低煤级煤热解模拟过程中主要气态产物的生成动力学及其机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤成气藏中气体的化合物组成以及煤的人工热降解产物的化合物组成均表明,甲烷、低碳烃类(C2-C4)、二氧化碳、水和氢气是煤化作用过程中的主要气态产物。在过去的几十年中,对这些气态产物的生成动力学已进行了大量的研究,并建立了三种脱挥发分模型,但由于煤结构的复杂性,对这些产物的生成机制还有待于深入系统的理解。由于系统的煤化作用理论必须建立在深刻理解煤热解产物生成机制的基础上,因此从分子水平上了解气态产物的生成机制以及热解产物生成动力学与煤结构之间的关系,是目前煤地质学、煤化学以及有机地球化学的重要研究内容之一。
     低煤级煤由于处于煤化作用的低级阶段,对低煤级煤热解特征的研究有利于对整个煤化作用阶段的了解。由沥青化作用所导致的第一次煤化作用跃变引起了煤的物理化学性质突变性变化,其实质与机制有待于从分子水平上来揭示,因此本文重点对镜质组反射率分别为0.33%、0.47%、0.51%、0.62%、0.65%、0.70%和0.81%的霍林河褐煤(HLH)、义马褐煤(YM)、神华长焰煤(SH)、兖州(YZ)、铁法(TF)及平朔气煤(PS)和大同不粘煤(DT)的大分子结构演化特征及其对热解气态产物生成的影响进行了系统的分析,期望能深入理解第一次煤化作用跃变的分子机制。同时,由于低煤级煤含有较为丰富的各种侧链和官能团结构,从煤分子工程的角度来说对其热解特征与机制的系统理解也是发展与深化煤分子工程的基础。
     本文应用傅立叶变换红外光谱(FTIR)法分析煤的大分子结构特征及其各种官能团的分布,而采用X-射线衍射(XRD)对煤的聚集态结构进行表征,同时,对部分煤还进行了核磁共振(NMR)实验和拉曼光谱(RAMAN)实验。在对煤结构进行系统分析的基础上,对煤进行了热重质谱联用(TG/MS)实验,研究了煤的热解特征和热解产物的生成动力学特征。主要结论如下:
     1.对煤的FTIR结构参数分析表明,A(1703+1745)/A1618、A(1703+1745)/A(2800-3000)、A1745/A1618以及Har/Hal均在第一次煤化作用跃变附近(镜质组反射率0.60%)最小;而A1618/A(1703+1618)在第一次煤化作用跃变附近最大。这就从分子水平上揭示了第一次煤化作用跃变的特征和实质,为深入认识第一次煤化作用跃变打下了基础。
     2.对不同方法得到的结构参数之间的相关关系进行分析发现,表征芳香层片的延展度La与表征脂肪链长程度的参数A2924/A2964线性正相关,而芳香层片的层间距d002与红外参数A(700-900)/A1460负相关。这说明在低煤级阶段脂肪侧链具有定向性,表现在煤微晶结构的延展度La不仅与芳香结构有关,而且与表征脂肪链长程度的结构参数有关。
     3.对煤的热解特征及热解产物的生成特征研究发现,煤热解的最大失重速率峰温在第一次煤化作用跃变附近最低,且热解失重率在跃变点附近发生转折,主热解阶段(300-600℃)的活化能在跃变点附近最大,热解CH4、CH3、C2-C4、C6H6和H2的生成峰温均在第一次煤化作用跃变附近最小,而CO2和H2O的开始生成温度在第一次煤化作用跃变附近最高。说明煤热解特征参数及热解产物的生成特征参数、动力学参数均在第一次煤化作用跃变附近发生了转折。这进一步证明在第一次煤化作用跃变点附近煤大分子结构发生了转折性变化,为全面系统认识第一次煤化作用跃变打下了基础。
     4.对热解CH4、CH3、C2-C4、C6H6以及H2的生成速率曲线进行分析发现,它们的生成不是一个反应的结果,而应该是多种反应综合作用的体现,本文用分峰拟合的方法对各生成速率曲线进行了分峰拟合,并结合其生成和动力学特征对各基元反应的生成机制进行了分析,结果如下:
     (1) CH4、C3H7及H2的生成为5个反应的结果,CH3的生成为4个反应的结果,C6H6的生成为4-5个反应的结果。
     (2) CH4生成机制:第一基元反应,对于HLH和YM煤,存在两种反应,一是吸附甲烷的脱附,二是甲氧基热解生成甲烷;对于其它5种煤,是以吸附或固溶体态存在的甲烷的析出;第二基元反应,含氧官能团脂肪侧链热解生成甲烷和乙基β位断裂产生甲基,进而生成甲烷;第三基元反应,主要发生的是长链烷烃类的二次热解生成甲基,并与甲苯热解生成的氢自由基结合形成甲烷,同时,亚甲基桥键断裂产生甲基和氢化芳香环的脱甲基反应也是该阶段的主要反应;第四基元反应,甲苯热解生成甲烷和脂肪链的环化和芳构化生成甲烷;第五基元反应为芳构化作用的结果。
     (3) C6H6生成机制:第一基元反应,可能是苯环上的甲氧基热解生成甲烷,同时导致苯的生成;第二基元反应,是大分子结构裂解生成苯;第三基元反应,为亚甲基桥键断裂和氢化芳香环的脱甲基反应,产生甲烷的同时生成苯;第四反应是链烷烃环化或环烷烃芳构化作用的结果;第五基元反应,是缩聚反应导致苯的生成。
     (4) CO2生成机制:低温时CO2的生成是羧基热解产生CO2和甲氧基热解生成甲烷和CO2两种反应的综合作用,较高温度时CO2的生成可能与煤中的含氧杂环有关,而700℃以后CO2的逸出与矿物质(主要是碳酸盐物质)的分解有关。
     (5) H2生成机制,第一基元反应,对于HLH, YM和DT煤而言,此反应主要是链烷烃环化脱氢,而对于TF,PS,YZ和SH煤而言,此反应H2的生成是两个反应的结果,一是甲苯热解生成苄自由基和氢自由基,氢自由基之间结合进而形成H2,二是长链脂肪烃二次热解会生成较为短链的脂肪类自由基,这些较短的脂肪类自由基进一步热解生成氢自由基,进而形成H2;第二基元反应,对于HLH, YM和DT煤而言,主要是环烷烃的芳构化形成H2,对于TF, PS, YZ和SH煤,主要是氢化芳香环脱氢;第三基元反应,主要发生的是芳环之间的缩聚产生H2;第四基元反应,此时各种热解气体基本结束生成,主要是H2大量生成的过程,是芳香体系脱氢的结果;第五基元反应,此时其它气体均已结束生成,只有H2仍在生成,是芳香体系增大的过程。
     5.通过低煤级煤结构演化及热解气态产物生成特征与动力学的研究,可以发现第一次煤化作用跃变在分子水平上的体现为含氧等杂原子官能团的脱除与缩聚反应相互之间竞争的结果。在镜质组反射率0.60%之前,以脱除杂原子官能团占优势,而在0.60%左右,则缩聚反应达到了第一次高峰,而随着煤化作用的进一步进行,则进入了烷基侧链的脱除阶段,缩聚反应被抑制,因此可以认为第一次煤化作用跃变的发生实质上是缩聚反应占优势的结果,但是这种缩聚反应不是芳香体系的缩聚,而是残余的含氧等杂原子官能团之间的相互作用,形成新的官能团,导致分子体系的增大。
The gaseous compound composition of coal-bed gas reservior showed that CH4, C2-C4, CO2, H2O and H2 were the main gasous products of the coalification process. The generation kinetics of these gaseous products had been studied greatly for the past several decades, based on which, three devolatilisation model had been established. But as the complexity of coal structure, further comprehending of the generation mechanism of these products still needed. As deeply understanding of sysmatic coalification theory must taken profound understanding of the mechanism of pyrolysis products as the basis, understanding mechanism of gaseous products and the relation of its kinetics and coal structure is one of the important research contents in coal geology,coal chemistry and organic geochemistry.
