纳米镍基催化剂的制备及其对城市生活垃圾裂解气化制氢的催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石能源的大量使用产生了严峻的环境问题,严重威胁着人类的健康和生存。能源危机与环境污染的双重压力迫使人们重新认识到需要寻找可再生能源,以逐步替代化石燃料,缓解能源短缺和环境污染。目前,城市生活垃圾排放量的快速增长带来了新的环境问题。而城市生活垃圾中的各种厨余、纸张、织物、树枝和塑料等有机组分可以实现废物—能量的转化,不仅可以减轻能源和环境的双重压力,减少化石燃料的使用,还能对城市生活垃圾进行资源化利用。
     城市生活垃圾裂解气化处理过程中,存在产氢率低、气化效率不高和大量焦油出现的问题,要解决这些问题,主要依靠高效催化剂进行催化裂解气化,提高反应速率,降低反应温度,以及去除焦油等。本文进行了纳米镍基催化剂的制备及其对城市生活垃圾裂解气化的催化性能研究:
     首先,以Ni(NO_3)_2·6H_2O和氨水为原料,采用配位均匀沉淀法制备纳米NiO前驱体,对前驱体制备过程中的反应温度、反应时间、用水量及镍氨比等影响因素进行了深入的探讨。利用XRD,FTIR和TG/DTA对前驱体进行表征。表征结果表明,前驱体为高纯度的六方体晶相的纳米β-Ni(OH)_2。和非纳米Ni(OH)_2相比,纳米Ni(OH)_2的δ(OH)峰都发生了一定的红移,而v(Ni-O)峰都发生了一定的蓝移。对制备的纳米NiO进行XRD,FTIR,SEM和TEM表征,结果表明,产物为标准面心立方相纳米NiO。随着前驱体煅烧温度的升高和煅烧时间的增加,制备的纳米NiO平均粒径明显变大,晶格畸变率变小。通过控制沉淀条件可以制备出不同形貌和粒径的纳米NiO,制备的球状纳米NiO粒径为20-25 nm;棒状纳米NiO直径约为5 nm,长度为30—50 nm,不同NiO纳米棒的晶面间距都约为0.24 nm,沿[111]方向生长。
     然后,以Ni(NO_3)_2·6H_2O和(NH_4)_2C_2O_4·H_2O为原料,采用超声化学沉淀法制备出氧化镍前驱体,XRD图谱表明前驱体为NiC_2O_4·2H_2O,FTIR谱图分析进一步验证得到的前驱体是NiC_2O_4·2H_2O。TEM表征结果说明Nano-NiO颗粒有轻微的团聚,平均粒径在70 nm左右。而且随着反应物(NH_4)_2C_2O_4和Ni(NO_3)_2·6H_2O物质的量的比值增至0.3后,制备的粉末产品出现了Ni单质。
     此外,为了比较纳米NiO和非纳米NiO的物理化学性质差异,采用直接煅烧法制备出平均粒径为0.6μm的近似立方体形的大颗粒NiO。同时,利用热重/差热分析法比较纳米NiO和大颗粒NiO的催化活性,纳米NiO较大颗粒NiO具有较好的催化活性,更能促进城市生活垃圾中树枝组分的裂解。在探讨树枝组分的催化裂解特性的基础上,提出了树枝的裂解动力学模型。
     同样,采用配位均匀沉淀法在氧化铝载体上负载纳米NiO,制备出负载型纳米NiO/Al_2O_3催化剂,载体上均匀负载的NiO涂层厚度约为8—500μm,由NiO纳米片组成,NiO纳米片直立向上相互交错生长,厚度40 nm-3μm。SEM表征证实涂层由不同形貌和尺寸的NiO纳米片组成,利用XRD,FTIR和SEM对纳米NiO/Al_2O_3催化剂进行全面的分析和表征,结果表明,制备过程中的反应温度、反应时间、用水量及镍氨比等影响因素对载体表面上负载的NiO纳米片的形貌和尺寸影响很大。
     然后,将制备的负载型纳米NiO/Al_2O_3催化剂用于城市生活垃圾裂解气化,以评估其催化活性,并和煅烧白云石催化活性进行比较,实验结果表明,两者就去除焦油和提高H_2产率而言,负载型纳米NiO/Al_2O_3催化剂的催化活性优于煅烧白云石。同时,在添加煅烧白云石和负载型纳米NiO/Al_2O_3催化剂的条件下,研究城市生活垃圾裂解和气化特性发现,温度和升温速率对垃圾催化裂解影响非常显著,高温和快速加热能降低催化裂解过程中焦油产率,提高H_2产率;在城市生活垃圾催化气化过程中,高温和高S/M值(水蒸气垃圾质量比)有利于降低催化气化过程中焦油产率,提高H_2产率。在添加煅烧白云石的条件下,对比垃圾催化气化产气各组分含量和由GasEq model软件的计算结果表明,垃圾催化气化产气达到了热力学平衡,拟合的垃圾催化气化动力学可以很好的描述碳转化率、氢气产率和水蒸气垃圾质量比之间的关系。
     最后,采用热重/差热分析法对垃圾焦油进行催化裂解实验,得到垃圾焦油的催化裂解动力学方程,并评价催化剂对垃圾焦油裂解的催化活性,发现添加纳米NiO和煅烧白云石都能显著降低焦油裂解活化能。根据动力学方程,分析了垃圾焦油催化裂解的反应机理。
More and more energy resource especially fossil fuel consumed raising the question ofserious environmental pollution severely threatens the health and survival of human being,and people are aware of the importance of renewable energy,which can gradually replacethe existing fossil fuel in order to relieve the shortage of energy and environmentalpollution.At present,the quantity of Municipal Solid Waste(MSW)has increasedsignificantly in the industrialized and developing countries with the question of itssustainable disposal management.Lots of energy and money was used for transportation,treatment,and final disposal of MSW,thus the disposal of MSW is one of the mostimportant and urgent problems in environmental management in the world.The pyrolysisand gasification of MSW has been considered to be a promising method for future energysystems to meet environmental requirements,and provides one of the mostcost-competitive means of obtaining hydrogen-rich gas from MSW,and have promisingapplication in Waste-To-Energy(WTE)technology.The pyrolysis and gasification ofMSW can not only alleviate the dual-stress of energy and environmental,and reduce thepollution caused by MSW,but also achieve reclamation of MSW.
