金属含硫有机配体配合物的合成、表征与橡胶硫化促进性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.本论文系统地综述了国内外稀土与ⅡB族金属含硫有机配体配合物的研究进展,对该类配合物的合成方法、结构表征与分析测试方法做了综述,概述了国内外橡胶硫化促进剂的研究现状。
     2.ⅡB族金属二苄基二硫代氨基甲酸配合物[Cd(DBTC)_2]_2与[Zn(DBTC)_2]_2(4,4'-bipy)的合成、晶体结构表征、红外光谱和热重分析。室温条件下,在乙醇与水的混合溶剂中合成得到以上两种配合物,并培养得到了适合X射线单晶衍射分析的晶体。通过对配合物[Cd(DBTC)_2]_2与[Zn(DBTC)_2]_2(4,4'-bipy)的X射线单晶衍射分析,结果显示,配合物[Cd(DBTC)_2]_2为呈中心对称结构二聚体。分子中有两个双齿配位的S原子(S1和S1~a),起到桥联作用;分子中存在一个Cd_2S_2配位四元环。每个Cd(Ⅱ)离子处于由5个配位硫原子组成的四方锥的中央,配位数为5。该配合物属于单斜晶系,空间群为P2_(1/n),分子式为C_(30)H_(28)CdN_2S_4,分子量M=657.18,a=1.11098(4)nm,b=1.56325(5)nm,c=1.66695(6)nm,α=γ=90°,β=97.9220(10)°,Z=4,V=2.86743(17)nm~3,Z=4,R1[I>2σ(I)]=0.044,wR2(all reflections)=0.099。配合物[Zn(DBTC)_2]_2(4,4'-bipy)的分子是中心对称的双核结构。每个晶胞单元中有2个分子,每个二硫代氨基甲酸配体与锌离子都是以双齿螯合配位。锌离子是5配位的,处于由4个S原子和1个N原子(NS_4)组成的三角双锥的中心,具有三角双锥的几何构型。2个Zn(Ⅱ)离子通过1个4,4'-联吡啶桥联,形成二聚体。该配合物属于三斜晶系,空间群为P-1,分子式为C_(70)H_(64)N_6S_8Zn_2,分子量M=1376.5,a=1.06878(7),b=1.26278(8),c=1.32586(8);α=93.090(1)°,β=104.488(1)°,γ=108.270(1)°,Z=1(dimer),R1[I>2σ(I)]=0.046,wR2(all reflections)=0.119。
     3.二苄基二硫代氨基甲酸钕的合成条件优化。对配体二硫代氨基甲酸钠的制备条件进行了改进和优化。文中主要讨论了:(1)反应物的配比对配体产率的影响;(2)反应时间对配体产率的影响。综合考虑产物的产量与纯度,最后确定了反应物的最佳配比。
     4.讨论了二苄基二硫代氨基甲酸镉配合物在天然橡胶中的硫化促进性能。以[Cd(DBTC)_2]_2促进的胶料具有典型的平硫化曲线,硫化平坦性好,硫化速率高,体现了二硫代氨基甲酸配合物的“短焦烧、快硫化”的特点。加入[Cd(DBTC)_2]_2得到的硫化胶,与传统硫化促进剂—NOBS、CZ/TMTD—相比,抗撕裂性能和拉
    
    华南师范大学硕士学位论文
    伸强度增强,其它力学性能相近。
     5.对稀土配合物在橡胶中的硫化促进性能进行了配方改进实验。结果表明,
    随着促进剂份量的增大,硫化胶的定伸强度和硬度增大;拉伸强度和扯断伸长率
    先增加,在2.5份达到最大值,然后降低;撕裂强度也是先增加后降低,但最大
    值出现在用量为2.0份。在同等份量硫磺下,硫化胶的交联密度随着促进剂份量
    增大而增大,定伸强度和硬度随交联密度的增加而增加,拉伸强度和撕裂强度均
    在某个交联密度下达到最大值。综合考虑各种性能,最后确定了稀土促进剂的最
    佳用量。
1. In this thesis, the studies on complexes of IIB and rare earth metals with organic ligands containing sulphur atoms have been reviewed. Synthetic methods, structural characterization and analytic methods of these complexes are discussed in detail. At the same time, the application of vulcanization acceleration for these complexes has been described.
