Rh纳米催化剂的温控相转移功能及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可溶性过渡金属纳米催化剂因其高活性、高选择性等特性正引起人们的广泛关注,但与经典均相催化过程相似,从工业应用考虑,仍存在如何有效地解决催化剂与产物的分离及循环使用的问题。本论文通过氢气还原法制备了以具有浊点(Cp)特性的温控膦配体Ph2P(CH2CH2O)nCH3(n=16)(L)为稳定剂的Rh纳米催化剂,并实现了其在水/1-丁醇两相体系中的温控相转移功能。即室温下,溶于水相的Rh纳米催化剂,在温度升高至浊点(60℃)以上时,Rh纳米催化剂从水相转移至上层1-丁醇相。当温度降至60℃以下时,Rh纳米催化剂又从1-丁醇相重返下层水相。基于该Rh纳米催化剂在水/1-丁醇两相体系中的温控相转移功能,本论文将其成功地用于高碳烯烃的加氢、氢甲酰化和氢氨甲基化反应,显示了催化剂易于分离并循环使用的特点。
     温控相转移Rh纳米催化剂在高碳烯烃加氢反应中显示了优异的催化活性及分离循环使用效果。对于环己烯加氢反应,在P/Rh=2(摩尔比),S/Rh=1000(摩尔比),T=60℃,PH2=1 MPa,t=1 h的优化反应条件下,环己烯转化率为100%,TOF达1000 h-1,催化剂循环使用6次,催化活性保持不变,催化剂平均流失量(质量百分比)为0.2%。
     对该催化剂在高碳烯烃氢甲酰化反应中的研究表明,在T=70℃,P/Rh=13(摩尔比),S/Rh=1000(摩尔比),P=5 MPa(CO/H2=1:1),反应时间6 h条件下,1-辛烯的转化率和醛收率分别达到98%和96%。反应结束后,催化剂和产物通过简单的相分离即可分开,催化剂连续使用3次,催化活性未见明显降低。
     首次将Rh纳米催化剂用于催化高碳烯烃氢氨甲基化反应,考察了催化剂的催化性能及分离回收效果。对于1-辛烯氢氨甲基化反应,在T=120℃,S/Rh=1000(摩尔比),P/Rh=2(摩尔比),P=6 MPa(CO/H2-1:1),t=4 h条件下,1-辛烯转化率和胺选择性分别达到99%和97%。催化剂连续使用3次,1-辛烯转化率保持不变,胺选择性保持在85%以上
     以上研究结果表明,Rh纳米催化剂的温控相转移功能,为可溶性过渡金属纳米催化剂的分离回收开辟了一条新途径。
Soluble transition-metal nanoparticles in catalysis have drawn much attention due to their high efficiency and selectivity. However, very similar to traditional homogeneous catalysts, one of the main disadvantages of soluble nanoparticle catalysts is the problem of separation the catalyst from the products. In this paper, rhodium nanoparticles stabilized by thermoregulated ligand Ph2P(CH2CH2O)nCH3(n= 16)(L) were prepared by hydrogenation reduction. The rhodium nanoparticle catalyst stabilized by thermoregulated ligand L exhibited the thermoregulated phase-transfer property in the aqueous/1-butanol biphasic system, That is to say, the rhodium nanoparticle catalyst was in the lower water phase at room temperature, afterwards, when the temperature heated to 60℃, the rhodium nanoparticle catalyst transferred from the water phase into the upper 1-butanol phase, after cooling to room temperature, the rhodium nanoparticle catalyst could go back to the lower water phase from the upper 1-butanol phase.The thermoregulated phase-transfer property of rhodium nanoparticle catalyst stabilized by thermoregulated ligand L in the aqueous/1-butanol biphasic system and its catalytic effect on the hydrogenation, hydroformylation and hydroaminomethylation of higher olefins were investigated.
     The thermoregulated phase-transfer rhodium nanoparticle catalyst was used to catalyze hydrogenation of olefins. The catalytic activity and recycling efficiency of the catalyst were studied in detail. For the hydrogenation of cyclohexene catalyzed by the thermoregulated phase-transfer rhodium nanoparticle catalyst in the aqueous/1-butanol biphasic system, under the conditions of P/Rh= 2(molar ratio), S/Rh= 1000(molar ratio), T=60℃, PH2= 1 MPa and t= 1 h, the conversion of cyclohexene reached up to 100%and the TOF was 1000 h-1. Catalytic activity remained unchanged within six successive runs. The average leaching of rhodium to the product phase was 0.2 wt.%.
     We extended the application of the thermoregulated phase-transfer rhodium nanoparticle catalyst to the hydroformylation of higher olefins. Under the conditions of T= 70℃, P/Rh= 13(molar ratio), S/Rh=1000(molar ratio), P= 5 MPa(CO/H2= 1:1), t= 6 h, the conversion of 1-octene and yield of aldehyde were 98% and 96%, respectively. The catalyst could be easily separated from product by phase separation and used for three times without evident loss in activity.
     Rhodium nanoparticle catalyst was used to catalyze hydroaminomethylation of higher olefins for the first time. For the hydroaminomethylation of 1-octene, under the conditions of T = 120℃, S/Rh= 1000(molar ratio), P/Rh= 2(molar ratio), P= 6 MPa (CO/H2=1:1), t= 4 h, the conversion of 1-octene and the selectivity for amine were up to 99% and 97%, respectively. Moreover, the catalyst could be recycled at least three runs.
     In summary, the methodology of TRPTC of nanoparticle catalysis system is simple to realize and the catalyst is easy to separate from the product and recycle. Therefore, it opens up a new avenue for recovery and recycling of soluble transition-metal nanoparticle catalyst.
引文
[1]Chechik V, Crooks R M. Dendrimer-Encapsulated Pd Nanoparticles as Fluorous Phase-Soluble Catalysts [J]. J. Am. Chem. Soc.,2000,122:1243-1244.
    [2]Moreno-Manas M, Pleixats R, Villarroya S. Fluorous Phase Soluble Palladium Nanoparticles as Recoverable Catalysts for Suzuki Cross-Coupling and Heck Rreactions [J]. Organometallics,2001,20:4524-4528.
    [3]Huang T S, Wang Y H, Jiang J Y, et al. PEG-Stabilized Palladium Nanoparticles:An Efficient and Recyclable Catalyst for the Selective Hydrogenation of 1,5-Cyclooctadiene in Thermoregulated PEG Biphase System [J]. Chin. Chem. Lett.,2008, 19:102-104.
    [4]Dupont J, Souza R F de, Suarez P A Z. Ionic Liquid (Molten Salt) Phase Organom etallic Catalysis [J]. Chem. Rev.,2002,102:3667-3691.
    [5]Mu X D, Meng J Q, Kou Y, et al. Rhodium Nanoparticles Stabilized by Ionic Copo lymers in Ionic Liquids:Long Lifetime Nanocluster Catalysts for Benzene Hydro genation [J]. J. Am. Chem. Soc.,2005,127:9694-9695.
    [6]Cornils B, Herrmann W A, Schloegl R, et al. Catalysis from A to Z [M]. Berlin: Wiley-VCH, Weinheim,2000.
    [7]Wang Y H, Jiang J Y, Jin Z L. Thermoregulated Liquid/Liquid Biphasic Catalysis and Its Application [J]. Catal. Surv. Asia.,2004,8:119-126.