     However,during the pyrolysis and gasification process of MSW,much tar and lowgasification efficiency,low hydrogen yield exist.In general,nickel-based catalysts areused to eliminate the tar,increase the yield of hydrogen-rich gas,and to decrease thetemperature of pyrolysis and gasification.
     Coordination homogeneous precipitation method was used to synthesize nanosizednickel hydroxide powder products with the ammonia and nickel nitrate hexahydrate as theraw materials.Transmission Electron Microscope(TEM),powder X-ray Diffraction(XRD),Thermal Gravimetry and Differential Thermal Analysis(TG/DTA),FourierTransform Infrared spectroscopy(FTIR)and Scanning Electronic Microscope(SEM)wereused to characterize the microstructure and morphology of the synthesized precursor andNano-NiO powder products,the XRD and FTIR patterns showed that the synthesizedprecursor was hexagonalβ-Ni(OH)_2 crystallites,which decompose at 300.3℃,and thenNiO nanocrystal was produced.During the course ofβ-Ni(OH)_2 crystallite preparation,thereaction temperature,reaction time,water volume and mole ratios of Ni(NO_3)_2·6H_2O to ammonia were studied.Compared with Bulk-NiO,δ(OH)peak of the Nano-NiO productsin FTIR pattern gives rise to red-shift.While,v(Ni—O)peak gives rise to blue-shift.
     XRD and FTIR patterns showed that the NiO powder products are nanosized FCCobtained from the synthesized precursorβ-Ni(OH)_2 crystallite calcined at 400℃.TEMimages showed that spherical Nano-NiO are 20—25 nm in mean particle diameter,NiOnanorods are 5 nm in mean particle diameter,30-50 nm in length and 0.24 nm ininterplanar crystal spacing(111).All NiO nanorods grow in the direction of[111].FTIRpatterns showed that the smaller Nano-NiO powder is,more significant the red-shift ofcharacteristic peak is.
     Ultrasound chemical precipitation method was used to synthesize the precursor powderswith the ammonium oxalate and nickel nitrate hexahydrate as the raw materials.The XRDpatterns showed that the precursor powders are NiC_2O_4·2H_2O,and FTIR patternsconfirmed the result of XRD pattern.TEM image indicated that Nano-NiO powderproducts agglomerate slightly in a mean particle size of 70 nm.When the mole ratios ofammonium oxalate to nickel nitrate hexahydrate increased,Ni appeared in the powderproducts.
     The catalytic activity of Nano-NiO and Bulk-NiO powder products used in woodcomponent of MSW pryolysis with TG/DTA method was evaluated,Nano-NiO performedbetter than Bulk-NiO in promoting the decompostion of wood component.The catalyticpyrolysis characteristic was discussed,then dynamics model was proposed according tothe TG/DTA data.
     Coordination homogeneous precipitation method also was used to synthesize NiOnanosheets on the surface of the support Al_2O_3,the supported coating was 8-500μm inthickness,which consist of NiO nanosheets.XRD,FTIR and SEM were used tocharacterize the microstructure and morphology of the Nano-NiO/Al_2O_3 catalyst.
     The Nano-NiO/Al_2O_3 catalyst was use in the pyrolysis and gasification process of MSWto evaluate their catalytic activity,experimental results showed that Nano-NiO/Al_O_3catalyst performed better than calcined dolomite in eliminating tar and increasinghydrogen yield.Meanwhile,during the MSW pyrolysis with Nano-NiO/Al_2O_3 catalyst orcalcined dolomite,the reactor temperature and heating rate have significant influences on the MSW pyrolysis,higher reactor temperature and heating rate can reduce tar yield andincrease gas yield and hydrogen yield.
     Furthermore,there was a good agreement between the experimental gas compositionand that corresponding to thermodynamic equilibrium data calculated using GasEq model.Consequently,a kinetic model was proposed for describing the variation of hydrogen yieldand carbon conversion efficiency with S/M(the weight ratio of Steam to MSW)during thecatalytic steam gasification of MSW.The kinetic model revealed a good performancebetween experimental results and the kinetic model.