     As low rank coal situated at the lower stage of coalification, studying on the pyrolysis characteristics of low rank coal was benificial for understanding the whole coalification stage. The first coalification jump(TFCJ), which caused by bituminization, induced abrupt change of physical chemistry properties, but the essence and mechanism of TFCJ needs to be revealed on molecular scale, so HLH lignite, YM lignite, SH long flame coal, YZ, TF and PS gas coal and DT non-caking coal whose ROm ax were 0.33%, 0.47%, 0.51%, 0.62%, 0.65%, 0.70% and 0.81% were chosen as the research emphasis of this paper, the structural characteristics and its effect on the generation of gaseous products were analyzed systematically, and the molecular mechanism of TFCJ was expected to be deepen understood. Meanwhile, Because low rank coal has abundant side chains and various functional groups, systematically understanding of pyrolysis characteristics and mechanism on coal molecular project scale is the basis for developing and deepening coal molecular project.
     In this paper, the FTIR experiment was used to analyze coal macromolecular structure and various functional groups characteristics, and the XRD was used to obtain the aggregate structure. Meanwhile, NMR and RAMAN experiments were done for part of the samples. TG/MS experiment were done for the whole samples, and the generation kinetics of the pyrolysis products were analyzed. The main conclusions were as follows:
     1. Analysis of the FTIR structural parameters demonstrated that the relation of A(1703+1745)/A1618, A(1703+1745)/A(2800-3000), A1745/A1618 and Har/Hal with coal rank showed the minumin value at TFCJ, but the relation of A1618/A(1703+1618) and was opposite, the value of which showed the maximum at TFCJ. This revealed the characteristics and essence of the coalification jump and provided foundation for deeply realization of TFCJ.
     2. Analysis on the correlation between the different structural parameters showed that, La was positively linear related with A2924/A2964 and d002 was negative related with A(700-900)/A1460. The results demonstrated that La related not only with the aromatics, but also with the aliphatics, and the aliphatics in low rank coals presented directionality.
     3. Pyrolysis characteristics and generation kinetics of the gaseous products demonstrated that the maximum weight loss rate temperature was the lowest near TFCJ; the weight loss rate showed a turn near TFCJ; and the activation energy of the main pyrolysis stage(300-600℃) was the maximum near TFCJ; and the generation rate peak temperatures of CH4, CH3, C2-C4, C6H6 and H2 showed the minimum value and the initial generation temperatures of CO2 and H2O were the maximum value near TFCJ. So the pyrolysis characterisation and generation kinetic parameters all present transition near TFCJ, and this had proven further that transition change of the coal macromolecular structure near TFCJ, and this result provided foundation for fully and systematically realisation of TFCJ.
     4. The evolution curves of CH4, CH3, C3H6 ,C3H7, CO2 and C6H6 showed that they are not the results of one reaction but multi-reactions. Curve-fitting of these curves were done and the generation kinetics characteristics were analyzed, the mechanism of elementary reaction were analyzed. The main results are as below:
     (1) CH4, C3H7 and H2 is the result of 5 reactions, CH3 is the result of 4 reactions, and C6H6 is the result of 4-5 reactions.
     (2) the mechanism of CH4, reaction type 1: it has two reactions for HLH and YM coals, the first is the desorption of adsorption CH4 and the second is the decomposition of–OCH3. Desorption of methane occurred as adsorption and solid solution is the main reaction for the other 5 coals; Reaction type 2: it’s the results of two reactions, one is decomposition of aliphatic side chain with oxygen-containing functional group, the other is decomposition ofβ-site of methylene; Reaction type 3: this reaction is formed through CH3 generated from secondary decomposition of long-chain aliphatics reacted with H generated from decomposition of toluene, meanwhile, rupture of Ar-C-C-Ar and hydroaromatic are also the main origin of this reaction; Reaction type 4: methane in this reaction is from decomposition of toluene and cyclization and aromatisation of aliphatic chain; Reaction type 5: methane in this reaction is the result of aromatisation.
     (3) the mechanism of benzene, Reaction type 1: decomposition of toluene; Reaction type 2: decomposition of macromolecular structure; Reaction type 3: rupture of Ar-C-C-Ar and hydroaromatic structure;Reaction type 4: cyclization of alkane and aromatisation of cycloalkane; Reaction type 5: condensation.
     (4) the mechanism of CO2: at low temperature, CO2 is generated from decomposition of–COOH and–OCH3,with the increase of temperature, CO2 is related with oxygen-heterocyclic, when the temperature higher than 700℃, CO2 is mainly from carbonate.