    2. Two new metal complexes, which were shown as [Cd(DBTC)2]2 (1) [Zn(DBTC)2]2(bipy) (2) (where DBTC = N,N-dibenzyl dithiocarbamate; bipy = 4,4'-bipyridine), were synthesized in mixture of ethanol and water at room temperature and characterized by IR spectra, TGA analysis and X-ray crystallographic analysis. The complex (1) is centrosymmetric dinuclear structure. There are two tridentate dithiocarbamate ligands which bridge via one sulfur atom each to two cadmium atoms leading to the formation of a Cd2S2 core. Each cadmium atom is coordinated to five sulphur atoms from three ligands and it results in the formation of a tetragonal pyramidal geometry. Crystal data were listed as following: C30H28CdN2S4 M = 657.18, monoclinic, space group of P21/n, a = 1.11098(4) nm, b = 1.56325(5) nm, c = 1.66695(5) nm, p = 97.9220(10), V = 2.86743(17) nm3, Z = 4, Rl [I>2( I)] =0.044, wR2 (all reflections) = 0.099. The complex (2) shows centrosymmetric dinuclear structure. Zn(II)
     ions, which is five-coordinated to sulphur atoms from two bidentate dithiocarbamate ligands and one nitrogen atom from bipy, has a trigonal bipyramidal geometry. In each cell, two identical Zn(II) units are linked by bipy to form a dimer. It is triclinic, space group of P-l, with Z= 1. Its lattice parameters: C70 H64 N6 S8 Zn2, M = 1376.5, a = 1.06878(7) nm, b = 1.26278(8) nm, c = 1.32586(8) nm; a = 93.090(1), β = 104.488(1), γ = 108.270(1). Rl [I>2( I)] = 0.046, wR2 (all reflections) = 0.119.
    3. Very crucial synthetic conditions for preparing the ligand Na(DBTC), such as the mole radio of reactants and reaction time, et al, have been discussed in this thesis. In view of the product's yield and purity, the optimal synthesis conditions are obtained. Then, the complex [Nd(DBTC)3(HMPA)2] was synthesized by changing the synthetic
    
    
    conditions.
    4. Vulcanizing properties of the Cd(II) complex [Cd(DBTC)2]2 as vulcanizing accelerator in natural rubber were studied. Compared with traditional accelerators NOBS and CZ/TMTD etc, the results show that the cross-linked rubber accelerated by the complex [Cd(DBTC)2]2 has more excellent physical mechanical properties on tensile strength and tear strength than that by the others.
    5. Additive capacity of the Nd(III) complex [Nd(DBTC)3(HMPA)2] in natural rubber have been studied. With the dosage of the complex increase, modulus and Shore hardness of cross-linked rubber increase. Their tensile strength and elongation at break increase with the content of the accelerant in the beginning, and the optimal properties are obtained at 2.5 percent, and it would decrease with the increase of the content. It has also been similarly changed on tear strength and the optimal conditional appears at 2.0 percent.
    With fixing the dosage of sulphur, the crosslink density changes with the increase of the accelerator, and same changes on the modulus and Shore hardness have been taken place with crosslink density, but tensile strength and tear strength would come to head with certain crosslink density. The optimal content of [Nd(DBTC)3(HMPA)2] as an accelerator on the natural rubber would be determined on the basis of considering various properties.
