煤的大分子结构研究——煤中惰质组结构及煤中氧的赋存形态
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对煤的组成与结构的研究是煤化学研究中最重要也是最复杂的基础性研究,同时,对煤分子结构的研究与认识也是改善现有煤炭开发利用技术以及发展新的煤炭开发利用技术的前提和基础。为此,国内外煤化学工作者从不同角度利用各种方法对煤结构进行了研究,但是由于煤本身的复杂性与研究方法的局限性,对煤大分子结构的研究还缺乏系统性。对煤中惰质组分的大分子结构以及煤中氧的赋存形态的研究是煤分子结构研究中的重要组成部分,但以往的煤结构研究中较少涉及到这两部分。随着煤炭加工转化技术以及煤炭工业化应用的不断发展,迫切需要全面深入地认识煤中惰质组的结构特征以及煤中氧的赋存形态。鉴于此,本文选取了“煤的大分子结构研究——惰质组结构研究及煤中氧的赋存形态研究”作为研究课题,试图通过各种不同的研究手段,深入详细地研究几种典型煤种中惰质组分的分子结构和氧的赋存形态,并提出相关的数据信息和理论分析,从而达到对煤的大分子结构的全面的更深层次的认识,同时也可以为煤的加工转化技术的发展和工业化应用提供理论依据。
     本文中选取了中低变质程度煤中的五种典型煤种——霍林河褐煤、马家塔不粘煤、大同弱粘煤、霍州气煤、灵石肥煤以及它们的不同显微组分(惰质组和镜质组)作为研究对象,采用了常规的煤质分析、化学分析法以及先进的仪器分析法如傅立叶变换红外光谱(FTIR)、X射线衍射(XRD)、高分辨固体~(13)C核磁共振谱(~(13)C-NMR)及X光电子能谱(XPS)等方法,全面地研究分析了所选煤样的惰质组、镜质组的分子结构及煤中氧的赋存形态,得到所选煤样惰质组分的分子结构特征及结构参数,分析比较了惰质组与镜质组在分子结构上的差异性,并讨论了惰质组分的分子结构特征及结构参数随煤变质程度的变化规律;同时,通过研究得到了所选原煤样及其显微组分中总氧含量及各种不同类型含氧官能团的含量分布特征。
     样品的基本煤质分析表明,同一煤种的不同煤岩组分性质差异较大,惰质组的碳含量高于镜质组,而挥发分、氢含量及氧含量则低于镜质组;而随着煤变质程度的增加,这种差异将变得越来越小,因此,讨论惰质组与镜质组在结构上的差异对中低变质程度的煤尤其有重要意义。
    
     样品的傅立叶变换红外光谱表明,惰质组分子结构中苯环上取代更多,结
    构更复杂,脂肪部分所占比例最少,因此,对于同等变质程度的原煤及其显微
    组分,其结构中芳构化程度表现为:情质组>原煤>镜质组,且随着煤化程度的
    提高,原煤及其显微组分结构中芳构化程度均逐渐增大。
     样品的高分辨固体‘七核磁共振谱图及NMR结构参数显示,惰质组中脂碳
    数量少于镜质组,芳环上的烷烃侧链也没有镜质组长,结构中含有更多的芳香
    成分,其芳香度(0.769-0.834)要高于镜质组(0.669-0.774):且随着煤化程度
    的提高,煤分子中(包括惰质组和镜质组)芳构化程度不断提高,但情质组的
    芳香度随着煤变质程度的提高而增加的幅度不如镜质组;情质组的芳核平均结
    构尺寸 Xb门.522-0石02)与镜质组①.559{石16)的差异并不大,随着煤变质
    程度的升高,Xb的变化也不大。
     样品的X射线衍射研究结果表明,与镜质组相比,惰质组中芳环缩合程度
    更高,芳香层片在空间的排列更规则,相互定向的程度也优于镜质组;随着煤
    变质程度的提高,煤中脂族结构减少,芳香结构增多,芳核在横向上和纵向上
    都进行芳环的缩聚反应,煤的结构趋向于“石墨化”;但由于情质组在低变质阶
    段就比镜质组有更高的芳构化程度,在煤化进程中,情质组的芳构化程度随煤
    化程度的升高不如镜质组那样显著。
     通过经验公式计算法、化学分析法及仪器分析法对煤中有机氧的赋存形态
    及分布规律的研究表明,对于煤的不同显微组分,情质组的总氧含量要低于镜
    质组的总氧含量,且随着煤变质程度的升高,惰质组及镜质组中的氧含量均降
    低;煤及其显微组分中的含氧官能团大致包括三种类型,即碳氧单键类(包括
    醚键和羟基)、藏基及竣基,在惰质组和镜质组中,含氧官能团类型以碳氧单键
    类为主,其次为数基,竣基则最少,但在低变质程度煤中含有较多装基。
The research on the composition and structure of coal has been one of the most important issues in coal science, which has been the foundation for improving the existing coal exploration and utilization technologies and developing the new technologies. A lot of work has been done in this field in the past decades, but the achievements are not satisfactory because of the complexity of coal itself. The structure of inertinite and the characteristics of oxygen functional groups in coal are very important issues in coal structure science, which have been little approached. With the development of the coal processing and conversion technologies, it is necessary to understand the structure of inertinite and the characteristics of oxygen functional groups in coal. So, the molecular structure of inertinite and the characteristics of oxygen functional groups are studied emphatically in this paper by different means. The relevant data and the theoretic
    analysis are put forward so as to get an overall comprehension on the coal molecular structure. At the same time, the research offers the theoretic support to the development of the coal processing and conversion technologies.