    [8]Herrmann W A, Horvath I T, Leitner W, et al. Multiphase Homogeneous Catalysis [M]. Berlin:Wiley-VCH, Weinheim,2005.
    [9]Roucoux A, Schulz J, Patin H. Reduced Transition Metal Colloids:A Novel Family of Reusable Catalysts? [J]. Chem. Rev.2002,102:3757-3778.
    [10]Bonnemann H, Richard R M. Nanoscopic Metal Particles-Synthetic Methods and Po tential Applications [J]. Eur.J. Inorg. Chem.,2001,10:2455-2480.
    [11]Astruc D, Lu F, Aranzaes J R. Nanoparticles as Recyclable Catalysts:the Frontier between Homogeneous and Heterogeneous Catalysis [J]. Angew. Chem. Int. Ed.,2005, 44:7852-7872.
    [12]Pachon L D, Rothenberg G. Transition-Metal Nanoparticles:Synthesis, Stability and the Leaching Issue[J]. Appl. Organometal. Chem.,2008,22:288-299.
    [13]Nath S, Jana S, Pradhan M, et al. Ligand-Stabilized Metal Nanoparticles in Or ganic Solvent [J]. J. Colloid Interface Sci.,2010,341:333-352.
    [14]Lin Y, Finke R G. Novel Polyoxoanion- and Bu4N+-Stabilized, Isolable, and Redi ssolvable,20-30-. ANG. Ir300-900 Nanoclusters:The Kinetically Controlled Sy nthesis, Characterization, and Mechanism of Formation of Organic Solvent-Solu ble, Reproducible Size, and Reproducible Catalytic Activity Metal Nanocluster s [J]. J. Am. Chem. Soc.,1994,116(18):8335-8353.
    [15]EI-Sayed M A. Some Interesting Properties of Metals Confined in Time and Nanometer Space of Different Shapes [J]. Acc. Chem. Res.,2001,34(4):257-264.
    [16]Mayer A B R. Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers [J]. Polym.Adv. Technol.,2001,12(1-2):96-106.
    [17]Toshima N, Shiraishi Y, Teranishi T, et al. Various Ligand-Stabilized Metal N anoclusters as Homogeneous and Heterogeneous Catalysts in the Liquid Phase [J]. Appl. Organometal. Chem.2001,15(3):178-196.
    [18]Aiken J D Ⅲ, Finke R G. A Review of Modern Transition-Metal Nanoclusters:Th eir Synthesis, Characterization, and Applications in Catalysis [J]. J. Mol. Cata 1.A:Chem.,1999,145(1-2):1-44.
    [19]Aiken J D Ⅲ, Finke R G. Polyoxoanion-and Tetrabutylammonium-Stabilized Rh (0)n Nanoclusters:Unprecedented Nanocluster Catalytic Lifetime in Solution [J]. J. Am. Chem. Soc.,1999,121 (38):8803-8810.
    [20]Aiken J D Ⅲ, Finke R G. Polyoxoanion- and Tetrabutylammonium-Stabilized, Ne ar-Monodisperse,40 ± 6 A Rh(0)~1500 to Rh(0)~3700 Nanoclusters:Synthesis, Chara cterization, and Hydrogenation Catalysis [J]. Chem. Mater.1999,11(4):1035-1047.
    [21]Fink R G. Transition-Metal Nanoclusters:Solution-Phase Synthesis, Then Chara cterization and Mechanism of Formation, of Polyoxoanion- and Tetrabutylammoni um-Stabilized Nanoclusters [M]//Feldheim D L, Foss Jr C A. Metal nanoparticl es:Synthesis, Characterization and Applications. New York:Marcel Dekker, Inc. 2002:17-54.
    [22]Roucoux A. Stabilized Noble Metal Nanoparticles:An Unavoidable Family of Catalysts For Arene Derivative Hydrogenation [J]. Top. Organomet. Chem.,2005,16: 261-279.
    [23]Schmid G, Pfeil R, Boese R, et al. Au55[P(C6H5)3]12Cl6-Ein Goldcluster Ungewohn licher Groβe [J]. Chem. Ber.,1981,114:3634-3642.
    [24]Miens C, De Caro D, Bradley J S, et al. Selective Synthesis, Characterizatio n, and Spectroscopic Studies on a Novel Class of Reduced Platinum and Palladi um Particles Stabilized by Carbonyl and Phosphine Ligands [J]. J. Am. Chem. Soc., 1993,115(24):11638-11639.
    [25]Duteil A, Schmid G, Meyer-Zaika W. Ligand Stabilized Nickel Colloids [J]. Chem. Commun.,1995,1:31-32.
    [26]Schmid G, Morun B, Malm J 0. Pt309Phen36*030 ± 10, a Four-Shell Platinum Clu ster [J]. Angew. Chem. Int. Ed. Engl.,1989,28(6):778-780.
    [27]Schmid G, Maihack V, Lantermann F, et al. Ligand-Stabilized metal Clusters and Colloids:Properties and Applications [J]. J. Chem. Soc. Dalton Trans.,1996, 5:589-595.
    [28]Schmid G, Emde S, Maihack V, et al. Synthesis and Catalytic Properties of Large Ligand Stabilized Palladium Clusters [J]. J.Mol.Catal. A:Chem.,1996,107(1-3): 95-104.
    [29]Shem P M, Sardar R, Shumaker-Parry J S. One-Step Synthesis of Phosphine-Stabi lized Gold Nanoparticles Using the Mild Reducing Agent 9-BBN [J]. Langmuir,200 9,25(23):13279-13283.
    [30]Soulantica K, Maisonnat A, Fromen M, et al. Synthesis and Self-Assembly of Mo nodisperse Indium Nanoparticles Prepared from the Organometallic Precursor [I n (η5-C5H5)] [J]. Angew. Chem. Int. Ed.,2001,40(2):448-451.
    [31]Cordente N, Respaud M, Senocq F, et al. Synthesis and Magnetic Properties of Nickel Nanoreds [J].Nano. Lett.,2001,1(10):565-568.
    [32]Rodriguez A, Amiens C, Chaudret B, et al. Synthesis and Isolation of Cuboctah edral and Icosahedral Platinum Nanoparitcles. Ligand-Dependent Structures [J]. Chem. Mater.,1996,8(8):1978-1986.
    [33]Son S U, Jang Y, Yoon K Y, et al. Facile Synthesis of Various Phosphine-Stabi lized Monodisperse Palladium Nanoparticles through the Understanding of Coord ination Chemistry of the Nanoparticles [J]. Nano. Lett.,2004,4(6):1147-1151.
    [34]Lu Y D, Wang Y H, Jin Z L. Rh nanoparticles stabilized by PEG-substituted triphenyl-phosphine:A highly active and recyclable catalyst for aqueous biphasic hydrogenation of benzene [J].Chin. Chem. Lett.,2010,21:1067-1070.
    [35]Tamura M, Fujihara H. Chiral Bisphosphine BINAP-stabilized Gold and Palladium Nanoparticles with Small Size and Their Palladium Nanoparticle-catalyzed Asymmetric Reaction [J]. J. Am. Chem. Soc.,2003,125(51):15742-15743.