引文
[1] 吴达旭,雷新建,江飞龙,杨瑜,洪茂椿,刘秋田,刘汉钦.含R_2NCS_2配体的过渡金属配合物的~1H NMR研究.结构化学,1994,13(3),226-230
    [2] George Exarchos, Stephen D. Robinson, Jonathan W. Steed. The synthesis of new bimetallic complex salts by halide/sulfur chelate cross transfer: X-ray crystal structures of the salts [Ni(S_2CNEt_2)(dppe)]_2[HgBr_4], [Pt(S_2CNEt_2)(dppe)]_2[CdCl_4], [Co(S_2CNEt_2)_2(dppe)]_2 [Cl_3ZnO:(Ph)_2PCH_2CH_2P(Ph)_2:OZnCl_3] and [Pd(S_2CNnBu_2)(bipy)]_2[CdCl_4]. Polyhedron, 2001, 20, 2951-2963
    [3] Graeme Hogarth, Andrew Pateman, Simon P. Redmond. Crystal structures of copper(Ⅲ) dithiocarbamate complexes[Cu(h_2-S_2CNMe_2)_2][ClO_4] and [Cu(h2-S2CNEt2)2][FeCl4] with and without anion-cation interactions. Inorganica Chimica Acta 2000, 306, 232-236.
    [4] L.A. Go'mez-Ortiz, R. Cea-Olivares, V. Garcy a-Montalvo, S. H.Ortega. Dimeric dithiocarbamates of stannolane. An example of the presence of secondary bonds in the formation of an inorganic ring. Molecular and crystal structure of 2-nbutyl- 2-(dimethyl dithiocarbamate)-1,3,2-oxathiastannolane and 2-nbutyl-2-(piperidyldithiocarbamate)-1,3,2-oxathiastannolane. J. Organometallic Chemistry 2002, 654, 51-55
    [5] J. F. Bower, S. A. Cotton., J. Fawcett, R. S. Hughes, D. R. Russell. Praseodymium complexes of 2, 2-bipyridine; the crystal and molecular structures of Pr(bipy)_3(NCS)_3, Pr(bipy)_2(NO_3)_3, Pr(bipy)_2Cl_3(OH_2)EtOH and Pr(bipy)(S_2CNEt_2)_3. Polyhedron, 2003, 22, 347-354
    [6] 吴杰颖.田玉鹏.谢复新.倪诗圣.二硫代氨基甲酸盐过渡金属配合物的合成及三阶非线性光学性质研究.应用化学,1999,16(1),38-41
    [7] 王建华,王远亮.氮支冠醚二硫代甲酸根过渡金属配合物的合成和性质,应用化学,2002,19(3),295-297
    [8] Thorw, G.D.; Ludwig, R.A. The Dithiocarbamates and Related Compounds. Elsevier Publishing Company: Amsterdam-New York, 1962
    [9] Edward R. T. Tiekink. Molecular architecture and supramolecular association in thezinc-triad 1,1-dithiolates. Steric control as a design element in crystal engineering. CrystEngComm, 2003, 5(21), 101-113
    [10] C.S. Lai and E. R. T. Tiekink, Appl. Organomet. Chem., 2003, 17, 143.
    
    
    [11] M.J. Cox and E. R. T. Tiekink, Z. Kristallogr., 1997, 212, 542.
    [12] E. R. T. Tiekink, Z. Kristallogr.-New Cryst. Struct., 2000, 215
    [13] K. Ramalingam, O. bin Shawkataly, H.-K. Fun and I. A. Razak, Z. Kristallogr. New Cryst. Struct., 1998, 213, 371.
    [14] K. Hagen, C. J. Holwill and D. A. Rice, Inorg. Chem., 1989, 28, 3239.
    [15] A. Domenicano, L. Torelli, A. Vaciago and L. Zambonelli, J. Chem. Soc. A, 1968, 1351.