     (5) the mechanism of H2: Reaction type 1: for HLH, YM and DT coal, H2 is the result of cyclization of alkane, for TF,PS,YZ and SH coals, there are two reactions, one is from decomposition of toluene, the other is decomposition of aliphatic free adicals generated from secondary decomposition of long chain aliphatics; Reaction type 2: for HLH, YM and DT coal, H2 is mainly from aromatisation of cycloalkane, for TF, PS, YZ and SH coal, H2 is mainly from dehydrogenation of hydroaromatic cycle; Reaction type 3: H2 is from condensation of aromatic ring; Reaction type 4 and Reaction type 5: H2 is the result of condensation of aromatics.
     5. by the research of the structure evolution of low rank coal and the generation characteristic and kinetics of gaseous products during pyrolysis, the molecular scale of TFCJ reflects that it was the result of the competition between the decomposition and polymerization of hetero-atomic functional groups was found. Decomposition of heteroatom functional groups prevail before 0.60% of RmO ax, and polymerization reached the first peak near 0.60% of RO max, then with the progress of the coalification, aliphaitics side chains began to remove and polymerization was inhibited. So the essence of TFCJ was the result of the advantage of polymerization. However, this polymerization was not the polymerization of aromatics but the interaction between the rest oxygen-containing functional groups, then new functional groups formed and caused the increase of the molecular system.
引文
[1] Sanada Y. An introductory“molecular engineering of coal, 1996-2000”the Japan society for the promotion of science, research for the future project [J]. Energy & Fuels, 2002, 16(1): 3-5.
    [2] Charpentier J.C. The triplet“molecular processes-product-process”engineering: the future of chemical engineering [J]? Chemical Engineering Science, 2002, 57(22-23): 4667-4690.
    [3]曾凡桂,降文萍,谢克昌.洁净煤技术的源头创新-煤分子工程及其关键问题的进展[J].自然科学进展,2005, 15(4): 397-403.
    [4] Larsen J.W., Kovac J. in: Larsen J.W. (Ed.), Organic Chemistry of coal-ACS Symp., 71, Am. Chem. Soc., Washington, DC, 1978: 36-49.
    [5] Marzec A. Towards an understanding of the coal structure: a review [J]. Fuel Process. Technol., 2002, 77-78: 25-32.
    [6] van Krevelen D W. Brennst Chem, 1954, 35: 257, 289.
    [7] Given P.H. The distribution of hydrogen in coals and its relation to coal structure [J]. Fuel, 1960, 39(2): 147-153.
    [8] Wiser W.H. Am Chem Soc Div Fuel Chem Preprint, 1975, 20: 122-126.
    [9] Shinn J.H. From coal to single-stage and two-stage products: A reactive model of coal structure [J]. Fuel, 1984, 63(9): 1187-1196.
    [10] Hirsch P.B. X-ray scattering from coals [J]. Proceedings of the Royal Society (London),A226(1954):143-169.
    [11] Meyers R.A. Coal structure [M]. London-New York-Paris-Toronto. 1982, Academic Press.
    [12] Given P.H., Marzec A., Barton W.A. et al. The concept of a mobile or molecular phase within the macromolecular network of coal: A debate [J]. Fuel, 1986, 65(2): 155-163.
    [13] Oberlin A. In: Thrower P A ed. Chemistry and Physics of Carbon. New York: Dekker, 1989, 22: 1.
    [14] Grigoriew H., Cichowska G. Spatial coal structure models [J]. J. Appl Cryst. , 1990, 23(3): 209-210.
    [15] Iino M., Takanohashi T., Ohsuga H. et al. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature/effect of coal rank and synergism of the mixed solvent [J]. Fuel, 1988, 67(12): 1639-1647.
    [16] Dyrkacz G.R., Bloomquist C.A.A. Binary solvent extractions of upper Freeport coal [J]. Energy & Fuels, 2001, 15(6): 1409-1413.
    [17] Kidena K., Murata S., Nomura M. A newly proposed view on coal molecular structure integrating two concepts: two phase and unique models [J]. Fuel Process. Technol., 2008, 89(4): 424-433.
    [18] Painter P.C., Sobkowiak M., Youtheff J. FT-i.r. study of hydrogen bonding in coal [J]. Fuel, 1987, 66(7): 973-978.
    [19] Marzec A. New structural concept for carbonized coals [J]. Energy & Fuels, 1997, 11(4): 837-842.
    [20] Murgich J., Abaneno J. Molecular recognition in aggregates formed by asphaltene and resin molecules from the Athabasca oil sand [J]. Energy & Fuels, 1999, 13(2): 278-286.
    [21] Murgich J., Roderfguez J., Aray Y. Molecular recognition and molecular mechanics of micelles of some model asphaltenes and resins [J]. Energy & Fuels, 1996, 10(1): 68-76.
    [22]罗陨飞,李文华,陈亚飞.利用X射线光电子能谱研究马家塔煤显微组分中氧的赋存形态[J].燃料化学学报, 2007, 35(3): 366-369.
    [23]罗陨飞.煤的大分子结构研究--煤中惰质组结构及煤中氧的赋存形态[D].硕士学位论文,北京:煤炭科学研究总院, 2002.
    [24]朱学栋,朱子彬,韩崇家等.煤中含氧官能团的红外光谱定量分析[J].燃料化学学报,1999,27(4): 335-339.
    [25]冯志华,常丽萍,任军等.煤热解过程中氮的分配及存在形态的研究进展[J].煤炭转化,2000,23(3): 6-12.
    [26]唐跃刚,任德贻,刘钦甫等.四川晚二叠世煤中硫与成煤环境的关系[J].沉积学报,1996,4: 161-167.
    [27] Calk W.H.,卢共平.煤中硫的化学形态研究评述[J].矿业译文, 1995 (1): 33-36.
    [28]罗陨飞,李文华,姜英,白向飞.中国煤中硫的分布特征研究[J].煤炭转化,2005,28(3): 14-18.
    [29]周强.中国煤中硫氮的赋存状态研究[J].洁净煤技术,2008,14(1): 73-77.
    [30]李瑞.中国煤中硫的分布[J].洁净煤技术,1998,4(1): 44-47.
    [31]姚明宇,刘艳华,车得福.宜宾煤中氮的形态及其变迁规律研究.西安交通大学学报,2003,37(7):759-763.
    [32]刘艳华.煤中氮/硫的赋存形态及其变迁规律研究[D].博士毕业论文,西安:西安交通大学,2002.