    [36]Pan C, Pelzer K, Philippot K, et al. Ligand-Stabilized Ruthenium Nanoparticle s:Synthesis, Organization, and Dynamics [J]. J. Am. Chem. Soc.,2001,123(31):7584-7593.
    [37]Dassenoy F, Philippot K, Ould Ely TA, et al. Platinum Nanoparticles Stabilized by CO and Octanethiol Ligands or Polymers:FT-IR, NMR, HREM and WAXS Studies [J]. New J.Chem.,1998,22(7):703-712.
    [38]Alvarez J, Liu J, Kaifer A E, et al. Water-soluble Platinum and Palladium Nan oparticles Modified with Thiolated β-cyclodextrin [J]. Chem. Commun.,2000,1151-1152.
    [39]Strimbu L, Liu J, Kaifer A E. Cyclodextrin-Capped Palladium Nanoparticles as Catalysts for the Suzuki Reaction [J]. Langmuir,2003,19 (2):483-485.
    [40]汪向锐,冯博,侯振山,等.超临界二氧化碳中功能化聚乙二醇稳定的钯纳米粒子催化醇的选择氧化反应[J].催化学报,2009,30(12):1215-1221.
    [41]Franke R, Rothe J, Bonnemann H, et al. A Study of the Electronic and Geometric Structure of Colloidal Ti0·0.5THF [J]. J. Am. Chem. Soc.,1996,118(48):12090-12097.
    [42]Bonnemann H, Korall B. Ether-soluble TiO and Bis(η6-arene)titanium(0) Comple xes from the Reduction of TiCl4 with Triethylhydroborate [J]. Angew. Chem. Int. E d. Engl.,1992,31(11):1490-1492.
    [43]Bonnemann H, Brijoux W. The Preparation, Characterization and Application of Organosols of Early Transition metals [J].Nanostruct. Mater.,1995,5(2):135-140.
    [44]Bonnemann H, Brijoux W, Brinkmann R, et al. Preparation, Characterization, an d Application of Fine Metal Particles and Metal Colloids Using Hydrotriorgano borates [J]. J. Mol. Catal.,1994,86(1-3):129-177.
    [45]Bonnemann H, Braun G, Brijoux W, et al. Nanoscale Colloidal Metals and Alloys Stabilized by Solvents and Surfactants:Preparation and Use as Catalyst Precursors [J] . J. Organomet. Chem.,1996,520(1-2):143-162.
    [46]Vidoni 0, Philippot K, Amiens C, et al. Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized only by Organic Solvent [J]. Angew. Chem. Int. Ed.,1999, 38(24):3736-3738.
    [47]Pelzer K, Vidoni 0, Phiphippot K, et al. Organometallic Synthesis of Size-Con trolled Polycrystalline Ruthenium Nanoparticles in the Presence of Alcohols [J]. Adv. Funct. Mater.,2003,13(2):118-126.
    [48]Wang Y, Ren J W, Deng K, et al. Preparation of Tractable Platinum, Rhodium and Ruthenium Nanoclusters with Small Particle Size in Organic Media [J]. Chem. Mater. 2000,12(6):1622-1627.
    [49]刁香菊,于明,刘汉范,等.溶剂稳定的钯纳米颗粒的控制合成[J].化学与生物工程,2010,27(1):13-15,18.
    [50]Boutonnet M, Kizling J, Stenius P, et al. The Preparation of Monodisperse Col loidal Metal Particles from Microemulsions [J]. Colloids Surf.,1982,5(3):209-2 25.
    [51]Boutonnet M, Kizling J, Touroude R, et al. Monodispersed Colloidal Metal Part icles from Non-aqueous Solutions:Catalytic Behavious of The Hydrogenation of But-1-ene of Platinum Particles in Solution [J].Appl. Catal.,1986,20(1-2):163-177.
    [52]Tan C K, Newberry V, Webb T R, et al. Water Photolysis Part2:An investigation of the Relation Advantages of Various Components of the Sensitiser-Electron. Relay-Metal Colloid System for the Photoproduction of Hydrogen from Water, and the Use of These System in the Photohydrogenation of Unsaturated Organic Substrates [J]. J. Chem. Soc. Dalton Trans.,1987,6:1299-1303.
    [53]Larpent C, Patin H. Catalytic Hydrogenations in Biphasic Liquid-liquid Systems Part2:Utilization of Sulfonated Tripod Ligands for The Stabilization of Colloidal Rhodium Dispersions [J]. J.Mol. Catal.,1988,44(2):191-195.
    [54]Larpent C, Bernard E, Menn F B, et al. Biphasic Liquid-Liquid Hydrogenation C atalysis by Aqueous Colloidal Suspensions of Rhodium:The Choice of the Prote ctive-Colloid Agent and the Role of the Interfacial Phenomena [J]. J.Mol. Cata 1. A:Chem.,1997,116(1-2):277-288.
    [55]Drognat-Landre P, Lemaire M, Richard D, et al. A Stereoselective Reduction of Dibenzo-18-Crown-6 Ether to Dicyclohexyl-18-Crown-6 Ether [J]. J. Mol. Catal.,1993, 78(3):257-261.
    [56]Drognat-Landre P, Richard D, Draye M, et al. Colloidal Rhodium:A New Catalytic System for the Reduction of Dibenzo-18-6 Ether [J]. J. Catal.,1994,147(1):214-222.
    [57]Nasar K, Fache F, Lemaire M et al. Stereoselective Reduction of Disubstituted Aromatics on Colloidal Rhodium [J]. J.Mol. Catal.,1994,87(1):107-115.
    [58]Yu W Y, Liu H F. Quantity Synthesis of Nanosized Metal Clusters [J]. Chem. Mater., 1998,10(7):1205-1207.
    [59]Majles Ara M H, Dehghani Z, Sahraei R, et al. Non-linear Optical Properties of Silver Nanoparticles Prepared by Hydrogen Reduction Method [J]. Opt. Commun.,2010, 283 (8):1650-1653.
    [60]Bradley J S, Busser W. Chemisorption Measurements on Polymer-stabilized Collo idal Platinum and Rhodium Nanoclusters in Liquid Dispersion [J]. Catal. Lett.,1 999,63(3-4):127-130.
    [61]姜兴东.特殊形状纳米颗粒的制备与表征[D].兰州:兰州大学硕士论文,2008.
    [62]Scheeren C W, Machado G, Dupont J, et al. Nanoscale Pt(0) Particles Prepared in Imidazolium Room Temperature Ionic Liquids:Synthesis from an Organometallic Precursor, Characterization, and Catalytic Properties in Hydrogenation Reactions [J]. Inorg. Chem.,2003,42(15):4738-4742.
    [63]Scheeren C W, Machado G, Teixeira S R, et al. Synthesis and Characterization of Pt(0) Nanoparticles in Imidazolium Ionic Liquids [J]. J. Phys. Chem. B.,2006,110(26): 13011-13020.
    [64]Jutz F, Andanson J M, Baiker A. A Green Pathway for Hydrogenations on Ionic Liquid-stabilized Nanoparticles [J]. J. Catal.,2009,268(2):356-366.
    [65]Hu Y, Yang H, Hou Z S, et al. The functionalized ionic liquid-stabilized palladium nanoparticles catalyzed selective hydrogenation in ionic liquid [J]. Catal. Commun.,2009,10(14):1903-1907.