     The tar pyrolysis with Nano-NiO and calcined dolomite as catalysts was investigatedusing the TG/DTA method.According to the TG/DTA data,Nano-NiO and calcineddolomite catalysts can lower the activation energy of tar pyrolysis,then a kinetic modelfor tar pyrolysis was developed,and the characteristic of tar pyrolysis with and withoutcatalysts were discussed,then the mechanism of tar pyrolysis was analyzed.
引文
[1]江泽民.对中国能源问题的思考.上海交通大学学报[J],2008,42(3):345-359.
    [2]徐祥民主编.环境法学.北京:北京大学出版社[M],2005,9.
    [3]Asadullah M.,Ito S.,Kunimori K.,Yamada M.,Tomishige K.Energy Efficient Production of Hydrogen and Syngas from Biomass:Development of Low-Temperature Catalytic Process for Cellulose Gasification[J].Environmental Science & Technology,2002,36:4476-4481.
    [4]Asadullah M.,Miyazawa T.,Ito S.,Kunimori K.,Yamada M.Tomishige K.Gasification of different biomasses in a dual-bed gasifier system combined with novel catalysts with high energy efficiency[J].Applied Catalysis A:General,2004,267:95-102.
    [5]王革华,戴志远.“氢经济”与氢能发展战略的思考[J].太阳能,2005,(3):9-10.
    [6]汪宝华.《中华人民共和国固体废物污染环境防治法实施手册》[M].北京:中国环境保护出版社,2005,3.
    [7]王欢,王伟.城市生活垃圾产生量及组分的预测方法研究[J].环境卫生工程.2006,14(4):6-8.
    [8]中华人民共和国城镇建设行业标准《城市生活垃圾产量计算及预测方法》(CJ/T 106-1999).
    [9]郑易生,王世汶.中国环境与发展评论.第1卷[M].北京:社会科学文化出版社, 2001.
    [10]李晓东,陆胜勇,徐旭等.中国部分城市生活垃圾热值的分析[J].中国环境科学,2001,21(2):156-160.
    [11]王华,胡建杭,王海瑞.城市生活垃圾直接气化熔融焚烧技术[M].北京:冶金工业出版社,2004,11.
    [12]中华人民共和国行业标准《城市生活垃圾分类及其评价标准》(CJJ/T 102-2004).
    [13]段世江.我国城市生活垃圾问题及管理对策探析[J].河北大学学报(哲学社会科 学版),2001,26(1):83-87.
    [14]Malkow T.Novel and innovative pyrolysis and gasification technologies for energy efficient and environmentally sound MSW disposal[J].Waste Management,2004,24:53-79.
    [15]Eriksson O.,Carlsson M.,Frostell R.B.,et al.Municipal solid waste management from a systems perspective[J].Joumal of Cleaner Production,2005,13:241-252.
    [16]Diaz R.,Warith M.Life-cycle assessment of municipal solid wastes:Development of the WASTED model[J].Waste Management,2006,26:886-890.
    [17]赵由才,柴晓理.生活垃圾资源化原理与技术[M].北京:化学工业出版社,2001, 12.
    [18]徐敏,周乃杰,陆正明.堆肥处置城市生活垃圾的可行性分析[J].环境卫生工程,2001,9(2):56-61.
    [19]朱能武.固体废弃物处理与利用[M].北京:北京大学出版社,2006,01.
    [20]Chang Y.,Chen W.,Chang N.Comparative evaluation of RDF and MSW incineration [J].J.Hazard.Mate.,1998,58(1-3):33-45.
    [21]Ruokoj(?)rvi P.,Tuppurainen K.,Mueller C.,Kilpinen P.,Ruuskanen J.PCDD/F reduction in incinerator flue gas by adding urea to RDF feedstock[J].Chemosphere,2001,43(2):199-205.
    [22]Lin K.S.,H.Wang P.,Liu S.H.,Chang N.B.,Huang Y.J.,Wang H.C.Pyrolysis kinetics of refuse-derived fuel[J].Fuel Processing Technology,1999,60(2):103-110.
    [23]Galvagno S.,Casu S.,Casabianca T.,Calabrese A.,Cornacchia G.Pyrolysis process for the treatment of scrap tyres:preliminary experimental results[J].Waste Management,2002,22:917-923.
    [24]Thamavithya M.,Dutta A.An investigation of MSW gasification in a spout-fluid bed reactor[J].Fuel Processing Technology,2008,89:949-957.
    [25]Buah W.K.,Cunliffe A.M.,Williams P.T.Trans IChemE,Part B,Process Safety and Environmental Protection,2007,85(B5):450-457.
    [26]Islam M.N.,Islam M.N.,Beg M.R.A.,Islam M.R.Pyrolytic oil from fixed bed pyrolysis of municipal solid waste and its characterization[J].Renewable Energy 2005,30:413-420
    [27]Islam M.N.,Islam M.N.,Beg M.R.A.The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh[J].Bioresource Technology,2004,92:181-186.
    [28]Pinto F.,Costa P.,Gulyurtlu I.,Cabrita I.Pyrolysis of Plastic wastes:2.Effect of catalyst on product yield[J].Joural of Analytical and Applied Pyrolysis,1999,51:51-57.