    [33] Painter P.C., Opaprakasit P., Scaroni A. Ionomers and the structure of coal [J]. Energy Fuels, 2000, 14(5): 1115-1118.
    [34] Opaprakasit P., Scaroni A.W., Painter P. C. Ionomer-like structures andπ-cation interactions in Argonne Premium coals [J]. Energy & Fuels, 2002, 16: 543-551.
    [35] Iino M., Takanohashi T., Ohkawe T., et al. On the solvent soluble constituents originally existing in zaozhuang coal [J]. Fuel, 1991, 70(10): 1236-1237.
    [36] Takanohashi T., Iino M. Extration of Argonne Premium coal samples with carbon disulfide-N-methyl-2-pyrrolidinone mixed solvent at room temperature and ESR parameters of their extracts and residues [J]. Energy & Fuels, 1990, 4(5): 452-455.
    [37]孙林兵,张丽芳,秦志宏等.煤的CS2/NMP混和溶剂抽提研究进展[J].煤炭转化,2002,25(4): 1-5.
    [38]袁新华,秦志宏,徐红星等.用CS2-NMP混和溶剂抽提法制备洁净煤[J].煤炭转化,1999,22(2): 53-55.
    [39] Carlson G. A. Computer simulation of the molecular structure of bituminous coal [J]. Energy & Fuels, 1992, 6(6): 771-778.
    [40]陈皓侃,李保庆,李文.分子力学和分子动力学方法研究不同变质程度烟煤的分子结构[J].燃料化学学报, 2000, 28(5): 459-462.
    [41] Frost D.C., Leeder W. R., Tappling R. L. X-ray photoelectron spectroscopic investigation of coal [J]. Fuel, 1974, 53(3): 206-211.
    [42]常海洲,王传格,曾凡桂等.不同还原程度煤显微组分组表明结构XPS对比分析[J].燃料化学学报,2006,34(4): 389-394.
    [43]段旭琴,王祖讷,孙春宝.神府煤显微组分表面性质研究[J].中国矿业大学学报,2007, 36(5): 630-635.
    [44] Kozlowski M. XPS study of reductively and non-reductively modified coals [J]. Fuel, 2004, 83(3):259-265.
    [45] Watanabe I., Sakanishi K., Mochida I. Changes in coal aggregate structure by heat treatment and their coal rank dependency [J]. Energy & Fuels, 2002, 16(1): 18-22.
    [46]陈鹏.用XPS研究兖州煤各显微组分中有机硫存在形态[J].燃料化学学报, 1997, 25(3): 238-241.
    [47]代世峰,任德贻,宋建芳等.应用XPS研究镜煤中有机硫的存在形态[J].中国矿业大学学报, 2002, 31(3): 225-228.
    [48] van Krevelen D.J. Coal [M]. Amsterdam: Elsevier, 1993: 240.
    [49] Suzuki T., Yamada H., Wantanebe, Y. XRD study of iron exchanged into victorian brown coal [J]. Energy and Fuels, 1989, 3: 707-710.
    [50] Franklin R.R. Acta Crystallogr. 1950, 3: 107.
    [51] Oberlin A. High-resolution TEM studies of carbonization and graphitization [M]. In: Thrower P, editor. Chemistry and physics of carbon, 22. New York: Marcel Dekker, 1989. P.1.
    [52] Oberlin A. Application of dark-field electron microscopy to carbon study [J]. Carbon, 1979, 17: 7-20.
    [53] Sharma A., Kyotani T., Tomita A. Quantitative evaluation of structural transformation in raw coals on heat-treatment using HRTEM technique [J]. Fuel, 2001, 80(10): 1467-1473.
    [54] Sharma A., Kyotani T., Tomita A. A new quantitative approach for microstructural analysis of coal char using HRTEM images [J]. Fuel, 1999, 78(10): 1203-1212.
    [55] Sharma A., Kyotani T., Tomita A. Direct observation of layered structure of coals by a transmission electron microscope [J]. Energy Fuels, 2000, 14(2): 515-516.
    [56]赵峰华,任德贻.应用高分辨率透射电镜研究煤显微组分的结构[J].地质论评,1995,41(6): 564-570.
    [57] Burnham A.K., Oh M.S., Crawford R.W. Pyrolysis of Argonne Premium coals: Activation Energy Distributions and Related Chemistry [J]. Energy & Fuels, 1989, 3(1): 42-55.
    [58]黄第藩,李晋超,周翥虹等.陆相有机质的演化和成烃机理[M].北京:石油工业出版社,1984: 165-184.
    [59]李术元.化学动力学在盆地模拟生烃评价中的应用[M].东营:石油大学出版社,2000:
    [60]吴肇亮,黄醒汉.用生油岩生烃动力学模型计算生油气量[J].华东石油学院学报,1986,10(3): 1-8.
    [61] Schaefer R.G. Determination of gross kinetic parameters for petroleum formation from Jurassic source rocks of different maturity levels by means of laboratory experiments [J]. Org. Geochem., 1990, 16(1-3): 115-120.
    [62] Mackenzie A., Quigley T.M. Principles of geochemical prospect aprasial [J]. AAPG, 1988, 72(4): 339-415.
    [63] Donskoi E., McElwain D.L.S. Approximate modeling of coal pyrolysis [J]. Fuel,1999,78(7): 825-835.
    [64] Donskoi E.,McElwain D.L.S. Optimization of Coal Pyrolysis Modeling [J]. Combustion and Flame,2000,122(3): 359-367.
    [65] Pitt G.J. The kinetics of the evolution of volatile products from coal [J]. Fuel, 1962, 41:267.
    [66] Wiser W.H., Hill G.R., Kertamus N.J. Kinetic study of pyrolysis of high volatile bituminous coal [J]. Int. Eng. Chem. Process Des. Dev., 1967, 6(1): 133-138.
    [67] Skylar M.G., Shustikov V.I., Virozub I.V. Investigation of the kinetics of thermal decomposition of coals [J]. Int. Chem. Eng., 1969, 9(4): 595-602.
    [68] Jüntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal [J]. Fuel, 1984, 63(6): 731-737.
    [69] Solomon P.R., Hamblen D.G., Carangelo R.M. et al. General model of coal devolatilization [J]. Energy & Fuels, 1988,2(4): 405-422.
    [70] Mae K., Maki T., Miura K. A new method for estimating the cross-linking reaction during the pyrolysis of brown coal [J]. Journal of Chemical Engineering of Japan, 2002, 35(8): 778-785.