    [66]Hartlieb K J, Saunders M, Raston C L. Templating Silver Nanoparticle Growth U sing Phosphonated Calixarenes [J]. Chem. Commun.,2009,3074-3076.
    [67]Hirai H, Wakabayashi H, Komiyama M. Polymer-Protected Copper Colloids as Cata lysts for Selective Hydrogenation of Acrylonitrile [J]. Chem.Lett.,1983,139 (7):1047-1050.
    [68]Mayer A B R, Mark J E. Transition Metal Nanoparticles Protected by Amphiphilic Block Copolymers as Tailored Catalyst Systems [J]. Colloid Polym. Sci.,1997,275(4): 333-340.
    [69]Mayer A B R, Hausner S H, Mark J E. Colloidal Silver Nanoparticles Generated in the Presence of Protective Cationic Polyelectrolytes [J]. Polym. J.,2000,32(1): 15-22.
    [70]Mayer A B R, Antonietti M. Investigation of Polymer-Protected Noble Metal Nanoparticles by Transmission Electron Microscopy:Control of Particle Morphology and Shape [J]. Colloid Polym. Sci.,1998,276(9):769-779.
    [71]Zhao M, Sun L, Crooks R M. Preparation of Cu Nanoclusters within Dendrimer Te mplates [J]. J. Am. Chem. Soc.,1998,120(19):4877-4878.
    [72]Zhao M, Crooks R M. Homogeneous Hydrogenation Catalysis using Monodisperse, Dendrimer-Encapsulated Pd and Pt Nanoparticles [J]. Angew. Chem. Int. Ed.,1999,38: 364-366.
    [73]Crooks R M, Zhao M, Sun L, et al. Dendrimer-Encapsulated Metal Nanoparticles: Synthesis, Characterization, and Applications to Catalysis [J]. Acc. Chem. Res., 2001,34(3):181-190.
    [74]Esumi K, Suzuki A, Yamahira A, et al. Role of Poly(amidoamine) Dendrimers for Preparing Nanoparticles of Gold, Platinum, and Silver [J]. Langmuir,2000, 16(6):2604-2608.
    [75]Esumi K, Hosoya T, Suzuki A, et al. Preparation of Hydrophobically Modified Poly(amidoamine) Dendrimer-Encapsulated Gold Nanoparticles in Organic Solvents [J].J. Colloid Interface Sci.,2000,229(1):303-306.
    [76]Scott R W J, Datye A K, Crooks R M. Bimetallic Palladium-Platinum Dendrimer-E ncapsulated Catalysts [J]. J. Am. Chem. Soc.,2003,125(13):3708-3709.
    [77]Chung Y M, Rhee H K. Pt-Pd Bimetallic Nanoparticles Encapsulated in Dendrimer Nanoreactor [J]. Catal. Lett.,2003,85 (3-4):159-164.
    [78]Scott R W J, Wilson 0 M, Oh S K, et al. Bimetallic Palladium-Gold Dendrimer-E ncapsulated Catalysts [J]. J. Am. Chem. Soc.,2004,126(47):15583-15591.
    [79]Chung Y M, Rhee H K. Dendrimer-Templated Ag-Pd bimetallic nanoparticles [J]. J. Colloid Interface Sci.,2004,271(1):131-135.
    [80]Chung Y M, Rhee H K. Partial Hydrogenation of 1,3-Cyclooctadiene Using Dendri mer-encapsulated Pd-Rh Bimetallic Nanoparticles [J]. J.Mol.Catal. A:Chemica 1.,2003,206(1-2):291-298.
    [81]张季春,孟令杰,路庆华.用离子液体聚合物制备和稳定金纳米粒子[J].精细化工,2007,24(5):432-439.
    [82]Yang J, Lee J Y, Deivaraj T C, et al. An Improved Procedure for Preparing Smaller and Nearly Monodispersed Thiol-Stabilized Platinum Nanoparticles [J]. Langmuir, 2003,19(24):10361-10365.
    [83]Yang J, Deivaraj T C, Lee J Y, et al. Acetate Stabilization of Metal Nanoparticles and Its Role in the Preparation of Metal Nanoparticles in Ethylene Glycol [J]. Langmuir,2004,20(10):4241-4245.
    [84]Yang J, Deivaraj T C, Lee J Y, et al. An Alternative Phase-Transfer Method of Preparing Alkylamine-Stabilized Platinum Nanoparticles [J]. J. Phys. Chem. B.,2004, 108(7):2181-2185.
    [85]吴锋,刘延红,吴川.乙二醇稳定的NaBH4还原法制备纳米Pt/C催化剂[J].功能材料,2009,40(8):1381-1384.
    [86]Nakao Y, Kaeriyama K. Preparation of Noble Metal Organosols Containing Polyet hylene Glycol Mono-p-nonylphenyl Ether [J]. Bull. Chem. Soc. Jpn.,1987,60:4465-44 67.
    [87]Chen S, Yao H, Kimura K. Reversible Transference of Au Nanoparticles across t he Water and Toluene Interface:A Langmuir Type Adsorption Mechanism [J].Lang muir,2001,17(3):733-739.
    [88]Bonnemann H, Brinkmann R, Neiteler P. Preparation and Catalytic Properties of NR4+-Stabilized Palladium Colloids [J]. Appl. Organomet. Chem.,1994,8(4):361-378.
    [89]Bonnemann H, Brijoux W, Brinkmann R, et al. Highly Dispersed Metal Clusters a nd Colloids for the Preparation of Active Liquid-Phase Hydrogenation Catalyst s [J].J. Mol. Catal.,1992,74(1-3):323-333.
    [90]Hirai H, Nakao Y, Toshima N. Preparation of Colloidal Transition Metals in Po lymers by Reduction with Alcohols or Ethers [J]. J. Macromol. Sci. Chem. A.,1979, 13(6):727-750.
    [91]Komiyama M, Hirai H. Colloidal Rhodium Dispersions Protected by Cyclodextrins [J]. Bull. Chem. Soc. Jpn.,1983,56(9):2833-2834.
    [92]Borsla A, Wilhelm A M, Delmas H. Hydrogenation of olefins in aqueous phase, catalyzed by polymer-protected rhodium colloids:kinetic study [J]. Catal Today.,2001,66(2-4):389-395.
    [93]Mu X, Evans D G, Kou Y. A General Method for Preparation of PVP-Stabilized N oble Metalanoparticles in Room Temperature Ionic Liquids [J]. Catal. Lett.,20 04,97(3-4):151-154.
    [94]Yang X, Yan N, Fei Z, et al. Biphasic Hydrogenation over PVP Stabilized Rh Nanoparticles in Hydroxyl Functionalized Ionic Liquids [J]. Inorg. Chem.,2008,47 (17):7444-7446.
    [95]Harada M, Abe D, Kimura Y. Synthesis of Colloidal Dispersions of Rhodium Nanoparticles under High Temperatures and High Pressures [J]. J. Colloid Interface Sci.2005,292(1):113-121.
    [96]Wang Q, Liu H F, Wang H G. Immobilization of Polymer-Stabilized Noble Metal C olloids and Their Catalytic Properties for Hydrogenation of Olefins [J].J. Col loid Interface Sci.,1997,190(2):380-386.
