径向基函数无网格配点法及其在岩石力学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于岩石天然状态的复杂性,人们面对实际工程问题时很难得到解析解,需要借助数值方法进行求解。无网格法作为一种新兴的数值方法,在处理复杂问题时,能避免传统有限元方法难以解决的许多难题。径向基函数法作为无网格法的一种,因其具有指数级收敛速度、形式简单、各向同性等优点备受瞩目。其形函数本身具备无穷阶可导且连续的性质,在求解偏微分方程时非常适合结合配点法等强形式算法进行计算,且不需要背景网格进行区域积分,能大大降低计算时间。
     然而,现有的关于径向基函数配点法的研究工作主要集中在算法本身的收敛性和求解边界值问题等方面,对于其求解动力问题的稳定性分析和非连续介质问题的应用研究较少。本论文基于von Neumann法提出了一种新的径向基函数配点法求解动力问题的稳定性评估算法,并将径向基函数配点法应用于非连续岩石结构承受静力和动力荷载问题。
     本文的主要研究工作如下:
     1.推导了基于von Neumann法的径向基函数配点法求解动力问题的稳定性分析算法,定义了具体的稳定性参数来定量地对实际计算时如何选择合适的时间步长进行指导,并通过该参数对影响径向基函数配点法稳定性的各个因素进行了详细分析和讨论,对实际算例中出现的无条件不稳定情形的原因进行了分析,研究了径向基函数配点法求解动力问题稳定性的主要影响因素并给出了如何合理地选取径向基函数形函数形状参数及点距以提高计算稳定性的结论。
     2.将径向基函数配点法应用于裂纹结构静力问题的求解,推导了径向基函数通过强形式配点法用于求解任意分布多裂纹结构承受复杂应力作用下裂纹结构的算法流程,建立了求解方程组,编写了FORTRAN静力计算程序,并对其计算结果进行了验证。
     3.将径向基函数配点法应用于裂纹结构承受动力荷载问题的求解,推导了径向基函数配点法求解动力荷载作用下裂纹结构的算法流程,建立了求解方程组,编写了FORTRAN动力计算程序,并对其计算结果进行了验证。
     4.通过应力外推法计算了径向基函数配点法数值解的应力强度因子,并以应力强度因子为指标,定量分析了静力问题中不同裂纹长度对应力强度因子的影响以及动力问题中不同外荷载频率对应力强度因子放大率的影响,其结论对实际工程施工时的结构安全评估具有一定的参考价值。
Due to the complexity of the rock natural situation, analytical solutioncan hardly be achieved in practical engineering and numerical methodsare usually hired as effective solution tools. As a kind of newly developednumerical methods, meshfree method can overcome many difficultieswhich trouble the traditional finite element method. Radial basis function,as a kind of meshfree method, received many researchers’ interest inrecent decades due to its characteristics of exponential convergence rate,simple expression and isotrope. Since the shape function of radial basisfunction and its arbitrary order differential functions are infinitelydifferentiable and continuous, it is very convenient for radial basisfunction to work together with collocation method by using strong formalgorithm when solving partial differential equations. Moreover, itrequires no background grid for domain integration, which can greatlyreduced the computational time.
     However, the existing studies about radial basis collocation methodare mostly focused on the algorithm itself or its applications to boundaryvalue problems. There are only very few investigations on using radialbasis function to solve dynamic problems and stability analysis, as well asits application to discontinuous medium problem. This paper proposed anew stability evaluation algorithm for radial basis function solvingdynamic problems by introducing von Neumann method, and radial basiscollocation method has been applied to solve discontinuous rock massstructure under static and dynamic loading.
     This paper is mainly devoted to the following contents:
     1. A stability analysis algorithm based on von Neumann method forradial basis collocation method solving dynamic problems had beenproposed. A stability parameter for quantitative evaluation of choosingproper time step was defined. The effects on stability of every factor inradial basis function method were discussed in detail by the proposedstability parameter, and the reason causing the unconditionally unstablecases was also investigated. The major influence factor was concludedand some guidance on how to choose shape parameter of radial basisfunction and nodal distance were stated.
     2. Radial basis collocation method had been applied to the crackstructure problem under static loading. The algorithm and procedure forradial basis collocation method solving arbitrarily distributedmultiple-crack structure under complex stress loading was advanced, thesolving equations were established, and a static FORTRAN program waswritten for implementation. The algorithm was demonstrated to possessgood accuracy by comparing the numerical results with the numericalsolutions by displacement discontinuity method (DDM).