    [71] Solomon P.R., Serio M.A., Deshpande G.V. et al. Cross-linking reactions during coal conversion [J]. Energy & Fuels, 1990, 4(1): 42-54.
    [72] Kopp O.C., BennettⅢM.E., Clark C.E. Volatiles lost during coalification [J]. International Journal of Coal Geology, 2000, 44(1): 69-84.
    [73] Porada S. The influence of elevated pressure on the kinetics of evolution of selected gaseous products during coal pyrolysis [J]. Fuel, 2004, 83(7-8): 1071-1078.
    [74] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. J. Anal. Appl. Pyrolysis, 1999, 50(1): 31-46.
    [75] Arenillas A., Rubiera F., Pis J.J., et al. Thermal behavior during the pyrolysis of low rank perhydrous coals [J]. J. Anal. Appl. Pyrolysis, 2003, 68-69(8): 371-385.
    [76] Schaefer R.G., Galushkin Y.I., Kolloff A. et al. Reaction kinetics of gas generation in selected source rocks of the West Siberian Basin: implications for the mass balance of early-thermogenic methane [J]. Chemical Geology, 1999, 156(1-4): 41-65.
    [77] Van Heek K.H., Hodek W. Structure and pyrolysis behaviour of different coals and relevant model substances [J]. Fuel, 1994, 73(6): 886-896.
    [78]孙庆雷,李文,陈皓侃等.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报,2003,32(6): 664-669.
    [79] Porada S. The reactions of formation of selected gas products during coal pyrolysis [J]. Fuel, 2004, 83(9): 1191-1196.
    [80] Butala S. J. M., Medina J. C. M., Taylor T. Q. et al. Mechanisms and kinetics of reactions leading to natural gas formation during coal maturation [J]. Energy & Fuels, 2000, 14(2): 235-259.
    [81] Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic Geochemistry, 2004, 35(4): 379–392.
    [82] Xu W.C., Tomita A. Effect of temperature on the flash pyrolysis of various coals [J]. Fuel, 1987, 66(5): 632-636.
    [83] Berkovitz N., den Hertog W. Mechanisms of coal pyrolysis V-Kinetics of pyrolytic dehydrogenation in the range 600℃to 800℃[J]. Fuel, 1962, 41: 507
    [84] Das T.K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals [J]. Fuel, 2001, 80(4): 489-500.
    [85] Strezov V., Lucas J. A., Strezov L. Experimental and modeling of the thermal regions of activity during pyrolysis of bituminous coals [J]. J. Anal. Appl. Pyrolysis, 2004, 71(1): 375-392.
    [86]赵融芳,黄伟,常丽萍等.三种不同煤阶煤的模拟热解实验研究(Ⅰ)气态产物组成特性及其演化规律[J].煤炭转化,2000,23(4): 37-41.
    [87] Niksa S. Flashchain theory for rapid coal devolatilization kinetics. 4. Predicting ultimate yields from ultimate analysis alone [J]. Energy& Fuels, 1991, 8(3): 659-670.
    [88] Solomon P.R., Hamblen D.G., Carangelo R.M., et al. Models of tar formation during coal devolatilization [J]. Combustion and Flame,1988,71(2): 137-146.
    [89] Takanohashi T., Kawashima H. Construction of a model structure for upper freeport coal using 13C NMR chemical shift calculations [J]. Energy & Fuels, 2002, 16(2): 379-387.
    [90] White C.M., Rohar P.C., Veloski G.A., et al. Practical notes on the use of N-methyl-2-pyrrolidinone as a solvent for extraction of coal and coal-related materials [J]. Energy & Fuels, 1997, 11(5): 1105-1106.
    [1]陈家良,邵震杰,秦勇等.能源地质学[M].北京:中国矿业大学出版社.
    [2] Liu Q.R., Hu H.Q., Zhou Q., et al. Effect of inorganic matter on reactivity and kinetics of coal pyrolysis [J]. Fuel, 2004, 83(6): 713-718.
    [3]李文英,叶翠平,冯杰等.煤吡啶抽提过程中柱色谱与索氏提取法对富集物组成的影响.分析化学[J],2006,34(7): 905-909.
    [4] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. Fuel, 1999, 50(1): 31-46.
    [5] Porada S. The reactions of formation of selected gas products during coal pyrolysis [J]. Fuel, 2004, 83(9): 1191-1196.
    [6] Jüentgen H., van Heek K.H. An update of German non-isothermal coal pyrolysis work [J]. Fuel processing technology, 1979, 2: 261-293.
    [7] Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic geochemistry, 2004, 35(4): 379-392.
    [8] Burnham A.K., Oh M.S., Crawford R.W. Pyrolysis of Argonne Premium coals: Activation Energy Distributions and Related Chemistry [J]. Energy & Fuels, 1989, 3(1): 42-55.
    [1]虞继舜.煤化学[M].北京:冶金工业出版社, 2003: 146.
    [2] Painter P.C., Snyder R.W., Starsinic M.et al. Concerning the application of FT-IR to the study of coal: a critical assessment of band assignments and the application of spectral analysis programs [J]. Appl. Spectrosc., 1981, 35(5): 475-485.
    [3] Kuehn D.W., Snyder R.W., Davis A.et al. Characterization of vitrinite concentrates. 1. Fourier Transform infrared studies [J]. Fuel, 1982(8), 61: 682-694.
    [4] Iglesias M.J., Jimenez A., Laggoun-Defarge F., et al. FTIR study of pure vitrains and associated coals [J]. Energy & Fuels, 1995, 9(3): 458-466.
    [5] Ibarra J.V., Munoz E., Moliner R. FTIR study of the evolution of coal structure during the coalificationprocess [J]. Organic geochemistry, 1996, 24(6-7): 725-735.
    [6] Guo Y.T., Marc Bustin R. Micro-FTIR spectroscopy of liptinite macerals in coal [J]. International journal of coal geology, 1998, 36(3-4): 259-275.
    [7] Guo Y.T., Renton J.J., Penn J.H. FTIR microspectroscopy of particular liptinite-(loptinite-) rich, Late Permian coals from Southern China [J]. International Journal of Coal Geology, 1996, 29(1-3): 187-197.
    [8] Cerny J. Structural dependence of CH bond absorptivities and consequences for FT-ir analysis of coals [J]. Fuel, 1996, 75(11): 1301-1306.