    [97]Tu W X, Liu H F, Liew K Y. Preparation and Catalytic Properties of Amphiphilic Copolymer-Stabilized Platinum Metals Colloids [J]. J. Colloid Interface Sci.,2000, 229(2):453-461.
    [98]Liu M H, Yu W Y, Liu H F. Selective Hydrogenation of o-Chloronitrobenzene o ver Polymer-Stabilized Ruthenium Colloidal Catalysts [J]. J. Mol. Catal. A:Chem. 1999,138(2-3):295-303.
    [99]Yan X P, Liu H F, Liew K Y. Size Control of Polymer-Stabilized Ruthenium Nano particles by Polyol Reduction [J]. J. Mater. Chem.,2001,11:3387-3391.
    [100]黄涛,于明,刘汉范,等.金属钌纳米颗粒的形貌控制合成[J].中南民族大学学报,2010,29(1):1-4.
    [101]Luo C C, Zhang Y H, Zeng X W. The role of Poly(ethylene glycol) in the Forma tion of Silver Nanoparticles [J]. J. Colloid Interface Sci.,2005,288(2):444-44 8.
    [102]Luo C C, Zhang Y H, Wang Y G. Palladium Nanoparticles in Poly(ethylene glycol): the Efficient and Recyclable Catalyst for Heck Reaction [J]. J. Mol. Catal. A:Chem., 2005,229(1-2):7-12.
    [103]Teranishi T, Miyake M. Size Control of Palladium Nanoparticles and Their Crystal Structures [J]. Chem. Mater.1998,10(2):594-600.
    [104]Teranishi T, Hosoe M, Miyake M. Formation of monodispersed ultrafine platinum particles and their electrophoretic deposition on electrodes [J]. Adv Mater.,1997, 9(1):65-67.
    [105]Teranishi T, Kiyokawa I, Miyake M. Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents [J]. Adv Mater.,1998,10(8):596-599.
    [106]Wang C C, Chen D H, Huang T C. Synthesis of Palladium Nanoparticles in Water-in-Oil Microemulsions [J]. Colloids Surf. A.,2001,189(1-3):145-154.
    [107]Ishizuka H, Tano T, Torigoe K, et al. Preparation of Monodispersed Colloidal Gold by Reduction of AuCl4--Cationic Surfactant Complexes [J]. Colloids Surf. 1992,63 (3-4):337-340.
    [108]Esumi K, Sato N, Torigoe K, et al. Size control of gold particles using surf actants [J]. J. Colloid Interface Sci.,1992,149(1):295-298.
    [109]Spatz J P, Mossmer S, Moller M. Mineralization of Gold Nanoparticles in a Block Copolymer Microemulsion [J]. Chem. Eur. J.,1996,2(12):1552-1555.
    [110]Chernyshov D M, Bronstein L M, Borner Hetal. Synthesisand Induced Micellization of Pd-Containing Polystyrene-block-poly-m-vinyltriphenyl-Phosphine Diblock Copolymers [J]. Chem. Mater.,2000,12(1):114-121.
    [111]Sidorov S N, Bronstein L M, Valetsky P M, et al. Stabilization of Metal Nano particles in Aqueous Medium by Polyethyleneoxide-Polyethyleneimine Block Co polymers [J]. J. Colloid Interface Sci.,1999,21.2(2):197-211.
    [112]Klingelhofer S, Heitz W, Greiner A, et al. Preparation of Palladium Colloids in Block Copolymer Micelles and Their Use for the Catalysis of the Heck Reaction [J]. J. Am. Chem. Soc.,1997,119(42):10116-10120.
    [113]梁芳, 贺加欣, 曹先仲,等.钴纳米颗粒的制备及其表征[J].稀有金属材料与工程,2007.36:760-762.
    [114]胡爱平, 唐元洪, 彭坤,等.肼还原法制备镍纳米粒子及其机理[J].中南大学学报,2007,38(6):1063-1066.
    [115]Chu H C, Kuo C H, Huang M H. Thermal Aqueous Solution Approach for the Synthesis of Triangular and Hexagonal Gold Nanoplates with Three Different Size Ranges [J]. Inorg. Chem.2006,45(2):808-813.
    [116]Ah C S, Yun Y J, Park H J, et al. Size-Controlled Synthesis of Machinable Si ngle Crystalline Gold Nanoplates [J]. Chem. Mater.,2005,17(22):5558-5561.
    [117]Pillai Z S, Kamat P V. What Factors Control the Size and Shape of Silver Nan oparticles in the Citrate Ion Reduction Method [J]. J. Phys. Chem. B.,2004,108 (3):945-951.
    [118]Furlong D N, Launikonis A, Sasse W H F, et al. Colloidal Platinum Sols [J]. J.Chem. Soc. Faraday Trans.,1984,80(3):571-588.
    [119]Turkevitch J, Stevenson P C, Hillier J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold [J]. Discuss. Faraday Soc.,1951, 11:55-75.
    [120]Ozkar S, Finke R G. Nanocluster Formation and Stabilization Fundamental Stud ies:Ranking Commonly Employed Anionic Stabilizers via the Development, Then Application of Five Comparative Criteria [J]. J. Am. Chem. Soc.,2002,124(20):579 6-5810.
    [121]Bradley J S, Hill E W, Behal S, et al. Preparation and Characterization of 0 rganosols of Monodispersed Nanoscale Palladium. Particle Size Effects in the Binding Geometry of Adsorbed Carbon Monoxide [J]. Chem. Mater.,1992,4(6):1234-1239.
    [122]Caro D De, Bradley J S. Investigation of the Surface Structure of Colloidal Platinum by Infrared Spectroscopy of Adsorbed CO [J]. New J. Chem.,1998,22(11): 1267-1274.
    [123]Philippot K, B. Chaudret. Organometallic approach to the synthesis and surface reactivity of noble metal nanoparticles [J]. C. R. Chimie,2003,6(8-10):1019-1034.
    [124]Migowski P, Dupont J. The Partial Hydrogenation of Benzene to Cyclohexene by Nanoscale Ruthenium Catalysts in Imidazolium Ionic Liquids [J]. Chem. Eur. J.,2004, 10:3734-3740.
    [125]Tano T, Esumi K, Meguro K. Preparation of Organopalladium Sols by Thermal Decomposition of Palladium Acetate [J]. J. Colloid Interface Sci.,1989,133(2): 530-533.
    [126]Tano T, Esumi K, Meguro K. Preparation of Organo Palladium Particles from Th ermal Decomposition of Its Organic Complex in Organic Solvents [J]. Langmuir, 1989,5(1):268-270.
    [127]Esumi K, Sadakane O, Torigoe K, et al. Preparation of Platinum Particles by Thermal Decomposition of Platinum Complex in Organic Solvent [J]. Colloids Su rf.,1992,62(3):255-257.
    [128]Reetz M T, Helbig W, Quaiser S A. Electrochemical Preparation of Nanostruct ural Bimetallic Clusters [J]. Chem. Mater.,1995,7(12):2227-2228.
    [129]Yu W Y, Liu M H, Liu H F. Preparation, Characterization, and Catalytic Prope rties of Polymer-Stabilized Ruthenium Colloids [J]. J. Colloid Interface Sci., 1998,208 (2):439-444.