    [29]Zhang Y.F.,Deng N.,Ling J.H.,Xu C.Z.A new pyrolysis technology and equipment for treatment of municipal household garbage and hospital waste[J].Renewable Energy,2003,28:2383-2393.
    [30]Xiao G.,Ni M.J.,Chi Y.,Jin B.S.,Xiao R.,Zhong Z.P.,Huang Y.J.Gasification characteristics of MSW and an ANN prediction model[J].Waste Management,2009,29:240-244.
    [31]An D.W.,Wang Z.M.,Zhang S.T.,Yang H.G.Low-temperature pyrolysis of municipal solid waste:influence of pyrolysis temperature on the characteristics of solid fuel[J].Int.J.Energy Res.,2006;30:349-357.
    [32]包向军,蔡九菊,罗光前,齐利娟.新型蓄热式城市垃圾裂解技术[J].冶金能源, 2003,22(3):44-48.
    [33]Li A.M.,Li X.,Li S.Q.,Ren Y.,Shang N.,Chi Y.,Yang J.H.,Cen K.F.Experimental studies on municipal solid waste pyrolysis in a laboratory-scale rotary kiln[J].Energy,1999,24:209-218.
    [34]宋玉银.城市有机固体废弃物的裂解研究[J].环境科学与技术,1992,10(3):9-13.
    [35]张 力,屈超蜀.城市生活垃圾物性与裂解特性的实验研究[J].环境科学学报, 2000,20(5):645-648.
    [36]Zheng J.,Jin Y.Q.,Chi Y.,Wen J.M.,Jiang X.G.,Ni M.J.Pyrolysis characteristics of organic components of municipal solid waste at high heating rates[J].Waste Management,2009,29:1089-1094.
    [37]Kwak T.H.,Maken S.,Lee S.,Park W.,Min B.R.Yoo Y.D.Environmental aspects of gasification of Koreanmunicipal solid waste in a pilot plant[J].Fuel,2006,85:2012-2017.
    [38]Kwak T.H.,Lee S.,Maken S.,Shin H.C.,Park J.W.,Yoo Y.D.A Study of Gasification of Municipal Solid Waste Using a Double Inverse Diffusion Flame Burner[J].Energy & Fuels,2005,19:2268-2272.
    [39]熊祖鸿,李海滨,吴创之,等.下吸式气化炉处理城市生活垃圾[J].环境污染治 理技术与设备,2005,6(8):75-78.
    [40]蒋剑春,戴伟娣,应浩,等.城市垃圾气化试验研究初探[J].可再生能源, 2003,.108(2):14-17.
    [41]吴家正,闻 望,王宝生,等.城市生活垃圾原料性质对干馏及气化过程的影响[J].同济大学学报,1989,.17(1):113-122.
    [42]闻望,魏敦松,庄永茂.城市垃圾气化制气的研究[J].煤气与热力,1992,12(4): 4-7.
    [43]肖波,汪莹莹,苏琼.垃圾气化处理新技术研究[J].中国资源综合利用,2006, 24(10):18-20.
    [44]Park K.,Hyun J.,Maken S.,Jang S.,Park J.W.Vitrification of Municipal Solid Waste Incinerator Fly Ash Using Brown's Gas[J].Energy & Fuels,2005,19:258-262.
    [45]Jung C.H.,Matsuto T.,Tanaka N.Behavior of metals in ash melting and gasification-melting of municipal solid waste(MSW)[J].Waste Management,2005,25:301-310.
    [46]王华,胡建杭,何方,等.无害化城市生活垃圾直接气化熔融焚烧技术的试验研究[J].工业加热,2004,33(3):16-19.
    [47]Mountouris A.,Voutsas E.,Tassios D.Solid waste plasma gasification:Equilibrium model development and exergy analysis[J].Energy Conversion and Management,2006,47:1723-1737.
    [48]王铁柱.生物质焦油催化裂解试验研究[D].博士学位文.广州:华南理工大学, 1999
    [49]Neefl J.P.A.,van Passen S.V.B.,KnoefH.A.M.,Buffinga G.J.,Zielke U.Sjostrom K.,Brage C.,Hasler P.,Simell P.A.,Soumalinen M.,Dorrington M.A.,Thomas L.In 12th European Conference for Energy,Industry and Climate Protection,17-21 June 2002,Amsterdam,The Netherlands;ETA:Florence and WIP:Munich,2002;pp 469- 472.
    [50]Coll R.,Salvado J.,Farriol X.,Montane D.Steam Reforming Model Compounds of Biomass Gasification Tars:Conversion at Different Operating Conditions and Tendency towards Coke Formation[J].Fuel Processing Technology,2001,74:19-31.
    [51]吴创之,阴秀丽,刘平,等.生物质焦油裂解的技术关键[J].新能源,1998, 20(7):5-9.
    [52]Simell P.A.,Hirvensalo E.K.,Smolander V.T.Steam Reforming of Gasification Gas Tar over Dolomite with Benzene as a Model Compound[J].Ind.Eng.Chem.Res.,1999,38:1250-1257
    [53]孙云娟,蒋剑春.生物质气化过程中焦油的去除方法综述[J].生物质化学工程,2006,40(2):31-35.