    [9]陈德玉,蓝芳友,刘高魁等.沉积岩有机质的红外光谱及其在石油有机地球化学中的初步应用[J].地球化学,1977, 4: 262-276.
    [10] Opaprakasit P., Scaroni A.W., Painter P.C. Ionomer-Like Structures andπ-Cation Interactions in Argonne Premium Coals [J]. Energy & Fuels, 2002, 16: 543-551.
    [11] Painter P.C., Opaprakasit P., Scaroni A. Ionomers and the Structure of Coal [J]. Energy & Fuels, 2000, 14(5): 1115-1118.
    [12] Geng W.H., Nakajima T., Takanashi H., et al. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry [J]. Fuel, 2009, 88(1): 139-144.
    [13] Petersen H.I. The petroleum generation potential and effective oil window of humic coals related to coal composition and age [J]. International journal of coal geology, 2006, 67(4): 221-248.
    [14] Petersen H.I., Nytoft H.P. Oil generation capacity of coals as a function of coal age and aliphatic structure [J]. Organic geochemistry, 2006, 37(5): 558-583.
    [15] Petersen H.I., Rosenberg P., Nytoft H.P. Oxygen groups in coals and alginate-rich kerogen revisited [J]. International journal of coal geology, 2008, 74(2): 93-113.
    [16] Chen C., Gao J.S., Yan Y.J. Observation of the type of hydrogen bonds in coal by FTIR [J]. Energy & Fuels, 1998, 12(3): 446-449.
    [17]冯杰,李文英,谢克昌.傅立叶红外光谱法对煤结构的研究.中国矿业大学学报[J]. 2002,31(5): 362-366.
    [18] Georgakopoulos A., Iordanidis A., Kapina V. Study of low rank Greek coals using FTIR spectroscopy [J]. Energy sources, 2003, 25(10): 995-1005.
    [19] Baruah M.K., Gogoi P.C. A new form of sulphur in coal: the discovery of an iron-sulphur coordination compound [J]. Fuel, 1998, 77(9-10): 979-985.
    [20] Cetinkaya S., Yurum Y. Oxidative pyrolysis of Turkish lignites in air up to 500℃[J]. Fuel processing technology, 2000, 67(3): 177-189.
    [21] Whelan J.K., Thompson-Rizer C.L. Chemical methods for assessing kerogen and protokerogen types and maturity [M]. In: Organic geochemistry. Engle M.H. and Macko S.A.(eds.), Plenum press, New York, 1993: 289-353.
    [22] Painter P.C., Sobkowiak M., Youtheff J. FT-i.r. study of hydrogen bonding in coal [J]. Fuel, 1987, 66(7): 973-978.
    [23] Machnikowska H., Krzton A., Machnikowski J. The characterization of coal macerals by diffuse reflectance infrared spectroscopy [J]. Fuel, 2002, 81(2): 245-252.
    [24] Miura K., Mae K., Morozumi F. ACS Div. Prepr. Pap.Fuel chem., 1997, 42(1): 209.
    [25] Krzton A., Cagniant D., Gruber R., et al. Application of Fourier self-deconvolution to the FT-i.r. characterization of coals and their N-methyl 2-pyrrolidinone extraction products [J]. Fuel, 1995, 74(2): 217-225.
    [26] Lis G.P., Mastalerz M., Schimmelmann A., et al. FTIR adsorption indices for thermal maturity with vitrinite reflectance [J]. Organic geochemistry, 2005, 36(11): 1533-1552.
    [27] Abreu Y.D., Patil P., Marquez A.I. Characterization of electrooxidized Pittsburgh No. 8 coal [J]. Fuel, 2007, 86(4): 573-584.
    [28]秦勇,曹作华.豫西高煤级煤中有机元素及统计结构的演化与煤化作用跃变[J].焦作矿业学院学报, 1993, 33(4): 22-29.
    [29]金奎励.有机岩石学研究-以塔里木为例[M].北京:地震出版社,1997:29.
    [30] Tissot B.P., Welte D.H. Petroleum formation and occurrence. A new approach to oil and gas exploration [M]. 1978, Springer-Verlag, Berlin.
    [31]常海洲,曾凡桂,李文英等.西北地区侏罗纪煤显微组分结构的Micro-FTIR研究[J].光谱学与光谱分析,2008, 28(7): 1535-1538.
    [32]王春江,夏燕青,罗斌杰.低成熟阶段煤中可溶有机质的热缩聚作用[J].科学通报, 1997, 42(6): 631-634.
    [33] Glombitza C., Mangelsdorf K., Horsfield B. Maturation related changes in the distribution of ester bound fatty acids and alcohols in a coal series from the New Zealand Coal Band covering diagenetic to catagenetic coalification levels [J]. Organic Geochemistry, 2009, 40(10): 1063-1073.
    [34]盛世雄译. X射线衍射技术(多晶体和非晶质材料)[M].北京:冶金工业出版社,1986.
    [35]沈春玉,王黎.用X光衍射法研究干酪根的微观结构[J].分析化学,1998,26(3):291-293.
    [36]沈春玉.用X光衍射方法进行干酪根结构参数的测定[J].光谱实验室, 1997, 14(2): 79-82.
    [37] Wertz D.L., Quin J.L. Wide angle X-ray scattering study of the layering in three of the Argonne premium coals [J]. Fuel, 2000, 79(15): 1981-1989.
    [38] Takagi H., Maruyama K., Yoshizawa N., et al. XRD analysis of carbon stacking structure in coal during heat treatment [J]. Fuel, 2004, 83(17-18): 2427-2433.
    [39]王超,王大庆,宋爱霞.中、低角区煤的X射线衍射特点初探[J].湘潭矿业学院学报,1996,11(4): 62-66.
    [40]罗陨飞,李文华.中低变质程度煤显微组分大分子结构的XRD研究[J].煤炭学报,2004,29(3): 338-341.
    [41]李小明,曹代勇,张守仁等.不同变质类型煤的XRD结构演化特征[J].煤田地质与勘探, 2003, 31(3): 5-7.
    [42]徐龙君,鲜学福,刘成伦等.用X射线衍射和FTIR光谱研究突出区煤的结构[J].重庆大学学报(自然科学版), 1999, 22(4): 23-27.
    [43]秦匡宗,张秀义,劳永新.干酪根的X射线衍射研究[J].沉积学报, 1987, 5(1): 26-36.