    [16] J. S. Casas, A. Sa'nchez, J. Bravo, S. Garc'a-Fonta'n, E. E. Castellano and M. M. Jones, Inorg. Chim. Acta, 1989, 158, 119
    [17] D. Brown and D. G. Holah. N,N-Diethyldithiocarbamate Complexes of Certain Tervalent Lanthanide and Actinide Elements[J]. J.Chem.Soc. Chem. Commun., 1968, 33: 1545-1553
    [18] Ciampolini M., Nardi N., Colammrino P.,Structure and spectra of a series of eight-co-ordinate complexes of lanthanoides(Ⅲ) with diethyldithiocarbamate of general formula Na[Ln(Et_2NCS_2)_4](Ln=La to Yb, except Pm). J. Chem. Soc. Dalton. Trans.,. 1977, 4: 379-385
    [19] Jongseong Lee, Deborah Freedman, H. M. Jonathan, et al. Trivalent lanthanide chalcogenolates: Ln(SePh)_3, Ln_2(Eph)_(12), and[Ln(Eph)_n(E=S, Se). How metal, chalcogen, and solvent influence structure[J]. Inorg. Chem., 1998, 37(10): 2512-2519
    [20] Kazushi Mashima, Tetsuya Shibahara, Yuushou Nakayama, et al. Synthesis and characterization of cationic pyridine-2-thiolate complexes bipyramidal [Ln(SC_5H_4N)_2 (hmpa)_3]I(Ln=Sm, Yb;hmpa=hexamethylphosphoric triamide). J. Organomet. Chem., 1995, 501: 263-269
    [21] Kazushi Mashima, Yuushou Nakayama, Tetsuya Shibahara, et al. Synthesis of arenethiolate complexes of divalent and trivalent lanthanides from metallic lanthanides and diaryl disulfides: crystal structures of[{Yb(hmpa)_3}_2(μ-SPh)_3][SPh] and Ln(SPh)_3(hmpa)_3 (Ln=Sm,Yb; hmpa=hexamethylphosphoric triamide), Inorg. Chem., 1996, 35(1): 93-99
    [22] 张立新,周锡庚,黄祖恩等.二茂铥苯并噻唑-2-烃硫基配合物的合成几其晶体结构.结构化学,2001,20(1):40-44
    [23] Weiguang Zhang, Tang Ning, Liu Weisheng, et al. Preparation and properties of rare earth complexes with 5-phenyl pyrazoline dithioformate. J. Rare Earths, 2002, 20(2): 145-147
    [24] 章伟光,稀土精细化工产品生产技术.南昌:江西科学技术出版社,2002,5-7
    
    
    [25] Z.M.Zholalicva, Synthesis and characterization of Ce(Ⅲ) complexes with thiourea Russ. Inorg. Chem., 1978, 23(6), 940-943
    [26] Chengyong Su, Ning Tang and Mingyu Tang. Synthesis, properties and structure of lanthanide complexes with N,N-dirthyldithiocarbamate and 2,2-bipyridyl. Polyhedron, 1996, 15(2): 233-239
    [27] A.U.Malik and F.R.Rahmani, Studies on the complexes of rare earth with 2-Mercaptobenzothiazole. J.Inorg.Nucl.Chem., 1975, 37,1552-1553
    [28] H.C. Aspinall, C.B. Donald, B.H. Michael, et al. Lanthanide thiolate complexes: synthesis of [Ln{N(SiMe_3)_2}(μ-Sbut)]_2 (Ln=Eu, Gd, Y) and x-ray crystal structure of the Gd complex. J. Chem. Soc. Chem. Comm. 1985, 22(15): 1585-1586
    [29] Chengyong Su, Minyu Tan and Zhehu Zhang, et al. Dithiocarbamate complexes of trivalent lanthanide and X-ray crystal structure of tris(n,n-dirsopropyl-dithiocarbamate) (1,10-phenanthroline)neodymium(Ⅲ). Synth. React. Inorg. Met.-Org. Chem., 1999 29(1): 35-51
    [30] Zhong Yun, Zhang Weiguang and Ren Tianhui, Synthesis, charactrization and tribological properties of the complexes of light rare earth with dioctyldithiocarbamate. Chemical Journal on internet, 2001, 3(6): 027
    [31] 黄锦顺,林善火,王曼芳,等.双齿配体八配位镧系配合物的结构化学研究-Ⅱ.[C_4H_9O][Ln(S_2CNC_4H_8)_4](Ln=La和Nd)的合成和结构.无机化学,1987,3(2):1-6
    [32] 张启交.具有橡胶硫化促进作用的金属含硫配合物的合成与应用研究[D].广州:华南师范大学,2003.