    [54]Narvez I.,Oro A.,Aznar M.P.,Corella J.Biomass gasification with air in an atospherec bubbing fluidized bed:effect of six operational variables on the quality of the produced raw gas[J].Industrial and Engineering Chemistry Research,1996,35:2110-2120.
    [55]Seshadri K.S.,Shamsi A.Effects of temperature,pressure and carrier gas on the cracking of coal tar over a char dolomite mixture and calcined dolomite a fixed-bed reactor[J].Industrial and Engineering Chemistry Research,1998,37:3830-3837.
    [56]Arauzo J.,Radlein D.,Piskorz J.,Donald S.S.Catalytic Progasification of Biomass,Evaluation of Modified Nickel Catalysts[J].Ind Eng Chem Res,1997,36:67-75.
    [57]张晓东.生物质裂解气化及焦油催化裂解机理的研究[D].浙江大学博士学位论 文,2003.
    [58]Corella J.Toledo J.M.,Padilla R.Olivine or Dolomite as In-Bed Additive in Biomass Gasification with Air in a Fluidized Bed:Which Is Better?[J].Energy & Fuels 2004,18:713-720.
    [59]Rapagna S.,Jand N.,Kiennemann A.,Foscolo P.U.Steam Gasification of Biomass in a Fluidized-Bed of Olivine Particles[J].Biomass Bioenergy,2000,19:187-197.
    [60]El-Rub Z.A.,Bramer E.A.,Brem G.Review of Catalysts for Tar Elimination in Biomass Gasification Processes[J].Ind.Eng.Chem.Res.2004,43:6911-6919.
    [61]Lizzio A.A.,Radovic L.R.Transient kinetics study of catalytic char gasification in carbon dioxide[J].Ind.Eng.Chem.Res.1991,30:1735-1744.
    [62]Aznar M.P.,Corella,J.,Delgado J.,Lahoz J.Improved steam gasification of lignocellulosic residues in a fluidized bed with commercial steam reforming catalysts [J].Ind.Eng.Chem.Res.1993,32:1-10.
    [63]Caballero M.A.,Aznar M.P.,Gil J.,Martin J.A.,Frances E.,Corella J.Commercial Steam Reforming Catalysts To Improve Biomass Gasification with Steam-Oxygen Mixtures.1.Hot Gas Upgrading by the Catalytic Reactor[J].Ind.Eng.Chem.Res.1997,36:5227-5239.
    [64]Olivares A.,Aznar M.P.,Caballero M.A.,Gil J.,Franes E.,Corella J.Biomass Gasification:Produced Gas Upgrading by In-Bed Use of Dolomite[J].Ind.Eng.Chem.Res.1997,36:5220-5226.
    [65]Sutton D.,Kelleher B.,Ross J.R.H.Review of Literature on Catalysts for Biomass Gasification[J].Fuel Processing Technology,2001,73:155-173.
    [66]Suh W.H.,Suslick K.S.,Stucky G.D.,Suh Y.H.Nanotechnology,nanotoxicology,and neuroscience[J].Catalysis Today,2003,87:133-137.
    [67]Jing Q.S.,Lou H.,Fei J.H.,Hou Z.Y.,Zheng X.M.Syngas production from reforming of methane with CO_2 and O_2 over Ni/SrO-SiO_2 catalysts in a fluidized bed reactor[J].Int.J.Hydrogen Energy,2004,29:1245-1251.
    [68]Chen I.W.,Chen F.L.Effects of Alkali and Alkaline Earth Metals on the Resistivity to Coke Formation and Sintering of Nickel-Alumina Catalysts[J].Ind Eng Chem Res,1990,29:534-539.
    [69]郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究[J].燃料化学学报,2001,29(4):319-322.
    [70]Mojtahedi W.,Ylitalo M.,Maunula T.,Abbasian J.Catalytic decomposition of ammonia in fuel gas production in pilot-scale pressurized Iuidized-bed gasifier[J].Fuel Processing Technology,1995,45:221-236.
    [71]Simell P.,Kurkela E.,Stzahlberg P.,Hepola J.Catalytic hot gas cleaning of gasification gas[J].Catalysis Today,1996,27:55-62.
    [72]Somorjai G.A.,Borodko Y.G.Research in nanosciences-great opportunity for catalysis science[J].Catalysis Letters,2001,76:1-5.
    [73]Carnes C.L.,Klabunde K.J.The catalytic methanol synthesis over nanopaticle metal oxide catalysts[J].J.Molecu.Catal.A:Chem.2003,194:227-236.
    [74]徐甲强,朱文会,颜克球,等.烧结型SnO_2可燃气体敏感元件研究[J].郑州轻工业学院学报(自然科学版),1994,9(1):1-5.
    [75]Hotovy I.,Huran J.,Spiess L.,Romanus H.,Buc D.,Kosiba R.NiO-based nanostructured thin films with Pt surface modification for gas detection[J].Thin Solid Films,2006,515:658-661.
    [76]徐甲强,田志壮,陈玉萍,等.贵金属催化剂对氧化镍气敏特性的影响[J].郑州轻工业学院学报,1997,12(2):71-74.
    [77]何为民,安金霞,王疆英,等.锰镍复合氧化物半导体纳米陶瓷的微观结构和电性能研究[J].新疆师范大学学报(自然科学版),1996,15(2):33-38.