    Five typical coals of low-to-medium rank (Huolinhe brown coal, Majiata non-caking coal, Datong weakly caking coal, Huozhou gas coal, Lingshi fat coal) and their macerals (vitrinite and inertinite) are prepared. The molecular structure and the oxygen functional groups of the selected coals and their macerals (vitrinite and inertinite) are studied by means of the conventional coal properties analysis, chemical analysis and the advanced instrumental methods such as FTIR,XRIK 13C-NMR.N XPS. The molecular structure characteristics, regularities and the results are discussed. Additionally, the total oxygen content and distribution characteristics of different oxygen functional groups in the raw coals and their macerals are studied. The proximate and ultimate analysis shows that there are differences in the structure and properties between inertinite and vitrinite: the carbon content of inertinite is higher than that of vitrinite, and the volatile matter hydrogen content
    
    
    and oxygen content are respectively lower than that of the latter. The differences between inertinite and vitrinite will become smaller and smaller with the increasing coal rank. So, it is important to research the differences in structure and properties between inertinite and vitrinite in the low-to-medium rank coal.
    The infra-red spectrum (FTIR) analysis indicates that there exists more substituted arene and less aliphatic hydrocarbon in inertinite than that in raw coal and vitrinite. So, the order of the aromaticity is: inertinite > raw coal > vitrinite, and the aromaticity of the raw coal and the macerals increases gradually with the increasing coal rank.
    The high-resolution solid 13C NMR spectrum shows that there are less aliphatic hydrocarbon and more aromatic hydrocarbon in inertinite, and the side chain hydrocarbon is shorter than that in the vitrinite. The aromaticity of inertinite is 0.769-0.834, which is higher than that of vitrinite (0.669-0.774). With the increase of coal rank, the aromaticity of both inertinite and vitrinite increases, but the aromaticity of the former increases more slowly than the latter. The mean size parameter of arene cluster (Xb) of inertinite is 0.522-0.602, which is similar to that of vitrinite (0.559-0.616), and it changes little with the increase of the coal rank.
    The result from X-ray diffraction (XRD) analysis indicates that there is higher degree of aromatization in inertinite, and the inertinite is of higher regularity and orientation in the spatial arrangement of the arene layers than vitrinite. With the increase of the coal rank, the ratio of aromatic hydrocarbon increases, the condensation polymerization of the arene cluster occurs in both the crosswise direction and the lengthwise direction, and the structure of coal is gradually close to the graphitic structure.
    The research on the characteristics of oxygen functional groups by th
引文
1 Sternberg H. W. et al, Fuel, 30: 432
    2 Bangham D. H., Fuel, 1949, 28: 231
    3 Brown H. R. and Waters P. L., Fuel, 1966, 45: 47