    [33] 章伟光,唐宁,甘新民等.二价稀土(sm,Eu,Yb)与3-苯基-5-(呋喃-2)吡唑啉二硫代甲酸固态配合物的制备.高等学校化学学报,1992,13(3):292-294
    [34] R.Nakamura, et al. Synthesis and characterization of rare earth complexes with thiourea. Bull. Chem. Soc.Jap., 1984, 57, 2919-2923
    [35] Chakrabarti A. K., et al. Synthesis and characterization of rare earth complexes with benzylthiouronium ligand. J. Indian Chem. Soc. 1985, 62(7), 541-545
    [36] Ansari M. N., Synthesis and characterization of rare earth complexes with
    
    o-ethyldithiocarbonato ligand. Himalayan Chem.Pharm.Bull., 1987,4,6
    [37] A.Alan Pinkerton, Yisay Meseri, and Charly Rieder. Preparation and characterization of dithiophosphinato-complexes of Yttrium and the lanthanides. J. Chem. Soc. Dalton. Trans., 1978, 1: 85-89
    [38] Aklra Miyazaki and Ramon M. Barnes.Complexation of some transition metals,rare earth elements, and thorium with a poly(dithiocarbamate)chelating resin. Anal.Chem.,1981,53(2),299-304
    [39] 薛明,谭民浴,刘伟生,柳士霞,罗保生等,氮、硫杂冠醚稀土配合物的合成、表征和结构研究.中国化学,1997,27(5),390-397
    [40] Lakshmi, Agarwala U., Preparation and characterization of rare earth complexes with 1-substituted tetrazoline-5-thiones. J.Inorg.Nucl.Chem. 1972,34,2255
    [41] Nag K. and Chaudhurg M. Preparation and characterization of lanthanide(Ⅲ) with 3-mercapto-1-phenylbut-2-en-1-one. Inorg. Nucl. Chem. Lett., 1976,12(4),30
    [42] Kuzmina, N. P.; Ivanov, R. A.; Paramonov, S. E.; Martynenko, L. I. Volatile lanthanide diethyldithiocarbamates as precursors for lanthanide sulfide film deposition. Proceedings-Electrochemical Society, 1997, 97-25(Chemical Vapor Deposition), 880-885
    [43] M. P. Jensen,A.H.Bond. Comparison of covalency in the complexes of trivalent actinide and lanthanide cations[J]. J. Am. Chem. Soc. 2002, 124, 9870-9877
    [44] Zhu Yongjun, Xu Jingming, Chen Jing, Chen Yingzhong. Extraction of americium and lanthanides by dialkyldithiophosphinic acidand f-f absorption spectra of the extraction complexes. J.Alloys Compounds 271-273(1998)742-745
    [45] Tiekink, E.R.T.J. Organomet. Chem. 1987, 322, 1.
    [46] C. Boehme and G. Wipff. Thiophosphoryl complexes of trivalent lanthanide cations: importance of counterions and stoichiometry for binding energies.a theoretical study. J. Phys. chem. A., 1999,103,6023-6029
    [47] Tian Guoxin, Zhu Yongjun, Xu Jingming, and Zhang Ping,et al.Investigation of the Extraction Complexes of Light Lanthanides(Ⅲ) with Bis(2,4,4-trimethylpentyl)dithio-phosphinic Acid by EXAFS, IR, and MS inComparison with the Americium(Ⅲ) Complex. Inorg. Chem. 2003, 42, 735-741
    
    
    [48] Ondrusova, D.; Jona, E.; Simon, P. Thermal properties of N-ethyl-N-pbenyl-dithiocarbamates and their influence on the kinetics of cure[J]. Journal of ThermalAnalysis and Calorimetry, 2002, 67(1), 147-152
    [49] Datta, Rabin N. Low-temperature curing with a cure system consisting of ZMBT or MBT, a dithiocarbamate, a cure activator, and sulfur[J]. Research Disclosure 2001, 451(11), 1906-1907.