    [78]俞建群,贾殿赠,郑毓峰.纳米氧化镍、氧化锌的合成新方法[J].无机化学学报[J], 1999,15(1):95-98.
    [79]李生英,高锦章,杨武,等.固相合成纳米NiO微粒[J].西北师范大学学报[J], 2003,39(1):46-48
    [80]胡辉,高艳阳.低热固相法制备纳米氧化镍[J].应用化工,2003,32(5):30-32
    [81]周立群,杨念华,周丽荣,等.纳米氧化镍的固相合成[J].应用化学,2006,23(6): 682-684
    [82]An C.H.,Wang R.R.,Wang S.T.,Liu Y.Q.A low temperature composite-hydroxide approach to NiO nanocrystals[J].Materials Research Bulletin,2008,43:2563-2568.
    [83]Davar F.,Fereshteh Z.,Salavati-Niasari M.Nanoparticles Ni and NiO:Synthesis,characterization and magnetic properties[J].Journal of Alloys and Compounds(2008),doi:10.1016/j.j allcom.2008.09.121.
    [84]Wang Y.P.,Zhu J.W.,Yang X.J.,Lu L.D.,Wang X.Preparation of NiO nanoparticles and their catalytic activity in the thermal decomposition of ammonium perchlorate[J].Thermochimica Acta,2005,437:106-109.
    [85]李国军,任瑞铭,黄校先,郭景坤.纳米晶氧化镍的制备及表征[J].无机化学学 报,2004,20(3):287-290.
    [86]Li G.J.,Huang X.X.,Shi Y.,Guo J.K.Preparation and characteristics of nanocrystalline NiO by organic solvent method[J].Materals Letters,2001,51:325-330.
    [87]Wu M.S.,Hsieh H.H.Nickel oxide/hydroxide nanoplatelets synthesized by chemical precipitation for electrochemical capacitors[J].Electrochimica Acta,2008,53:3427-3435
    [88]Xiang L.,Deng X.Y.,Jin Y.Experimental study on synthesis ofNiO nano-particles[J].Scripta Materialia,2004,47:219-224.
    [89]Xing W.,Li F.,Yan Z.F.,Lu G.Q..Synthesis and electrochemical properties of mesoporous nickel oxide[J].Journal of Power Sources,2004,134:324-330.
    [90]Li J.F.,Yan R.,Xiao B.,Liang D.T.,Lee D.H.Preparation of Nano-NiO Particles and Evaluation of Their Catalytic Activity in Pyrolyzing Biomass Components[J].Energy & Fuels,2008,22:16-23.
    [91]Wu L.L.,Wu Y.S.,Wei H.Y.,Shi Y.C.,Hu C.X.Synthesis and characteristics of NiO nanowire by a solution method[J].Materials Letters,2004,58:2700-2703.
    [92]Deng X.Y.,Chen Z.Preparation of nano-NiO by ammonia precipitation and reaction in solution and competitive balance[J].Materials Letters,2004,58:276-280.
    [93]周根陶,周双生,刘双怀,等.配位—沉淀法制备Ni(OH)_2和NiO超细粉[J].无机化学学报,1996,12(1):96-99.
    [94]邓祥义,向 兰,金 涌.氨水单相沉淀法制备纳米NiO的研究[J],化学工程,2002,30(4):39-51.
    [95]Yang Q.,Sha J.,Ma X.Y.,Yang D.R.Synthesis of NiO nanowires by a sol-gel process[J].Materials Letters,2005,59(14-15):1967-1970.
    [96]Seehra M.S.,Dutta P.,Shim H.,Manivannan A.Temperature dependence of electron magnetic resonance and magnetization in NiO nanorods[J].Solid State Communications,2004,129:721-725.
    [97]Su C.H.,Lin C.R.,Hung C.H.,Chang C.Y.,Stobinski L.Novel process to synthesize the well-size-controlled carbon nanotubes using Fe/TiO_2 as catalyst by sol-gel method [J].Surface and Coatings Technology,2006,200:3211-3214.
    [98]高佳辉,吴孟强,张树人.纳米氧化镍的制备及其电化学电容[J].电子科技大学 学报,2006,35(6):960-963.
    [99]王子忱,张丽华,李熙.溶胶法制备NiO纳米晶热敏材料[J].高等学校化学学 报,1992,(10):1287-1290.
    [100]Han D.Y.,Yang H.Y.,Shen C.B.,Zhou X.,Wang F.H.Synthesis and size control of NiO nanoparticles by water-in-oil microemulsion[J].Powder Technology,2004,147(1-3):113-116.
    [101]李 健,向 兰,金 涌.水热改性法制备分散性纳米氧化镍[J].稀有金属 材料与工程,2004,33(4):425-428.
    [102]张建英,杨合情,杨瑞丽,杨文玉,宋玉哲,焦华,李丽,马军虎,王明珍.金属镍基质上直立六边形NiO纳米片的制备与光催化性能[J].科学通报, 2007,51(17):2015-2020.
    [103]Kanters M.,Vannispen J.R.,Louw R.,MULDER P.Chlorine Input and Chlorophenol Emission in the Lab-Scale Combustion of Municipal Solid Waste[J].Environmental Science & Technology,1996,30:2121-2126.