    [44] Schoening F.R.L. X-ray structure of some South African coals before and after heat treatment at 500 and 1000℃[J]. Fuel, 1983, 62: 1315-1320.
    [45] Lu L., Sahajwalla V., Kong C. Quantitative X-ray diffraction analysis and its application to various coals [J]. Carbon, 2001, 39(12): 1821-1833.
    [1] Vanderhart D., Retcofsky H.L. Estimation of coal aromaticities by proton-decoupled carbon-13 magnetic resonance spectra of whole coals [J]. Fuel, 1976, 55(3): 202-204.
    [2] Miknis F.P., Sullivan M., Bartuska V.J., et al. Cross-plarization magic-angle spinning 13C NMR spectra of coals of varying rank [J]. Organic Geochemistry, 1981, 3(1-2): 19-28.
    [3] Miknis F.P. NMR studies of fossil solid fuels [M]. Magn.Reson.Rev. , 1982,54(7): 87-121.
    [4]叶朝辉,李新安.煤的固体高分辨13C-NMR谱[J].科学通报,1985,30(20): 1545-1547.
    [5]张蓬洲,李丽云,叶朝辉.用固体高分辨核磁共振研究煤结构[J].燃料化学学报,1993, 21(3): 327-331.
    [6]徐秀峰,张逢州.高分辨固体13C NMR和XPS技术表征碳的骨架结构[J].煤炭转化,1995,18 (4): 57-62.
    [7]陈德玉,胡建治,叶朝辉.中国煤的高分辨13C-NMR谱研究[J].中国科学,D辑,1996,26(6): 525-530.
    [8]胡建治,叶朝辉,陈德玉.强场下煤的13CNMR谱[J].波谱学杂志, 1991, 8(1): 81-88.
    [9] Lille U., Heinmaa I., Pehk T. Molecular model of Estonian kukersite kerogen evaluated hy 13C MAS NMR spectra [J]. Fuel, 2003, 82(7): 799-804.
    [10] Werner-Zwanziger U., Lis G., Mastalerz M., Schimmelmann A. Thermal maturity of typeⅡkerogen from the new Albany shale assessed by 13C CP/MAS NMR [J]. Solid state nuclear magnetic resonance, 2005, 27(1-2): 140-148.
    [11] Suggate R.P., Dickinson W.W. Carbon NMR of coals: the effects of coal type and rank [J]. International journal of coal geology, 2004, 57(1): 1-22.
    [12] Kawashima H., Yamada O. A modified solid-state 13C CP/MAS NMR for the study of coal [J]. Fuel Process. Technol., 1999, 61(3): 279-287.
    [13]黄第藩,秦匡宗,王铁冠等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995: 95.
    [14] Yoshida T., Sasaki M., Ikeda K., et al. Prediction of coal liquefaction reactivity by solid state 13C NMR spectral data [J]. Fuel, 2002, 81(11-12): 1533-1539.
    [15] Yoshida R., Yoshida T., Narita H., et al. Carbon distribution analysis of coals by CP/MAS 13C-NMR [J]. J. Coal Qual., 1992, 11: 38-43.
    [16] Nestler K., Dietrich D., Witke K., et al. Thermogravimetric and Raman spectroscopic investigations on different coals in comparison to dispersed anthracite found in permineralized tree fern psaronius sp [J]. Journal of Molecular Structure, 2003, 661-662(16): 357-362.
    [17] Montes-Moran M.A., Crespo J.L., Young R.J., et al. Mesophase from a coal tar pitch: a Raman spectroscopy study [J]. Fuel Process. Technol., 2002, 77-78(20): 207-212.
    [18] Sheng C.D. Char structure characterized by Raman spectroscopy and its correlations with combustion reactivity [J]. Fuel, 2007, 86(15): 2316-2324.
    [19] Jehlicka J., Beny C. First and second order Raman spectra of natural highly carbonified organic compounds from metamorphic rocks [J]. J. Mol. Struct., 1999, 480-481(4): 541-545.
    [20] Wopenka, B.; Pasteris, D. Structural characterization of kerogens to granulite-facies graphite: Applicability of Raman microprobe spectroscopy [J]. Am. Mineral. 1993, 78(5-6): 533-557.
    [21] Cuesta A., Dhamelincourt P., Laureyns J., et al. Comparative performance of X-ray diffraction and Raman microprobe techniques for the study of carbon materials [J]. J. Mater. Chem., 1998, 8: 2875-2879.
    [22]Jehlicka, J., Beny, C., Rouzaud, J.N. Raman microspectrometry of accumulated non-graphitized solid bitumens [J]. J. Raman Spectrosc., 1997, 28(9): 717-724.
    [23] Zerda T.W., John A., Chmura K. Raman studies of coals [J]. Fuel, 1981, 60(5): 375-378.
    [24] Sadezky A., Muckenhuber H., Grothe H., et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information [J]. Carbon, 2005, 43(8): 1731-1742.
    [25] Yoshida A., Kaburagi Y., Hishiyama Y. Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization [J]. Carbon, 2006, 44(11): 2333-2335.
    [26] Quirico E., Raynal P.I., Bourot-Denise M. Metamorphic grade of organic matter in six unequilibrated ordinary chondrites [J]. Meteoritics & Planetary Science, 2003, 38(5): 795-811.
    [27] Quirico E., Rouzaud J.N., Bonal L., et al. Maturation grade of coals as revealed by Ramanspectroscopy: Progress and problems [J]. Spectrochim. Acta, Part A. 2005, 61(10): 2368-2377.
    [28] Keleme S.R., Fang H.L. Maturity trends in Raman spectra from kerogen and coal [J]. Energy & Fuels, 2001, 15(3): 653-658.
    [1]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002:210.
    [2]庞博,戴和武.兴隆庄煤显微组分热解失重及热解反应动力学的研究[J].燃料化学学报,1989,17(1): 1-8.
    [3]朱学栋,朱子彬,朱学余,张成芳.煤化程度和升温速率对热分解影响的研究[J].煤炭转化,1999,22(2): 43-47.
    [4] Arenillas A., Rubiera F., Pevida C., et al. A comparison of different methods for predicting coal devolatilisation kinetics [J]. J. Anal. Appl. Pyrolysis, 2001, 58-59: 685-701.