     3. The application of radial basis collocation method to crackstructure problem under dynamic loading was researched. The algorithmand procedure for radial basis collocation method solving crack structureunder dynamic loading was derived, the solving equations were founded,and a dynamic FORTRAN program was coded. A numerical case wasprovided for validation.
     4. Stress intensity factor was calculated by stress extrapolationmethod for numerical results by radial basis collocation method. Theinfluence on stress intensity factor of different crack length for staticcases was investigated. By quantitatively analyzing the amplificationratio of stress intensity factor by different loading frequencies fordynamic cases, some useful conclusions were provided for safetyestimation in practical engineering constructions.
引文
[1]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [2]刘佑荣等.岩体力学[M].武汉:中国地质大学出版社,2010.
    [3] Jaeger J C, Cook N G W.岩石力学基础[M].中国科学院工程力学研究所译.北京:科学出版社,1981.
    [4]黄醒春.岩石力学[M].北京:高等教育出版社,2005.
    [5]陈胜宏.计算岩体力学与工程[M].北京:中国水利水电出版社,2006.
    [6] Clough R W. The finite Element Method in Plane Stress Analysis [C]. Proc.2nd ASCEConference on Electronic Computation. Pittsburgh, PA.,345-378, Sept.1960.
    [7]冯康.基于变分原理的差分格式[J].应用数学与计算力学,1965.
    [8] Zienkiewicz O C. The Finite Element Method,4th edition [M].北京:科学出版社,1984.
    [9] Bathe K J.工程分析中的有限元法[M].傅子智译.北京:机械工业出版社,1991.
    [10] Strang G, Fix G J.有限元法分析[M].崔俊芝译.北京:科学出版社,1980.
    [11]钟万勰.计算结构力学微机程序设计[M].北京:水利电力出版社.1986.
    [12]王勖成.有限单元法[M].北京:清华大学出版社.2003.
    [13] Lucy L. A numerical approach to testing the fission hypothesis [J]. The Astronomical Journal,1977,82(12):1013-1024.
    [14] Gingold R A, Monaghan J J. Smoothed particle hydrodynamics: theory and application tononspherical stars [J]. Royal Astronomical Society, Monthly Notices,1977,181:375-389.
    [15] Nayroles B, Touzot G et al. Generalizing the finite element method: diffuse approximationand diffuse elements [J]. Computational Mechanics,1992,10(5):307-318.
    [16] Belytschko T, Lu Y Y et al. Element-free Galerkin methods [J]. International Journal forNumerical Methods in Engineering,1994,37(2):229-256.
    [17] Onate E, Idelsohn S et al. A finite point method in computational mechanics: Application toconvective transport and fluid flow [J]. International Journal for Nummerical Methods inEngineering,1996,39:3839-3866.
    [18] Onate E. Derivation of stabilized equations for advective-diffusive transport and fluid flowproblems [J]. Computer Methods in Applied Mechanics and Engineering,1998,151(1-2):233-267.
    [19] Onate E, Perazzo F et al. A finite point method for elasticity problem [J]. Computers&Structures,2001,79:2151-2163.
    [20] Onate E, Idelsohn S. A mesh-free finite point method for advective-diffusive transport andfluid flow problems [J]. Computational Mechanics,1998,21:283-292.
    [21] Onate E, Idelsohn S et al. A stabilized finite point method for analysis of fluid mechanicsproblems [J]. Computer Methods in Applied Mechanics and Engineering,1996,139:315-346.
    [22] Melenk J M, Babuska I. The partition of unity finite element method: basic theory andapplications [J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):289-314.
    [23] Babuska I, Melenk J M. The partition of unity methods [J]. International Journal forNummerical Methods in Engineering,1997,40:727-758.
    [24] Duarte C A, Oden J T. Hp clouds: a meshless method to solve boundary-value problemsTechnical Report95-05[R]. Texas Institute for Computational and Applied Mathematics.University of Texas at Austin.1995.
    [25] Duarte C A, Oden J T. Hp clouds: a h-p meshless method [J]. Numerical Methods for PartialDifferential Equations,1996,12:673-705.
    [26] Duarte C A, Oden J T. An h-p adaptive method using clouds [J]. Computer Methods inApplied Mechanics and Engineering,1996,139(1-4):237-262.