    4 Van Krevelen D. W., 'Coal', Amsterdam, Elservier, 1981
    5 Given P. H., Fuel, 1960, 39(2): 147
    6 Devidson R. M. in 'Coal Science', Vol Ⅰ, Academic Press, 1982
    7 朱之培,高晋生,煤化学,上海科学技术出版社,1984
    8 Shinn J. H., Fuel, 1984, 63: 1187
    9 秦匡宗等,燃料化学学报,1990,18,1
    10 Hirsch P. B., Proc. Poy. Soc., 1954, A226, P143
    11 Vahrman M., Fuel, 1973, 49(5): 195
    12 Larsen J. W. in Chem. and Phys. of Coal Utilization, 1981
    13 Given P. H., Marzec A., Barton W. A., et al, Fuel, 1986, 65: 155
    14 Van Krevelen D. W., Schuyer J., 'Coal Science', Amsterdam, Elservier, 1957
    15 Nishioka M.,Fuel, 1992, 71: 941
    16 徐秀峰,中科院山西煤炭化学研究所硕士论文,1993
    17 Meyer R. A., 'Coal Structrure', Academic Press, 1982
    18 Elliott M. A., 'Chemistry of Coal Utilization', 2nd Sup., John Wiley & Sons, New York, 1981
    19 陈昌国,鲜学福,煤结构的研究及进展,煤炭转化,1998,21(2):7
    20 Grogoriew H., Fuel, 1990, 69(7): 840
    21 Fridel R. A., Fuel, 1959, 39(4), 541
    22 舒新前,王祖纳等,神府煤煤岩组分的结构特征及其差异,燃料化学学报,1996,24(5):426
    23 朱学栋等,煤中含氧官能团的红外光谱定量分析,燃料化学学报,1999,27(4):335
    24 周安宁,镜煤抽提物及残煤的FTIR-PAS研究,燃料化学学报,1995,23(1):99
    
    
    25 张蓬洲,杨煌等,抚顺烟煤的固体核磁共振、X射线衍射和电子能谱的研究,燃料化学学报,1989,17(1):48
    26 陈鹏,用XPS研究兖州煤及各显微组分中有机硫的存在形态,燃料化学学报,1997,25(3):238
    27 Given P. H., Marzec A., Barton W. A., et al, Fuel, 1986, 65: 155
    28 Derbyshire F., Marzec A., et al, 'Molecular Structure of Coals: A debate', Fuel, 1989, 68(9)
    29 秦志宏,宗志敏等,煤岩组分在二硫化碳-N-甲基-2-吡咯烷酮混合溶剂中的可溶性,燃料化学学报,1997,25(6):549
    30 李凡,吴东等,用吡啶抽提法对煤岩显微组分结构变化的研究,煤炭转化,1992,15(2):65
    31 刘劲松,冯杰等,溶胀作用在煤结构与热解研究中的应用,煤炭转化,1998,21(2):1
    32 张代钧,陈昌国等,南桐煤镜质组非晶结构的X射线衍射研究,燃料化学学报,1997,25(1):72
    33 张代钧,徐龙君等,用X射线径向分布函数法(RDF)研究煤中碳原子层的堆垛结构,燃料化学学报,1997,25(4):368
    34 张群,庄军,丝炭和暗煤的顺磁共振特性研究,煤炭学报,1995,20(3):272
    35 北京煤化学研究所编著,低煤化度煤与煤的新分类,地质出版社,1988
    36 戴中蜀,郑钧辉等,低煤化度煤低温热解脱氧后结构的变化,燃料化学学报,1999,27(3):256
    37 李志宏,顾永达等,煤微观结构的X射线衍射原子分子分布函数分析,燃料化学学报,1996,24(6):533
    38 马雪梅,神木煤田主采煤层煤岩组成、煤的结构及成浆性研究,中国矿业大学北京研究生部硕士论文,1991
    39 陈茺等,煤中氢键的类型,燃料化学学报,1998,26(2):140
    40 Kelemen S. R., Gorbaty M. L., George G. N., et al. Fuel, 1991, 70: 396
    41 K. Lee Smith, et al, 'The Structure and Reaction Processes of Coal' Plenum Press, 1994
    42 Haenel M. W.,Collin G. and Zander M., Erdol Erdgas Kohle, 1989, 105, 71 and 131
    43 Matthias W. Haenel, Fuel, 1992, 71: 1211
    
    
    44 P. Tekely, D. Nicole et al, Fuel processing Technology, 1987, 15: 225
    45 Brown J. K., J. Chem. Soc., 1955: 744
    46 Solomon P. R., Am. Chem. Soc. Div., Fuel Chem. Preprints, 1979, 24(2): 185
    47 Solomon P. R. and Carangelo R. M., Fuel, 1988, 67: 949
    48 Sobkowiak M., Riesser B., Painter P. C. and Given P. H., Fuel, 1984, 63: 1245
    49 Sobkowiak M. and Painter P., Fuel, 1992, 71: 1105
    50 Riesser B., Starsinic M., Squires E., Davis A. and Painter P., Fuel, 1984, 63: 1253
    51 陶著,煤化学,冶金工业出版社,1984
    52 严宝珍编著,核磁共振在分析化学中的应用,化学工业出版社,1995
    53 Bartuska V. J., Maciel G. B., Schaefer et al, Fuel, 1977, 56: 354
    54 Pugmire R. J., et al, 'New Approaches in Coal Chemistry', ACS, 1981: 23
    55 Wilson M. A., Pugmire R. J., et al, Anal. Chem., 1984, 56: 433
