactive sputtered Cr-N films. Surface and Coatings Technology, 2000, 133:181-185P.
    [71] E. Fornies, R. Escobar Galindo, O. Sanchez, J.M. Albella. Growth of CrNx films by DC reactive magnetron sputtering at constant N2/Ar gas flow. Surface and Coatings Technology. 2006, 200:6047-6053P.
    [72] Z.G. Zhanga, O. Rapaud, N. Bonasso, D. Mercs, C. Donga, C. Coddet. Control of microstructures and properties of dc magnetron sputtering deposited chromium nitride films. Vacuum 2008, 82:501-509P.
    [73] J. Lin, Z.L. Wu, X.H. Zhang, B. Mishra, J.J. Moore, W.D. Sproul. A comparative study of CrNx coatings synthesized by DC and pulsed DC magnetron sputtering. Thin Solid Films, 2009, 517(6): 1887-1894P.
    [74] H.C. Barshilia, K.S. Rajam. Reactive sputtering of hard nitride coatings using asymmetric-bipolar pulsed DC generator. Surface and Coatings Technology, 2006, 201:1827-1835P.
    [75] K.H. Nam, M.J. Jung, J.G. Han. A study on the high rate deposition of CrNx films with controlled microstructure by magnetron sputtering. Surface and Coatings Technology, 2000, 131:222–227P.
    [76] Ghislaine Bertrand, Catherine Savall, Cathy Meunier. Properties of reactively RF magnetron-sputtered chromium nitride coatings [J]. Surface and Coatings Technology, 1997, 96: 323-329P.
    [77] K.A. Gruss, T. Zheleva, R.F Davis, TR. Watkins. Characterization of zirconium nitride coatings deposited by cathodic arc sputtering [J]. Surface and Coatings Technology, 1998 107: 115-124P.
    [78] M.A. Djouadi, C. Nouveau, P. Beer, M. Lambertin. CrXNy hard coatingsdeposited with PVD method on tools for wood machining [J]. Surface and Coatings Technology, 2000, 133-134: 478-483P.
    [79] W. Ensinger, M. Kiuchi. Cubic nitrides of the sixth group of transition metals formed by nitrogen ion irradiation during metal condensation [J]. Surface and Coatings Technology, 1996, 84: 425-428P.
    [80] F.Fracassi , R.d’Agostino , F.Palumbo , E.Angelini , Application of plasma deposited organ silicon thin films for the corrosion protection of metals,Surface and Coatings Technology,2003,174-175:107-111P.
    [81]吴自勤,王兵著,薄膜生长[M].北京:科学出版社,2001
    [82]姚寿山,李戈扬,胡文彬著,表面科学与技术[M].北京:机械工业出版社,2005
    [83]唐伟忠著,薄膜材料制备原理,技术及应用[M].北京:冶金工业出版社,2003
    [84] Hovsepian P Eh, Medlock A, Gregory G. Combined cathodic arc/unbalanced magnetron grown CrN/NbN super lattice coatings for applications in the cutlery industry [J]. Surface and Coatings Technology, 2000, 133- 134:508-516P
    [85] Shroer A, Ensinger W, Wolf G K. A Comparison of the corrosion Behaviour and Hardness of Steel Samples Coated with Titanium Nitride and Chromium Nitride by Different Institutions Using Different Deposition Techniques [J].Materials Science Engineering A, 1991, 140:625-630P
    [86] Navinsek B, Panjan P Characterization of low temperature CrN and TiN(PVD) hard coatings [J]. Surface and Coatings Technology, 1995, 74-75:155-161P.
    [87] Su Y L, Yao S H, Wu C T. Comparisons of characterizations and tribological performance of TiN and CrN deposited by cathodic arc plasma deposition process [J]. Wear, 1996, 199:131-141P.
    [88] Piot O, Gautier C, Machet J. Comparative study of CrN coatings deposited by ion plating and vacuum arc evaporation. Influence of the nature and the energy of the layer-forming species on the structural and mechanical properties [J]. Surface and Coatings Technology, 1997, 94-95: 409-415P.
    [89] Gautier C, Moussaoui H, Elstner F. Comparative study of mechanical and structural properties of CrN films deposited by dc. Magnetron sputtering and vacuum arc evaporation [J].Surface and Coatings Technology, 1996, 86-87:254-262P.
    [90] S. Berg, T. Nyberg. Fundamental understanding and modeling of reactive sputtering processes [J].Thin Solid Films, 2005, 476:216-217P.
    [91]赵华侨著.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993:189-207P.
    [92] J. Romero, J. Esteve, and A. Lousa. Period dependence of hardness and microstructure on nanometric Cr/CrN multilayer’s. Surface and Coatings Technology, 2004, 188-189(1-3 SPECISS):338-343P.
    [93] S.Ulrich, C. Ziebert, M. Stuber, E. Nold, H. Holleck, M. Goken, E.Schweitzer, and P. Schloossmacher. Correlation between constitutions,properties and machining performance of TiN/ZrN multilayer’s. Surface and Coatings Technology, 2004, 188-189 (1-3 SPECISS):331-337P.
    [94] M. Nordin, M.Larsson, and S. Hogmark. Mechanical and tribological properties of multilayered PVD TiN/CrN. Wear, 1999, 232 (2):221-225P.
    [95] M. Nordin, M. Larsson, and S. Hogmark. Mechanical and tribological properties of multilayered PVD TiN/CrN, TiN/MoN, TiN/NbN and TiN/TaN coatings on cemented carbide. Surf Coat Tech, 1998, 106 (2-3):234-241P.
    [96] S. Y. Lee, G. S. Kim and J. H. Hahn. Effects of the Cr content on the mechanical properties of nanostructured TiN/CrN coatings. Surface and Coatings Technology, 2004, 177-178:426-433P.
    [97] D. J. Li, F. Liu, M. X. Wang, J. J. Zhang and Q. X. Liu. Structural and mechanical properties of multilayered gradient CrN/ZrN coatings. Thin Solid Films, 2006, 506-507:202-206P.
    [98] J. Xu, K. Hattori, Y. Seino, and I. Kojima. Microstructure and properties of CrN/Si3N4 nano-structured multilayer films. Thin Solid Films, 2002, 414 (2):239-245P.
    [99] S. M. Aouad I,T. Maeruf, R. D. Twesten, D. M. Mihut, and S. L. Rohde. Physical and mechanical properties of chromium zirconium nitride thin films. Surf Coat Tech, 2006, 200 (11):3411-3417P.
    [100] CLui, ALeylnad, 5Lyon, et al, Corrosion resistance of multi-layer plasma-assisted physical vapor deposition TiN and CrN coatings. Surface and Coatings Technology, 1995, 7677:615-622P.
    [101] Jones M I, McColl I R, Grant D M, et al. Protein adsorption and platelet attachment and activation, on TiN, TiC and DLC coatings on titanium for cardiovascular applications. Biomed Mater Res, 2000, 52:413-421P.
    [102] S. Rudenja, J. Pan, L Odnevall, et al. Passivation and anodic oxidation of duplex TiN coating on stainless steel. Electrochem Soc, 1999, 146(11):4082-4086P.
    [103] Flores M,Blanco O, Muhl S, et al. Corrosion of a Zn-Al-Cu alloy coated with TiN/Ti films [J]. Surface and Coatings Technology, 1998, 108-109:449-453P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700