    [130]Redel E, Kramer J, Thomann R, et al. Synthesis of Co, Rh and Ir Nanoparticles from Metal Carbonyls in Ionic Liquids and Their Use as Biphasic Liquid-liquid Hydrogenation Nanocatalysts for Cyclohexene [J].J.Organomet. Chem.,2009, 694(7-8):1069-1075.
    [131]Yu W Y, Liu H F, Liu M H, et al. Selective hydrogenation of α,β-unsaturated aldehyde to α,β-unsaturated alcohol over polymer-stabilized platinum colloid and the promotion effect of metal cations [J]. J. Mol. Catal. A:Chem.,1999,138 (2-3): 273-286.
    [132]Mertens P G N, Vandezande P, Ye X, et al. Recyclable Au0, Ag0 and Au0-Ag0 nan ocolloids for the chemoselective hydrogenation of α,β-unsaturated aldehyde s and ketones to allylic alcohols [J].Appl. Catal. A:Gen.,2009,355(1-2):176-18 3.
    [133]Leger B, Denicourt-Nowicki A, Olivier-Bourbigou H, et al. Rhodium Nanocataly sts Stabilized by Various Bipyridine Ligands in Nonaqueous Ionic Liquids:In fluence of the Bipyridine Coordination Modes in Arene Catalytic Hydrogenatio n [J].Inorg. Chem.,2008,47(19):9090-9096.
    [134]Lu F, Liu J, Xu J. Fast Aqueous/Organic Hydrogenation of Arenes, Olefins and Carbonyl Compounds by Poly(N-Vinylpyrrolidone)-Ru as Amphiphilic Microreactor System [J]. Adv. Synth. Catal.,2006,348(7-8):857-861.
    [135]Lu F, Liu J, Xu J. Synthesis of PVP-Ru Amphiphilic Microreactors with Ru Nanocatalysts and Their Application in the Fast Hydrogenation of Unsaturated Compounds in Aqueous Media [J]. J.Mol.Catal. A:Chem.,2007,271 (1-2):6-13.
    [136]Zhao C, Wang H Z, Yan N, et al. Ionic-Liquid-like Copolymer Stabilized Nanoc atalysts in Ionic Liquids:Ⅱ. Rhodium-Catalyzed Hydrogenation of Arenes [J]. J. Catal.2007,250(1):33-40.
    [137]Corma A, Serna P. Chemoselective Hydrogenation of Nitro Compounds with Suppo rted Gold Catalysts [J]. Science,2006,313:332-334.
    [138]Corma A, Serna P, Garcia H. Gold Catalysts Open a New General Chemoselective Route to Synthesize Oximes by Hydrogenation of α, β-Unsaturated Nitrocompo unds with H2 [J]. J. Am. Chem. Soc.,2007,129(20):6358-6359.
    [139]Chen Y Y, Qiu J S, Wang X K, et al. Preparation and Application of Highly Di spersed Gold Nanoparticles Supported on Silica for Catalytic Hydrogenation o f Aromatic Nitro Compounds [J]. J. Catal.,2006,242(1):227-230.
    [140]Cheng H Y, Xi C Y, Meng X C, et al. Polyethylene Glycol-stabilized Platinum Nanoparticles:The efficient and Recyclable Catalysts for Selective Hydrogen ation of o-Chloronitrobenzene to o-Chloroaniline [J]. J. Colloid Interface Sc i,2009,336(2):675-678.
    [141]Zuo X, Liu H, Liu M, et al. Asymmetric Hydrogenation of α-Ketoesters over F inely Dispersed Polymer-stabilized Platinum Clusters [J]. Tetrahedron Lett.,1 998,39(14):1941-1944.
    [142]王金波,明方永,蒋维东,等.离子液体介质中钌纳米粒子催化苯乙酮及其衍生物的不对称加氢反应[J].物理化学学报,2007,23(9):1381-1386.
    [143]Bonnemann H, Braun G A. Enantioselective Hydrogenations on Platinum Collo [J]. Angew. Chem. Int. Ed. Engl.,1996,35 (17):1992-1995.
    [144]Bonnemann H, Braun G A. Enantioselectivity Control with Metal Colloids as Ca talysts [J]. Chem.Eur.J.,1997,3(8):1200-1202.
    [145]Lewis L N, Lewis N. Platinum-catalyzed Hydrosilylation-Colloid Formation a s the Essential Step [J].J. Am. Chem. Soc.,1986,108(23):7228-7231.
    [146]Lewis L N. On the mechanism of metal colloid catalyzed hydrosilylation:prop osed explanations for electronic effects and oxygen cocatalysis [J]. J. Am. Che m. Soc.,1990,112(16):5998-6004.
    [147]Lewis L N, Uriarte R J. Hydrosilylation catalyzed by metal colloids:a relative activity study [J]. Organometallics,1990,9(3):621-625.
    [148]Geldbach T J, Zhao D B, Castillo N C et al. Biphasic Hydrosilylation in Ionic Liquids:A Process Set for Industrial Implementation [J]. J. Am. Chem. Soc.,2006, 128 (30):9773-9780.
    [149]Launay F, Roucoux A, Patin H. Ruthenium colloids:A new catalyst for alkane oxidation by tBHP in a biphasic water-organic phase system [J]. Tetrahedron Lett.,1998,39 (11):1353-1356.
    [150]Shiraishi Y, Toshima N. Colloidal silver catalysts for oxidation of ethylene [J]. J.Mol. Catal. A:Chem.,1999,141(1-3):187-192.
    [151]Shiraishi Y, Toshima N. Oxidation of ethylene catalyzed by colloidal dispers ions of poly(sodium acrylate)-protected silver nanoclusters [J]. Colloids Sur f. A:Physicochem. Eng. Aspects.,2000,169(1-3):59-66.
    [152]Hou Z S, Theyssen N, Brinkmann A, et al. Biphasic Aerobic Oxidation of Alcohols Catalyzed by Poly(ethylene glycol)-Stabilized Palladium Nanoparticles in Supercritical Carbon Dioxide [J]. Angew. Chem. Int. Ed.,2005,44(9):1346-1349.
    [153]Reetz M T, Breinbauer R, Wanninger K. Suzuki and Heck Reactions Catalyzed by Preformed Palladium Clusters and Palladium/Nickel Bimetallic Clusters [J]. Tetrahedron Lett.,1996,37(26):4499-4502.
    [154]韩维.聚乙二醇中原位钯纳米催化C-C偶联反应研究[D].大连:大连理工大学硕士论文,2008.
    [155]Han W, Liu C, Jin Z L. Aerobic Ligand-Free Suzuki Coupling Reaction of Aryl Chlorides Catalyzed by In Situ Generated Palladium Nanoparticles at Room Temperature [J].Adv. Synth. Catal.,2008,350(3):501-508.
    [156]Beller M, Fischer H, Kuhlein K, et al. First palladium-catalyzed Heck reacti ons with efficient colloidal catalyst systems [J].J. Organomet. Chem.,1996,520 (1-2):257-259.
    [157]Le Bars J, Specht U, Bradley J S, et al. A Catalytic Probe of the Surface of Colloidal Palladium Particles Using Heck Coupling Reactions [J]. Langmuir,199 9,15(22):7621-7625.