    [104]Travis C.C.,Hattemer-frey H.A.A.Perspective on Dioxin Emissions from Municipal Solid Waste Incinerators[J].Risk Analysis,1989,9:91-97.
    [105]Li J.F.,Yan R.,Xiao B.,Liang D.T.,Du L.J.Development of nano-NiO/Al_2O_3 catalyst to be used for tar removal in biomass gasification[J].Environmental Science & Technology,2008,42:6224-6229.
    [106]朱诚意,刘中华,陈雯,等.超微NiO粉体的制备及其应用现状[J].功能材 料,1999,30(4):345-347.
    [107]Azaroff L.V.,Elements of X-ray Crystallography[M].McGraw-Hill Book,New York,1968.
    [108]Klug H.P.,Alexander L.E.X-raydiffractionprocedures[M].John Wiley and Sons,1974-427.
    [109]董相廷,洪广言,于得财.Tm_2O_3超微粉末的制备与性质[J].无机材料学报, 1996,11(3):542-1546.
    [110]管小艳,邓建成,周燕,等.配位均匀沉淀法制备不同形貌的纳米氢氧化 镍[J].湘潭大学自然科学学报,2006,28(2):66-69。
    [111]华东理工大学分析化学教研组等编.分析化学(第四版).北京:高等教育出 版社,1995.
    [112]卫志贤,刘荣杰,郑岚,等.均匀沉淀法制备纳米氧化物工艺分析[J].西北 大学学报(自然科学版),1998,28(5):407-411.
    [113]张明月,廖列文.均匀沉淀法制备纳米氧化物研究进展[J].化工装备技术, 2002,23(4):19-21.
    [114]管小燕.配位均匀沉淀法合成纳米氢氧化镍及其应用研究[D].湘潭大学硕 士学位论文,2006,05.
    [115]Al-Hajry A.,Umar A.,Vaseem M.,Al-Assiri M.S.,El-Tantawy F.,Bououdina M.,Al-Heniti S.,Hahn Y.B.Low-temperature growth and properties of flower-shaped β-Ni(OH)_2 and NiO structures composed of thin nanosheets networks[J]Superlattices and Microstructures,2008,44:216-222.
    [116]徐甲强,田志壮,陈玉萍,等.贵金属催化剂对氧化镍气敏特性的影响[J].郑 州轻工业学院学报,1997,12(2):71-74.
    [117]Leite E.R.,Nobre M.A.L.,Longo E.Microstructural development of ZnO varistor during reactive liquid phase sintering[J].Journal of Materials Science,1996,31:5391-5398.
    [118]周广.配位均匀共沉淀法制备Ag/ZnO纳米复合材料及其应用研究[D].湘 潭大学硕士学位论文,2007,5.
    [119]郭铠,唐小恒,周绪美编.化学反应工程.北京:化学工业出版社,2000,7.
    [120]王文帝,刘金华,王大志,等.Ni(OH)_2纳米晶的水热合成和结构表征[J].过 程工程学报,2006,6(1):128-131.
    [121]Ichiyanagi Y.,Wakabayashi N.,Yamazaki J.,Yamada S.,Kimishima Y.,Komatsu E.,Tajima H.Magnetic properties of NiO nanoparticles.Physica B,2003,329-333:862-863.
    [122]童长钿,李启厚,赖复兴,等.超细草酸镍粒子的制备及其形状和粒度控制[J].湿法冶金,2003,22(1):22-27.
    [123]Luo S.Y.,Xiao B.,Hu Z.Q.,Liu S.M.,Guo X.J.An experimental study on a novel shredder for municipal solid waste(MSW)[J].International Journal of Hydrogen Energy,2009,34:1270-1274.
    [124]Hu G.,Xu S.P.,Li S.G.,Xiao C.G.,Liu S.Q.Steam gasification of apricot stones with olivine and dolomite as downstream catalysts.Fuel Processing Technology,2006,87:375-382.
    [125]Corella J.,Toledo J.,Molina G.Performance of CaO and MgO for the hot gas clean up in gasification of a chlorine-containing(RDF)feedstock[J].Bioresource Technology,2008,99:7539-7544.
    [126]阴秀丽,赵增立,徐冰燕,等.白云石和石灰石对废轮胎裂解产物的影响[J]. 燃料化学学报,2001,29(3):283-285.
    [127]Delgado J.,Aznar M.P.,Corella J.Biomass gasification with steam in fluidized bed:effectiveness of CaO,MgO,and CaO-MgO for hot raw gas cleaning[J].Ind Eng Chem Res,1997,36:1535-1543.
    [128]Corella J.,Radlein D.,Piskorz J.,Orio A.,Aznar P.Biomass Gasfication with Air in Fluidized Bed:Reforming of the Gas Composition with Commercial Steam Reforming Catalysts[J].Ind Eng Chem Res,1998,37:4617-4624.
    [129]Alden H.,Espenas B.G.,Rensfelt E.Conversion of tar in pyrolysis gas from wood using a fixed dolomite bed[A].In Research in Thermochemical Biomass Conversion,Elsevier Applied Science[C].(s.1.):(s.n.),1988,987-1001.
    [130]Xu G.W.,Murakami T.,Suda T.,et,al.Distinctive Effects of CaO Additive on Atmospheric Gasification of Biomass at Different Temperatures[J].Ind.Eng.Chem.Res.,2005,44:5864-5868.