    [5]沈兴.差热、热重分析与非等温固相反应动力学[M].北京:冶金工业出版社,1995:68.
    [6] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. Fuel, 1999, 50(1): 31-46.
    [1] Butala S. J. M., Medina J. C. M., Taylor T. Q., et al. Mechanisms and Kinetics of Reactions Leading to Natural Gas Formation during Coal Maturation [J]. Energy & Fuels, 2000, 14(2): 235-259.
    [2] Porada S. The reactions of formation of selected gas products during coal pyrolysis [J]. Fuel, 2004, 83(9): 1191–1196.
    [3] Cramer B. Methane generation from coal during open system pyrolysis investigated by isotope specific, Gaussian distributed reaction kinetics [J]. Organic Geochemistry, 2004, 35: 379–392.
    [4] Teichmüller M., Durand B. Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals and comparison with results of the rock-eval pyrolysis [J]. Int. J. Coal Geol., 1983, 2: 197-230.
    [5] Bustin R.M., Guo Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals [J]. Int. J. Coal Geol., 1999, 38: 237-260.
    [6] Das TK. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals [J]. Fuel, 2001, 80(4): 489-500.
    [7] Shuai Y. H., Peng P. A., Zou Y. R., et al. Kinetic modeling of individual gaseous component formed from coal in a confined system [J]. Organic geochemistry, 2006, 37(8): 932-943.
    [8] Flores R. M., Rice C. A., Stricker G. D., et al. Methanognic pathways of coal-bed gas in the Powder Basin, United States: the geologic factor [J]. 2008, 76(1-2): 52-75.
    [9]孙庆雷,李文,陈皓侃等.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报, 2003, 32(6): 664-669.
    [10] Burnham A.K., Oh M.S., Crawford R.W. Pyrolysis of Argonne Premium coals: Activation Energy Distributions and Related Chemistry [J]. Energy & Fuels, 1989, 3(1): 42-55.
    [11] Van Heek K.H., Hodek W. Structure and pyrolysis behaviour of different coals and relevant model substances [J]. Fuel, 1994, 73(6): 886-896.
    [1]孙庆雷,李文,陈皓侃,李保庆.神木煤显微组分热解的TG-MS研究[J].中国矿业大学学报, 2003, 32(6): 664-669.
    [2] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals. Fuel, 1999, 50: 31-46.
    [3] Jüntgen H. Review of the kinetics of pyrolysis and hydropyrolysis in relation to the chemical constitution of coal [J]. Fuel, 1984, 63: 731-737.
    [4] Xu W.C., Tomita A. Effect of temperature on the flash pyrolysis of various coals [J]. Fuel, 1987, 66: 632–636.
    [5] Berkovitz N., den Hertog W. Mechanisms of coal pyrolysis V-Kinetics of pyrolytic dehydrogenation in the range 600℃to 800℃[J]. Fuel, 1962, 41: 507–520.
    [6] Patric J.W. The coking of coal [J]. Sci Prog, Oxf 1974, 61: 375–399.
    [7] Das T. K. Evolution characteristics of gases during pyrolysis of maceral concentrates of Russian coking coals [J]. Fuel, 2001, 80: 489-500.
    [8] Strezov V., Lucas J.A, Strezov L. Experimental and modeling of the thermal regions of activity during pyrolysis of bituminous coals [J]. J. Anal. Appl. Pyrolysis, 2004, 71: 375–392.
    [9] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. Fuel, 1999, 50: 31-46.
    [10] Burnham A.K., Oh M.S., Crawford R.W. Pyrolysis of Argonne Premium coals: activation energy distribution and related chemistry [J]. Energy & Fuels, 1989, 3: 42-55.
    [11] Teichmüller M., Durand B. Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals and comparison with results of the rock-eval pyrolysis [J]. Int. J. Coal Geol. 1983, 2: 197-230.
    [12] Bustin R.M., Guo Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals [J]. Int. J. Coal Geol., 1999, 38: 237–260.
    [13]赵融芳,黄伟,常丽萍等.三种不同煤阶煤的模拟热解实验研究(Ⅰ)气态产物组成特性及其演化规律[J].煤炭转化, 2000, 23(4): 37-41.
    [14] Porada S. The reactions of formation of selected gas products during coal pyrolysis [J]. Fuel, 2004, 83(9): 1191–1196.
    [1] Painter P.C., Opaprakasit P., Scaroni A. Ionomers and the structure of coal [J]. Energy Fuels, 2000, 14(5): 1115-1118.
    [2] Opaprakasit P., Scaroni A.W., Painter P.C. Ionomer-like structures andπ-cation interactions in Argonne Premium coals [J]. Energy & Fuels, 2002, 16: 543-551.
    [3]傅家谟,秦匡宗.干酪根地球化学[M].广州:广东科技出版社, 1995: 267.
    [4]王春江,夏燕青,罗斌杰.低成熟阶段煤中可溶有机质的热缩聚作用[J].科学通报, 1997, 42(6): 631-634.
    [5] Suuberg E.M., Unger P.E., Larsen J.W. Relation between tar and extractables formation and crosslinking during coal pyrolysis [J]. Energy & Fuels, 1987, 1(3): 305-308.
    [6] Suuberg E.M., Lee D., Larsen J.W. Temperature dependence of crosslinking processes in pyrolysing coals [J]. Fuel, 1985, 64(12): 1668-1671.
    [7]王惠,杨海峰,冉新权等. AMI研究(Ⅰ)热力学分析[J].无机化学学报,2001,17(4): 538-544.
    [8]王惠,杨海峰,冉新权等.甲苯热裂解机理的AMI研究(Ⅱ)动力学分析[J].无机化学学报,2001,17(4): 545-550.
    [9] Van Heek K.H., Hodek W. Structure and pyrolysis behaviour of different coals and relevant model substances [J]. Fuel, 1994, 73 (6): 886-896.
    [1] Arenillas A., Rubiera F., Pis J.J. Simultaneous thermogravimetric-mass spectrometric study on the pyrolysis behavior of different rank coals [J]. Fuel, 1999, 50(1): 31-46.
    [2] Meyers R.A. Coal structure [M]. New York, London: Academic press, 1982.
    [3] Arenillas A., Rubiera F., Pis J.J., et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals [J]. J. Anal. Appl. Pyrolysis, 2003, 68-69(8): 371-385.
    [4]贾燕.褐煤结构的实验分析[D],硕士学位论文,太原:太原理工大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700