    [27] Liu W K, Jun S et al. Reproducing kernel particle methods [J]. International Journal forNumerical Methods in Fluids,1995,20(8-9):1081-1106.
    [28] Chen J S, Pan C H et al. Reproducing Kernel Particle Methods for large deformation analysisof non-linear structures [J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):195-227.
    [29] Liu W K, Chen Y, el al. Generalized multiple reproducing kernel partical methods [J].Computer Methods in Applied Mechanics and Engineering,1996,139:91-157.
    [30] Liu W K, Chen Y. Wavelet and multiple scales reproducing kernel method [J]. InternationalJournal for Numerical methods in Fluids,1995,21:901-931.
    [31] Liu W K, Han W, el al. Reproducing kernel element method. Part I: Theoretical formulation[J]. Computer Methods in Applied Mechanics and Engineering,2004,193:933-951.
    [32] Sukumar N, Moran B et al. The natural element method in solid mechanics [J]. InternationalJournal for Numerical Methods in Engineering,1998,43:839-887.
    [33] Cueto E, Doblare M et al. Imposing essential boundary conditions in the natural elementmethod by means of density-scaled α-shapes [J], International Journal for NumericalMethods in Engineering,2000,49:519-546.
    [34] Cueto E, Cegonino J el al. On the imposition of essential boundary conditions in naturalneighbour Galerkin methods [J], Communications in Numerical Methods in Engieering,2003,19(5):361-376.
    [35] Atluri S N, Zhu T L. The meshless local Petrov-Galerkin (MLPG) approach for solvingproblems in elasto-statics [J]. Computational Mechanics,2000,25(2-3):169-179.
    [36] Atluri S N, Shen S. The meshless Local Petrov-Galerkin (MLPG) Method [M], Stuttgart:Tech. Science Press,2002.
    [37] Liu G R, Gu Y T. A local point interpolation method for stress analysis of two-dimensionalsolids [J], Structural Engineering and Mechanics,2001,11(2):221-236.
    [38] Liu G R, Gu Y T. A local radial point interpolation method (LR-PIM) for free vibrationanalysis of2-D solids [J], J. of Sound and vibration,2001,246(1):29-46.
    [39] Kansa E J. Multiqudrics-A scattered data approximation scheme with applications tocomputational fluid-dynamics-I Surface approximations and partial derivatives [J].Computers and mathematics with applications,1990,19(8-9):127-145.
    [40] Kansa E J. Multiqudrics-A scattered data approximation scheme with applications tocomputational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partialdifferential equations [J]. Computers and mathematics with applications,1990,19(8-9):147-161.
    [41] Zhang X, Liu X H et al. least-squares collocation meshless method [J]. International Journalfor Numerical Methods in Engineering,2001,17(3):165-178.
    [42]张雄,刘岩.无网格法[M].北京:清华大学出版社,2004.
    [43] Song K Z, Zhang X et al. Elasto-plastic analysis based on collocation with moving leastsquare method [J]. Acta Mechanica Solida Sinica,2003,16(2):162-170.
    [44]潘小飞,张雄等.紧支试函数加权残值法[J].力学学报,2003,35(1):43-49.
    [45] Zhang X, Lu M W et al. A2-D meshless model for jointed rock structures [J]. InternationalJournal for Numerical Methods in Engineering,2000,47(10):1649-1661.
    [46] Zhang X, Song K Z et al. Imposition of essential boundary conditions by displacementconstraint equations in meshless methods [J]. Communications in Numerical Methods inEngineering,2001,17(3):165-178.
    [47]苗红宇,张雄等.分阶拟合直接配点无网格法[J].工程力学,2003,20(5):48-52.
    [48] Song K Z, Zhang X et al. Elasto-plastic analysis based on collocation with moving leastsquare method [J]. Acta Mechanica Solida Sinica,2003,16(2):162-170.
    [49]葛冬云,陆明万.波在各向异性介质中传播规律的无网格法数值模拟[J].工程力学,2004,21(5).
    [50] Chen Y, Huang J M et al. Meshless method for calculation of wave propagation [C]//AtluriSN, Brust F W. eds. Advances in Computational Engineering&Science. Tech Science Press,2000:1457-1462.
    [51]陈勇,黄建明等.地震波传播中的无网格方法[C].中国地球物理学会年刊(中国地球物理学会编),安徽科学技术出版社,1999.
    [52]刘欣.无网格有限点数值方法研究及应用[R].清华大学博士后研究报告,2000.