    56 Wilson M. A., et al, Organic Geochemistry, 1985, 8(5): 299
    57 Supaluknari S., et al, Org. Geochem., 1990, 15(5): 943
    58 Solum M. S., Pugmire R. J., Grant D. M., Energy and Fuels, 1989, 3: 187
    59 Davidson R. M., 'Nuclear Magnetic Resonance Studies of Coal', IEA Coal Research, London, 1986
    60 Wind R. A., Duijvestijn M. J., et al, Fuel, 1987, 66: 876
    61 Sethi N. K., Pugmire R. J., et al, Anal. Chem., 1988, 60: 1574
    62 叶朝晖,李新安,煤的固体高分辨~(13)C-NMR谱,科学通报,1985,30(20):1545
    63 Dixon W. T., J. Chem. Phys., 1982, 77: 1800
    64 马志茹,张蓬洲等,峰峰肥煤的固体高分辨核磁共振研究,燃料化学学报,1996,24(3):251
    65 程克明,王兆云等著,碳酸盐岩油气生成理论与实践,石油工业出版社,1996
    66 Hammond T. E., Cory D. G., Ritchey W. M., et al, Fuel, 1985, 64: 1687
    67 Theriault Y. and Axelson D. E., Fuel, 1988, 67: 62
    68 Hatcher P. G., Org. Geochem., 1990, 16(4-6): 959
    69 Wilson M. A., Vassallo A. M., et al, Fuel, 1990, 69: 931
    70 Pan V. H. and Maciel G. E., Fuel, 1993, 72: 451
    
    
    71 Christopher J., Sarpal A. S., et al, Fuel, 1996, 75(8): 999
    72 陈鹏,Kalman J. R., Bodily D. M., 兖州煤的芳碳率——MAS/CP-~(13)C核磁共振法,炼焦化学,1984:285
    73 陈鹏,陈明秀,陶玉灵,汝萁沟无烟煤的分子结构——MAS/CP及偶极去相~(13)C核磁共振法的应用,燃料化学学报,1988,16(3):260
    74 秦匡宗,赵丕裕,用固体~(13)C核磁共振技术研究黄县褐煤的化学结构,燃料化学学报,1990,18(1):1
    75 姜波,秦勇著,变形煤的结构演化机理及其地质意义,中国矿业大学出版社,1998
    76 杨文火,王宏钧,卢葛覃著,核磁共振原理及其在结构化学中的应用,福建科学技术出版社,1988
    77 Axelson D. E., 'Solid state nuclear magnatic resonance of fossil fuels', Multiscience, Canada Press, 1985
    78 Yoshida T. and Maekawa Y., 'Characterization of coal structure by CP/MAS C-13 NMR spectroscopy', in Coal Characterization for Conversion Process Elsevier, Amsterdam, 1987: 385
    79 Boucher R. J. et al, Org. Geochem., 1990, 16: 951
    80 赵藻藩,周性尧等编,仪器分析,高等教育出版社,1990
    81 韩德馨编著,中国煤岩学,中国矿业大学出版社,1996
    82 X射线衍射技术(多晶体和非晶质材料),冶金工业出版社
    83 Warren B. E., Phy. Rev., 1941, 59: 693
    84 Franklin R. F., Acta. Cryst., 1950, 3: 107
    85 Franklin R. F., Proc. R. Soc., London, 1951, 1209(2): 196
    86 Nelson J. B., Fuel, 1954, 33: 381
    87 Yen T. F., Anal. Chem., 1961, 33(11)
    88 Wertz D. L. and Bissell M., Fuel, 1995, 74(10): 1431
    89 曲星武,王金城,煤的X射线分析,煤田地质与勘探,1980,(?):33
    90 翁成敏,潘治贵,峰峰煤田煤的X射线衍射分析,地球科学,1981,1:214
    91 杨起,潘治贵,翁成敏等,华北石炭二叠纪煤变质特征与地质因素探讨,地质出版社,1988
    92 张代钧,鲜学福,煤结构的X射线分析,西安矿业学院学报,1990,3:42
    
    
    93 张代钧,鲜学福,煤微组分结构的X-射线实验研究,分析测试通报,1991,10(3):32
    94 田承盛,曾凡桂,镜煤与丝炭结构的X射线衍射初步分析,太原理工大学学报,2001,32(2):102
    95 David E. Axelson, Fuel, 1987, 66: 40
    96 王丽,张蓬洲,煤的XRD的结构分析,煤炭转化,1997,20(1):50
    97 International Tables for X-ray Crystallography(Ⅲ, Ⅳ)
    98 Frost D. C., Leeder W. R. and Tappling R. L., Fuel, 1974, 53: 206
    99 Wallace S., Bartle K. D. and Perry D. L., Fuel, 1989, 68: 1450
    100 Burchill P. and Welch L. S., Fuel, 1989, 68: 100
    101 Bartle K. D., Perry D. L. and Wallace S., Fuel Process. Technol., 1987, 15: 351
    102 Kelemen S. R., George G. N. and Gorbaty M. L., Fuel, 1990, 69,: 939
    103 王丽,张蓬洲,郑敏,用固体核磁共振和电子能谱研究我国高硫煤的结构,燃料化学学报,1996,24(6):539
    104 Handbook of X-Ray Photoelectron Spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700