    [131]侯斌,吕子安,李晓辉,等.生物质热解产物中焦油的催化裂解[J].燃料化 学学报,2001,29(1):70-75.
    [132]Lopamudra D.,Ptasinski K.J.,Janssen F.J.J.G.A review of the primary measures for tar elimination in biomass gasification processes[J].Biomass and Bioenergy,2003,24:125-140.
    [133]Orio A.,Corella J.,Narvaez I.Performance of Different Dolomites on Hot Raw Gas Cleaning from Biomass Gasification with Air[J].Ind.Eng.Chem.Res.,1997,36: 3800-3808.
    [134]Gururajan V.S.,Agarwal P.K.,Agnew J.B.Mathematical modeling of fluidized bed coal gasifier[J].Chemical Engineering Research and Design 1992,70a:211-238.
    [135]孙云娟.生物质催化及焦油裂解的研究[D].中国林业科学研究院硕士学位 论文,2006,6.
    [136]Pekka A.S.,Kleppalahti J.,Bredemberg B.J.Catalytic purification of tarry fuel gas with carbonate rocks and rerrousmaterials[J].Fuel,1992,71(2):211-218.
    [137]Corella J.,Orio A.,Narvez I.Effectiveness factor for a commercial steam reforming catalyst and for a calcined dolomits used downstream from biomass gasifier[A].VTT Symposium 163[C].Espoo(Finland):(s.n.),1996.185-191.
    [138]Perez P.,Aznar P.M.,Caballero M.A.,Gil J.,Martin J.A.,Corella J.Hot gas cleaning and upgrading with a calcined dolomite located downstream a biomass fluidized bed gasifier operating with steam-oxygen mixtures[J].Energy and Fuels,1997,11(6):1194-1203.
    [139]吕鹏梅,常杰,付 严,等.生物质流化床催化气化制取富氢燃气[J].太阳 能学报,2004.,25(6):769-775.
    [140]Wei L.,Xu S.P.,Zhang L.,Liu C.H.,Zhu H,Liu S.Q.Steam gasification of biomass for hydrogen-rich gas in a fiee-fall reactor[J].Int J Hydrogen Energy 2007,32:24-31.
    [141]Chaudhari S.T.,Dalai A.K.,Bakhshi N.N.Production of Hydrogen and/or Syngas(H_2 + CO)via Steam Gasification of Biomass-Derived Chars[J].Energy & Fuels,2003,17:1062-1067.
    [142]Rapagna S.,Jand N.,Foscolo P.U.Catalytic gasification of biomass to produce hydrogen rich gas[J].Int J Hydrogen Energy,1998,23:551-557.
    [143]Ekstrom C.,Lindman N.,Pettersson R.Proceedings of conference on developments in thermochemical biomass conversion[C],Banff,Canada.1996.p.601.
    [144]张秀梅,陈冠益,孟祥梅,等.催化裂解生物质制取富氢气体的研究[J].燃料 化学学报,2004,32(4):446-449.
    [145]Olivares A.,Aznar M.P.,Caballero M.A.,Gil J.,Frances E.,Corella J.Biomass gasification:produced gas upgrading by in-bed use of dolomite[J].Ind.Eng.Chem.Res.,1997,36:5220-5226.
    [146]Garcia L.,Salvador M.L.,Arauzo J.,Bilbao R.Catalytic steam gasification of pine sawdust.Effect of catalyst weight/biomass flow rate and steam/biomass ratios on gas production and composition[J].Energy Fuels,1999,13:851-859.
    [147]Turn S,Kinoshita C,Zhang Z,Lshimura D,Zhou J.An experimental investigation of hydrogen production from biomass gasification[J].Int J Hydrogen Energy,1998,23:641-648
    [148]Galvagno S,Casu S,Casciaro G,Martino M,Russo A,Portofino S.Steam gasification of refuse-derived fuel(RDF):influence of process temperature on yield and product composition.Energy & Fuels 2006,20:2284-2288.
    [149]Skoulou V.,Zabaniotou A.,Stavropoulos G.,Sakelaropoulos G.Syngas production fi-om olive tree cuttings and olive kernels in a downdraft fixed-bed gasifier [J].Int J Hydrogen Energy,2008,33:1185-1194.
    [150]Zhang Y.,Nagamori S.,Hinchiranan S.,Vitidsant T.,Tsubaki N.Promotional effects of Al_2O_3 addition to Co/SiO_2 catalysts for Fischer-Tropsch Synthesis[J].Energy & Fuels,2006,20:417-421.
    [151]Garcia X.A.,Alarcon N.A.,Gordon A.L.Steam gasification of tars using a CaO catalyst[J].Fuel Processing Technology,1999,58:83-102.
    [152]Fragbemi L.,Khezami L.,Capart R.Pyrolysis products from different biomasses:application to the thermal cracking of tar[J].Applied Energy,2001,69:293-306
    [153]张全国.生物质焦油燃烧动力学及其燃料特性实验研究[D].浙江大学博士学位论文,2006,3.
    [154]李继红.生物质焦油及其馏分的热动力学研究[D].河南农业大学硕士学位论文,2005,6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700