    [53] Liu X, Lu M W et al. Numerical analysis of singular problems using the partition of unitymethod [C]//Wunderlich W.(ed.) Proceedings of the European Conference on ComputationalMechanics, August31-September3,1999, Munich, Germany.
    [54]张希,姚振汉.无网格彼得洛夫-伽辽金法在大变形问题中的应用[J].工程力学(增刊I),2006,23:16-20.
    [55]张见明,姚振汉.一种新型无网格法-杂交边界点法[M]//袁明武,孙树立编.工程与科学中的计算力学.北京大学出版社,2001,339-343.
    [56]李锡夔,周浩洋.固体中短波传播的单位分解有限元法[J].应用数学与力学,2005,26(8):965-970.
    [57]李锡夔,周浩洋.固体中短波传播单位分解有限元法的解析积分[J].计算力学学报,2006,23(4):401-407.
    [58] Russell T F. Finite element and finite difference methods for continuous flows in porousmedia//Ewing R E.(ed.). The Mathematics of Reservoir Simulation. SIAM, Philadelphia,1983.
    [59] Chen W. Meshfree boundary particle method applied to Helmholtz problems [J].EngineeringAnalysis with Boundary Elements,2002,26(7):577-581.
    [60]陈文.奇异边界法:一个新的、简单、无网格、边界配点数值方法[J].固体力学学报,2009,30(6):592-599.
    [61]史宝军,袁明武等.基于核重构思想的最小二乘配点型无网格方法[J].力学学报,2003,35(6):697-706.
    [62]李光耀,钟志华等.固体力学问题数值解的一种验证方法[J].工程力学,2004,21(3):185-189.
    [63]李光耀,卡里鲁.弹塑性大变形畸变问题的无网格分析[J].湖南大学学报,2003,30(1):47-49.
    [64]龙述尧,弹性力学问题的局部Petrov-Galerkin方法[J].力学学报,2001,33(4):508-518.
    [65]龙述尧,胡德安等.用无单元伽辽金法求解几何非线性问题[J].工程力学,2005,22(3):68-71,57.
    [66]熊渊博,龙述尧等.弹塑性力学问题的无网格法分析[J].机械强度,2006,26(6):647-651.
    [67]蔡永昌,朱合华等.基于Voronoi结构的无网格局部Petrov-Galerkin方法[J].力学学报,2003,35(2):187-193.
    [68]朱合华,杨宝红等.无网格自然单元法在弹塑性分析中应用[J].岩土力学,2004,25(4):671-674.
    [69]李卧东,陈胜宏.结构振动分析中的无网格方法[J].计算力学学报,2003,20(6):756-763.
    [70]李卧东,王元汉等.无网格法在弹塑性问题中的应用[J].固体力学学报,2001,22(4):361-367.
    [71]曾攀,娄路亮.双材料界面裂纹应力强度因子的无网格分析[J].航空材料学报,2002,22(4):31-35.
    [72]娄路亮,曾攀等.无网格方法及其在体积成形中的应用[J].塑性工程学报,2001,8(3):1-5.
    [73]崔青玲,宋叔尼等.再生核质点法模拟金属镦粗过程[J].机械工程学报,2005,41(3):76-80.
    [74]庞作会,朱岳明.无网格伽辽金法求解接触问题[J].河海大学学报,2000,28(4):54-58.
    [75]李树忱,程玉民.基于单位分解法的无网格数值流形方法[J].力学学报,2004,36(4):496-500.
    [76]冯亭.固体力学中的自适应无网格方法计算研究[D].浙江大学硕士论文,2007.
    [77]吴少平.固体力学中的单位分解方法研究[D].浙江大学硕士论文,2007.
    [78]仇轶,由长福等.用无网格法求解不同Re下圆柱绕流问题[J].清华大学学报(自然科学版),2005,45(2):220-223.
    [79]陈全红.隐式无网格算法及其应用研究[J].空气动力学学报,2002,20(2):133-140.
    [80]王水林,郑宏等.一种新的数值算法-无网格伽辽金法(EFGM)[J].计算力学学报,1999,16(3).
    [81]宋康祖,陆明万等.固体力学中的无网格方法[J].力学进展,2000,30(1):55-65.
    [82]张雄,宋康祖等.无网格法研究进展及其应用[J].计算力学学报,2003,20(6).