    [158]Wen F, Bonnemann H, Jiang J Y, et al. Evidence of Colloidal Rhodium Formation during the Biphasic Hydroformylation of 1-Octene with Thermoregulated Phase-transfer Phosphine Rhodium Catalyst [J]. App. Organometal. Chem.,2005,19(1): 81-89.
    [159]Bruss A J, Gelesky M A, Dupont J, et al. Rh(0) Nanoparticles as Catalyst Pre cursors for the Solventless Hydroformylation of Olefins [J]. J. Mol. Catal. A:Ch em.2006,252(1-2):212-218.
    [160]Tuchbreiter L, Mecking S. Hydroformylation with Dendritic-Polymer-Stabilized Rhodium Colloids as Catalyst Precursors [J].Macromol. Chem. Phys.,2007,208(15): 1688-1693.
    [161]Axet M R, Castillon S, Claver C, et al. Chiral Diphosphite-Modified Rhodium (0) Nanoparticles:Catalyst Reservoir for Styrene Hydroformylation [J].Eur. J. Inorg.Chem.,2008,3460-3466.
    [162]Kim J Y, Park J H, Jung 0 S, et al. Heterogenized Catalysts Containing Cobal t-Rhodium Heterobimetallic Nanoparticles for Olefin Hydroformylation [J].Ca tal. Lett.,2009,128:483-486.
    [163]Han D, X Li, Zhang H, et al. Heterogeneous Asymmetric Hydroformylation of Olefins on Chirally Modified Rh/SiO2 Catalysts [J]. J. Catal.,2006,243(2):318-328.
    [164]Han D, X Li, Zhang H, et al. Asymmetric Hydroformylation of Olefins Catalyzed by Rhodium Nanoparticles Chirally Stabilized with (R)-BINAP Ligand [J].J.Mol Catal.A:Chem.,2008,283(1-2):15-22.
    [165]Zhang H, Qiu J, Liang C, et al. A Novel Approach to Co/CNTs Catalyst via Chemical Vapor Deposition of Organometallic Compounds [J]. Catal. Lett.2005,101(3-4): 211-214.
    [166]Qiu J, Zhang H, Liang C, et al. Co/CNF Catalysts Tailored by Controlling the Deposition of Metal Colloids onto CNFs:Preparation and Catalytic Properties [J]. Chem.Eur J.,2006,12(8):2147-2151.
    [167]Sakauchi J, Sakagami H, Takahashi N. Comparison of Dinitrodiamminepalladium with Palladium Nitrate as a Precursor for Pd/SiO2 with Respect to Catalytic Behavior for Ethane Hydroformylation and Carbon Monoxide Hydrogenation [J]. Catal. Lett. 2005,99(3-4):257-261.
    [168]Wang Q, Liu H, Han M, et al. Carbonylation of Methanol Catalyzed by Polymer-Protected Rhodium Colloid [J]. J. Mol. Catal. A:Chem.,1997,118:145-151.
    [169]Park K H, Jung I G, Chung Y K. A Pauson-Khand-Type Reaction between Alkynes and Olefinic Aldehydes Catalyzed by Rhodium/Cobalt Heterobimetallic Nanopart icles:An Olefinic Aldehyde as an Olefin and CO Source [J]. Org. Lett.,2004,6 (7):1183-1186.
    [170]Widegren J A, Finke R G. A Review of Soluble Transition-Metal Nanoclusters as Arene Hydrogenation Catalysts [J]. J.Mol. Catal. A:Chem.,2003,191 (2):187-207.
    [171]鲁亚东.PETPP/Ru络合物及PETPP稳定的过渡金属纳米催化剂在液/液两相体系中的应用[D].大连:大连理工大学博士论文,2008.
    [172]Narayanan R, EI-Sayed M A. Effect of Catalysis on the Stability of Metallic Nanoparticles:Suzuki Reaction Catalyzed by PVP-Palladium Nanoparticles [J]. J. Am. Chem. Soc.,2003,125(27):8340-8347.
    [173]Li Y, Hong, X M, Collard D M, et al. Suzuki Cross-Coupling Reactions Catalyz ed by Palladium Nanoparticles in Aqueous Solution [J]. Org. Lett.,2000,2(15): 2385-2388.
    [174]Narayanan R, EI-Sayed M A. Effect of Colloidal Catalysis on the Nanoparticle Size Distribution:Dendrimer-Pd vs PVP-Pd Nanoparticles Catalyzing the Suzuki Coupling Reaction [J]. J. Phys. Chem. B.,2004,108(25):8572-8580.
    [175]Wang Y, Wei G, Wen F, et al. Synthesis of Gold Nanoparticles Stabilized with Poly(N-isopropylacrylamide)-co-Poly (4-vinyl pyridine) Colloid and Their Appl ication in Responsive Catalysis [J]. J.Mol. Catal. A:Chem.,2008,280(1-2):1-6.
    [176]Li D, Dunlap J R, Zhao B. Thermosensitive Water-Dispersible Hairy Particle-S upported Pd Nanoparticles for Catalysis of Hydrogenation in an Aqueous/Organ ic Biphasic System [J]. Langmuir,2008,24(11):5911-5918.
    [177]Yan N, Zhang J, Tong Y, et al. Solubility Adjustable Nanoparticles Stabilized by a Novel PVP Based Family:Synthesis, Characterization and Catalytic Properties [J].Chem.Commun.,2009,4423-4425.
    [178]Dupont J, Fonseca G S, Umpierre A P, et al. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions [J]. J. Am. Chem. Soc.,2002,124(16):4228-4229.
    [179]Hu Y, Yu Y Y, Hou Z S, et al. Biphasic Hydrogenation of Olefins by Functiona lized Ionic Liquid-Stabilized Palladium Nanoparticles [J]. Adv. Synth.Catal.,2 008,350(13):2077-2085.
    [180]Huang J, Jiang T, Han B X, et al. Hydrogenation of Olefins Using Ligand-Sta bilized Palladium Nanoparticles in an Ionic Liquid [J]. Chem. Commun.,2003,165 4-1655.
    [181]Vollmer C, Redel E, Abu-Shandi K, et al. Microwave Irradiation for the Facile Synthesis of Transition-Metal Nanoparticles (NPs) in Ionic Liquids (ILs) from Metal-Carbonyl Precursors and Ru-, Rh-, and Ir-NP/IL Dispersions as Biphasic Liquid-Liquid Hydrogenation Nanocatalysts for Cyclohexene [J]. Chem. Eur. J. 2010,16(12):3849-3858.
    [182]Calo V, Nacci A, Monopoli A, et al. Pd Nanoparticles as Efficient Catalysts for Suzuki and Stille coupling Reactions of Aryl Halides in Ionic Liquids [J].J.Org.Chem.,2005,70(15):6040-6044.
    [183]Gholap A R, Venkatesan K, Pasricha R, et al. Copper- and Ligand-Free Sonogas hira Reaction Catalyzed by Pd(0) Nanoparticles at Ambient Conditions under U ltrasound Irradiation [J]. J. Org. Chem.,2005,70(12):4869-4872.
    [184]Yuan X, Yan N, Xiao C, et al. Highly selective hydrogenation of aromatic chl oronitro compounds to aromatic chloroamines with ionic-liquid-like copolymer stabilized platinum nanocatalysts in ionic liquids [J]. Green Chem.,2010,12:2 28-233.