    [83]李录贤,王铁军.扩展有限元及其应用[J].力学进展,2005,35(1):5-20.
    [84]曹国金,姜弘道.无单元法研究和应用现状及动态[J].力学进展,2002,34(4):526-527.
    [85]李九红,程玉民.无网格方法的研究进展与展望[J].力学季刊,2006,27(01):143-152.
    [86]周小平,周瑞忠.无单元法研究现状及展望[J].工程力学,2005,22(1):12-20.
    [87]周进雄,张陵等.再生核质点法研究进展[J].力学进展,2002,32(4):535-544.
    [88]李兆清,冯伟.自然单元法研究进展[J].力学进展,2004,34(4):437-445.
    [89]刘更,刘天祥.无网格法及其应用[M].西安:西北工业大学出版社,2005.
    [90] Liu G R, Gu Y T著.王建明,周学军译.无网格法理论及程序设计[M].济南:山东大学出版社,2007.
    [91] Liszka T J, Duarte C A et al. Hp-Meshless cloud method [J]. Computer Methods in AppliedMechanics and Engineering,1996,139:263-288.
    [92] Chorin A J. Numerical study of slightly viscous flow [J]. Journal of Fluid Mechanics,1973,57:785-796.
    [93] Bernard P S. A deterministic vortex sheet method for boundary layer flow [J]. Journal ofComputational Physics,1995,117:132-145.
    [94] Girault V. Theory of a GDM on irregular networks [J]. SIAM journal on numerical analysis,1974,11:260-282.
    [95] Pavlin V, Perrone N. Finite difference energy techniques for arbitrary meshes [J]. Computers&Structures,1975,(5):45-68.
    [96] Snell C, Vesey D G et al. The application of a general FDM to some boundary valueproblems [J]. Computers&Structures,1981,13:547-552.
    [97] Liszka T, Orkisz J. Finite difference methods of arbitrary irregular meshes in non-linearproblems of applied mechanics [C]. In Proc.4thInt. Conf. on Structural Mech. In ReactorTech, San Francisco,1980, USA.
    [98] Liszka T, Orkisz J. The finite difference methods at arbitrary irregular grids and itsapplications in applied mechanics [J]. Computers&Structures,1980,11:83-95.
    [99] Krok J, Orkisz J. A unified approach to the FE generalized varational FD method fornonlinear mechanics [J]. Concept and numerical approach,1989:353-362. Springer-Verlag.
    [100] Wu Z. Hermite-Birkhoff interpolation of scattered data by radial basis functions [J].Approximation Theory and its Applications,1992,8:1-10.
    [101] Xu X G, Liu G R. A local-function approximation method for simulating two-dimensionalincompressible flow [C]. Proceedings4th Asia-Pacific Conference on ComputationalMechanics (ed. By Wang C M, Lee K H and Ang K K), Dec.15-17,1999, Singapore,1021-1026.
    [102] Liu X, Liu G R et al. Radial basis point interpolation collocation method for2-d solidproblem [J]. Advances in Meshfree and X-FEM Methods, proceedings of the1st AsianWorkshop on Meshfree methods (Eds. Liu G R), World Scientific,35-40.
    [103] Liu X, Liu G R et al. Polynomial point interpolation collocation method for the solution ofpartial differential equations [J],.Advances in Computational Mathematics,2003.
    [104] Liu X, Liu G R et al. Radial point interpolation collocation method for the solution of partialdifferential equations [J]. Computers and Mathematics with Applications,2003.
    [105] Gu Y T, Liu G R. A meshfree weak-strong (MWS) form method for time dependentproblems [J]. Computational Mechanics,2005,35:134-145.
    [106] Liu G R, Gu Y T. A meshfree method: meshfree weak-strong (MWS) form method, for2-Dsolids [J]. Computational Mechanics,2003,33(1):2-14.
    [107] Hardy R L, Multiquadric equations of topography and other irregular surfaces [J]. Journal ofgeophysical research,1971,176:1905-1915.
    [108] Hardy R L. Theory and applications of the multiquadric-biharmonic method:20years ofdiscovery [J]. Computers and mathematics with applications,1990,19:163-208.
    [109] Franke R, Schaback R. Solving partial differential equations by collocation using radialfunctions [J]. Applied Mathematics and Computation,1998,93:73-82.
    [110] Hon Y C, Mao X Z. An efficient numerical scheme for Burgers' equation [J]. AppliedMathematics and Computation,1998,95:37-50.
    [111] Cecil T, Qian J L, Osher S. Numerical methods for high dimensional Hamilton-Jacobiequations using radial basis functions [J]. Journal of Computational Physics,2004,196:327-347.
    [112] Lorentz R A, Narcowich F J, Ward J D. Collocation discretizations of the transport equationwith radial basis functions [J]. Applied Mathematics and Computation,2003,145:97-116.
    [113] Ferreira A J M, Fasshauer G E. An RBF-Pseudospectral approach for the static and vibrationanalysis of composite plates using a higher-order theory [J]. International Journal forComputational Methods in Engineering Science and Mechanics,2007,8:323-339.
    [114] Platte R B, Driscoll T A. Eigenvalue stability of radial basis function discretizations fortime-dependent problems [J]. Computers and mathematics with applications,2006,51:1251-1268.
    [115] Hu H Y, Chen J S et al. Weighted radial basis collocation method for boundary valueproblems [J]. International Journal for Numerical Methods in Engineering,2007,69:2736-2757.
    [116] Hu H Y, Chen J S. Radial basis collocation method and Quasi-Newton iteration fornonlinear elliptic problem [J]. Numerical Methods for Partial Differential Equations,2008,24:991-1017.
    [117]李艳,径向基函数及其应用[D].大连:大连理工大学,2009.
    [118] Martin D B. Radial Basis Functions: Theory and implementations [M]. London: CambridgeUniversity Press,2003.
    [119] Madych W R, Nelson S A. Multivariate interpolation and conditionally positive definitefunctions, II [J]. Mathematics of Computation,1990,54:211–230.
    [120] Chen J S, Pan C et al. A Lagrangian reproducing kernel particle method for metal forminganalysis [J]. Computational Mechanics,1998,22(3):289-307.
    [121] Hu H Y, Lai C K et al. A study on convergence and complexity of reproducing kernelparticle method [J]. Interaction and Multiscale Mechanics,2009,2:295-319.
    [122] Hu H Y, Chen J S et al. Error analysis of collocation method based on reproducing kernelapproximation [J]. Numerical Methods for Partial Differential Equations,2009,27(3):554-580.
    [123] Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partialdifferential equations of heat conduction type [J]. Proceedings of the CambridgePhilosophical Society.1947,43:50-67.
    [124] Charney J G, Fj rtoft R et al. Numerical Integration of the Barotropic Vorticity Equation[M]. Tellus.1950,2:237–254.
    [125] Monoghan J J. Why particle methods work [J]. SIAM Journal on Scientific and StatisticalComputing,1982,3(4):422-433.
    [126] Monoghan J J. An introduction to SPH [J]. Computer Physics Communications,1988,48(1):89-96.
    [127] Randles P W, Libersky L D. Smoothed particle hydrodynamics: some recent improvementsand applications [J]. Computer methods in applied mechanics and engineering,1996,139(1-4):375-408.
    [128] Liu W K, Jun S et al. and Belytschko B. Reproducing kernel particle methods for structuraldynamics [J]. International Journal for Numerical Methods in Engineering,1995,38:1655-1679.
    [129] D.布洛克著,王克仁,何明元等译,工程断裂力学基础[M].北京:科学出版社,1980.
    [130]李庆芬.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,2007.
    [131]匡震邦.非线性连续介质力学基础[M].西安:西安交通大学出版社,1989.
    [132]杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995.
    [133]高镇同等.疲劳可靠性[M].北京:北京航空航天大学出版社,2001.
    [134]吴富民.结构疲劳强度[M].西安:西北工业大学出版社,1985.
    [135]高庆.工程断裂力学[M].重庆:重庆大学出版社,1986.
    [136]沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [137]黄玉珊,傅祥炯等.损伤容限与耐久性设计思想的发展与展望[R].第四届全国断裂学术会议特邀报告.航天航空科技,1986,4:5-12.
    [138]张行.断裂与损伤力学(第二版)[M].北京:北京航空航天大学出版社,2009.
    [139]孙训方,宁杰.表面裂纹非线性断裂力学分析[C].第39届国际焊接年会(IIW),1986(英文).
    [140]徐灏.疲劳强度设计[M].北京:机械工业出版社,1981.
    [141]解德,钱勤等.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.
    [142]范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [143] Crouch S L. Solution of plane elasticity problems by the displacement discontinuity method[J]. International Journal for Numerical Methods in Engineering,1976,10(2):301–343.