    [185]West K N, Hallett J P, Jones R S, et al. CO2-Induced Miscibility of Fluorous and Organic Solvents for Recycling Homogeneous Catalysts [J]. Ind.Eng. Chem. Res., 2004,43(16):4827-4832.
    [186]Bergbreiter D E, Osburn P L, Wilson A, et al. Palladium-catalyzed C-C coupling under thermomophic conditions [J]. J. Am. Chem. Soc.,2000,122(38):9058-9064.
    [187]Bergbreiter D E, Osburn P L, Frels J D. Nonpolar polymers for metal sequestr ation and ligand and catalyst recovery in thermomorphic systems [J].J. Am. Che m.Soc.,2001,123(44):11105-11106.
    [188]Bergbreiter D E, Osburn P L, Frels J D. Mechanistic Studies of SCS-Pd Complexes Used in Heck Catalysis [J]. Adv. Synth. Catal.,2005,347(1):172-184.
    [189]黄天松.温控PEG两相体系中过渡金属纳米催化剂的制备和应用论文[D].大连:大连理工大学硕士论文,2008.
    [190]Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system [J]. J. Chem. Soc., Chem. Commun. 1994,801-802.
    [191]Yao H, Momozawa O, Hamatani T, et al. Stepwise Size-Selective Extraction of Carboxylate-Modified Gold Nanoparticles from an Aqueous Suspension into Toluene with Tetraoctylammonium Cations [J]. Chem. Mater.,2001,13(12):4692-4697.
    [192]Feng X L, Ma H Y, Huang S X, et al. Aqueous-Organic Phase-Transfer of Highly Stable Gold, Silver, and Platinum Nanoparticles and New Route for Fabricatio n of Gold Nanofilms at the Oil/Water Interface and on Solid Supports [J].J. P hys.Chem.B.,2006,110(25):12311-12317.
    [193]Gittins D I, Caruso F. Spontaneous Phase Transfer of Nanoparticulate Metals from Organic to Aqueous Media [J]. Angew. Chem. Int. Ed.,2001,40(16):3001-3004.
    [194]Wang Y, Wong J F, Teng X, et al. "Pulling" Nanoparticles into Water:Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin [J]. Nano Lett.,2003,3(11):1555-1559.
    [195]Li D J, Zhao B. Temperature-Induced Transport of Thermosensitive Hairy Hybrid Nanoparticles between Aqueous and Organic Phases [J]. Langmuir,2007,23(4): 2208-2217.
    [196]Mevellec V, Leger B, Mauduit M, et al. Organic phase stabilization of rhodium nanoparticle catalyst by direct phase transfer from aqueous solution to room temperature ionic liquid based on surfactant counter anion exchange [J]. Chem. Commun.,2005,2838-2839.
    [197]Ungvary F.Application of transition metals in hydroformylation annual survey coveringthe year 2004 [J]. Coord. Chem. Rev.,2005,249(24):2946-2961.
    [198]Han M, Liu H F. Reaction conducted under rather severe conditions for a colloidal catalyst-hydroformylation of propylene catalyzed by polymer-protected rhodium colloids [J].Macromol.Symp.1996,105:179-183.
    [199]Harvath I T. Hydroformylation of olefins with the water soluble HRh(CO)[P(m-C6H4SO3Na)3]3 in supported aqueous-phase. Is it really aqueous?[J]. Catal. Lett., 1990,6(1):43-48.
    [200]Hayward P J, Blake D M, Wilkinson G, et al. Reactions of peroxobis(triphenyl phosphine) platinum (Ⅱ) and analogs with with carbon dioxide, carbon disulf ide, and other unsaturated molecules [J]. J. Am. Chem. Soc.,1970,92(20):5873-587 8.
    [201]Widegren J A, Finke R G. A Review of the Problem of Distinguishing True Homogeneous Catalysis from Soluble or Other Metal-Particle Heterogeneous Catalysis under Reducing Conditions [J]. J. Mol. Catal. A:Chem.,2003,198(1-2):317-341.
    [202]张贞发, 周伟澄.钯等过渡金属催化的卤代芳烃和胺的偶联反应[J].有机化学,2002,22(10):685-693.
    [203]王英勇,罗美明,黎耀忠,等.烯烃氢氨甲基化反应研究进展[J].有机化学,2005,25(10):1176-1181.
    [204]陈公义.我国高级脂肪胺工业发展前景展望[J].现代化工,1994,9:6-8.
    [205]Reppe W, Vetter H. Carbonylization. Ⅵ. Syntheses with hydrides of metal car bonyls [J].Liebigs Ann. Chem.,1953,582:133-161.
    [206]Baig T, Molinier J, Kalack P. Carbon monoxide as a building block in organic synthesis:IV. Direct preparation of amines from alkenes by aminomethylation catalysed by dinuclear rhodium complexes [J]. J. Organomet. Chem.,1993,455(1-2): 219-224.
    [207]Iqbal A F M. Catalytic aminomethylation of alkenoic compounds. I. Reactions of monoolefins with secondary amines, carbon monoxide, and water in the presence of rhodium and iron catalysts [J]. Chimica. Acta.,1971,54(5):1440-1445.
    [208]Eilbracht P, Kranemann C L, Barfacker L. Synthesis of Heterofunctionalised Diamines and Triamines by Hydroaminomethylation of Diallyl Ethers,-silanes, or-amines [J]. Eur. J. Org. Chem.,1999,1907-1917.
    [209]Muller K S, Koc F, Ricken S, et al. Synthesis of polyamines via hydroaminome thylation of alkenes with urea—a new, effective and versatile route to dend rons and dendritic core molecules [J]. Org. Biomol. Chem.,2006,4:826-835.
    [210]Ahmed M, Seayad A M, Jackstell R, et al. Amines Made Easily:A Highly Select ive Hydroaminomethylation of Olefins [J]. J. Am. Chem. Soc.,2003,125(34):10311-1 0318.
    [211]Seayad A, Ahmed M, Klein H, et al. Internal olefins to linear amines [J].Sc ience,2002,297:1676-1678.
    [212]Ahmed M, Buch C, Routaboul L, et al. Hydroaminomethylation with Novel Rhodiu m-Carbene complexes:An Efficient Catalytic Approach to Pharmaceuticals [J]. Chem. Eur. J.,2007,13 (5):1594-1601.
    [213]Zimmermann B, Herwig J, Beller M. The first efficient hydroaminomethylation with ammonia:with dual metal catalysts and two-phase catalysis to primary a mines [J]. Angew. Chem.Int. Ed.1999,38(16):2372-2375.
    [214]Behr A, Roll R. Hydroaminomethylation in thermomorphic solvent systems [J]. J. Mol. Catal. A:Chem.,2005,239(1-2):180-184.
    [215]王英勇.两相/多相催化体系中长链烯烃的氢氨甲基化反应研究[D].成都:四川大学博士论文,2006.
    [216]Seayad A M, Selvakumar K, Ahmed M, et al. Hydroaminomethylation of olefins using a rhodium carbene catalyst [J]. Tetrahedron. Lett.,2003,44(8):1679-1683.
    [217]Schaffrath H, Keim W. Regio control in ruthenium catalysed aminomethylation [J]. J. Mol. Catal. A:Chem.,1999,140(2):107-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700