    [144]王飞.位移不连续法及其在岩体工程中的应用[D].上海:上海交通大学,2010.
    [145]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社,2006.
    [146]马宏伟,吴斌.弹性动力学及其数值方法[M].北京:中国建材工业出版社,2000.
    [147] Powell M J D. The theory of radial basis functions in1990[M]//Light F W (Ed.). Advancesin Numerical Analysis, Oxford: Clarendon Press,1992:105-203.
    [148] Wendland H. Piecewise polynomial, positive definite and compactly supported radialfunctions of minimal degree [J]. Advances in computational Mathematics,1995,4:389-396.
    [149]陆明万,刘欣等.基于紧支径向基函数的配点型无网格方法求解椭圆型边值问题[M]//姚振汉,王勖成,岑章智(主编).力学与工程.清华大学出版社,1999:174-179.
    [150] Liu G R. Meshfree method: Moving Beyond the Finite Element Method [M]. CRC Press,2003.
    [151] Liu G R, Gu Y T. A matrix triangularization algorithm for the polynomial point interpolationmethohd [J]. Computer Methods in Applied Mechanics and Engineering,2003,192(19):2269-2295.
    [152] Liu G R, Gu Y T et al. Assessment and application of point interpolation methods forcomputational mechanics [J]. International Journal for Numerical Methods in Engineering,2004,58(10):1373-1397.
    [153] Liu G R. A point assembly method for stress analysis for two-dimensional solids [J].International Journal of Solids and Structures,2002,39(1):261-276.
    [154] Liu G R, Gu Y T. A point interpolation method for two-dimensional solids [J]. InternationalJournal for Numerical Methods in Engineering,2001,50(4):937-951.
    [155] Liu G R, Gu Y T. A local radial point interpolation method (LRPIM) for free vibrationanalysis of2-D solids.[J]. Journal of Sound and Vibration,2001,246:29-46.
    [156] Wang J G, Liu G R. On the optimal shape parameters of radial basis functions used for2-Dmeshless methods [J]. Computer Methods in Applied Mechanics and Engineering,2002,191(23-24):2611-2630.
    [157] Dai K Y, Liu G R et al. Comparison between the radial point interpolation and the Kriginginterpolation used in meshfree methods [J]. Computational Mechanics,2003,23(1-2):60-70.
    [158] Liu G R, Wu Y L et al. Meshfree weak-strong (MWS) form method and its application toincompressible flow problems [J]. International Journal for Numerical Methods in Fluids,2004,46(10):1025-1047.
    [159] Liu X, Liu G R et al. Radial point interpolation collocation method (RPICM) for thesolution of nonlinear Poisson problems [J]. Computational Mechanics,2005,36(4):298-306.
    [160] Liu X, Liu G R et al. Radial point interpolation collocation method (RPICM) for thesolution of partial differential equations [J]. Computers and Mathematics with Application,2005,50:1425-1442.
    [161] Liu X, Liu G R et al. Radial basis point interpolation collocation method for2-d solidproblem [C].2nd International Conference on Structure Stability and Dynamics (ICSSD’02).Singapore,16-18, December,2002.
    [162] Liu X, Liu G R et al. The solution for convection-diffusion equations using thequasi-interpolation scheme with local polynomial reproduction based on moving leastsquares [C].2nd International Conference on Structure Stability and Dynamics (ICSSD’02).Singapore,16-18, December,2002.
    [163] Liu X, Liu G R et al. Radial basis point interpolation collocation method (RPICM) for thesolution of two phase flow through porous media [C]. Third International Conference onComputational Fluid Dynamics in the Minerals&Process Industries,10-12, December,2003.
    [164]刘欣.随机动力学中FPK方程的径向基点插配点方法求解[J].振动工程学报,2006,19(3):370-375.
    [165] Shu C, Ding H et al. Local radial basis function-based differential quadrature method and itsapplication to solve two-dimensional imcompressible Navier-Stokes equations [J]. ComputerMethod in Applied Mechanics and Engineering,2003,192:941-954.
    [166] Shu C, Ding H et al. An upwind local RBF-DQ method for simulation of inviscidcompressible flows [J]. Computer Methods in Applied Mechanics and Engineering,2005,194(18-20):2001-2017.
    [167] Lee C K, Liu X et al. Local multiquadric approximation for solving boundary valueproblems [J]. Computational Mechanics,2003,20:396-409.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700