    [50] P. O'Brien, J. R. Walsh, I. M. Watson, L. Hart, S. R. P. Silva. Properties of cadmium sulphide films grown by single-source mtalorganic chemical vapour deposition with dithiocarbamate precursors. J. Crystal Growth 1996, 167, 133-142
    [51] P. Yan, Y. Xie, Y. Qian and X. Liu, Chem. Commun., 1999, 1293.
    [52] T. Stafilov, D. Zendelovska, G. Pavlovska, K. Cundeva. Determination of trace elements in dolomite and gypsum by atomic absorption spectrometry: overcoming the matrix interference by flotation separation. Spectrochimica Acta, Part B, 2002, 57, 907-917
    [53] Bousseau M, Valade L, Valade J, Highly onducing charge-transfer compounds of tetrathisfulvalene and transition metaldmit complexes. J. Am. Chem. Soc., 1986, 108: 1908-1906
    [54] D. W. Tomlin, T. M. Cooper, D. E. Zelmon, Z. Gebeyehu and J. M. Hughes, Acta Crystallogr., Sect. C, 1999, 55, 717.
    [55] 薛照明,张宣军,田玉鹏,刘志强,蒋民华.含吩噻嗪金属配合物的合成及非线性光学性质研究,无机化学学报,2002,18(10),1009-1014
    [56] 倪行,包建春,孙岳明,金同顺.二硫代草酰胺基或二环己酮草酰二腙作桥联基的新型双核Cu(Ⅱ)-Cu(Ⅱ)配合物的合成和磁性,合成化学,1996,4(3),267-270
    [57] 陈波水,董浚修,陈国需.二烷基二硫代磷酸铕的摩擦学性能研究.摩擦学学报,1994,14(2),153-161
    [58] 陈立功,董浚修,陈国需.油溶性二正辛基二硫代氨基甲酸铈的合成及其摩擦化学特性研究.摩擦学学报,1996,16(3),247-256
    [59] Weimin Liu, Zefu Zhang, Qunji Xue. Friction and wear behaviors of aluminum-on-steel under the lubrication of grease containing a complex of lanthanum dialkyldithiocarbamate and phenanthroline. Wear, 1996,199,153-156
    [60] Zefu Zhang, Weimin Liu, Qunji Xue.Tribological properties and lubricating mechanisms of the rare earth complex as a grease additive.Wear, 1996,194,80-85
    [61] Zefu Zhang, Weimin Liu, Qunji Xue. Friction and wear behaviors of the complexes of rare
    
    earth hexadecylate as grease additive.Wear, 1998,215,40-45
    [62] Laigui Yu, Yafeng Lian, Qunji Xue.The tribological behaviors of some rare earth complexes as lubricating additives Part 2-the antiwear and extreme pressure properties in lithium grease. Wear, 1998, 214, 151-155
    [63] Jayasree S., et al., Polyhedron, 1993, 12, 1187
    [64] 李迎春等.药学学报,1990,25,593。
    [65] 郭胜利,殷元骐等.含2,5-二巯基-1,3,4-噻二唑的过渡金属配合物的合成及性质研究.化学通报,1998,3,48
    [66] 周毓萍,杨正银,于红娟,杨汝栋.1-苯基-3-甲基-4-苯甲酰基毗唑酮-5-缩氨基硫脲稀土配合物的合成表征及抑菌活性.应用化学,1999,16(6),37-41
    [67] E.P. Marinho, W.S.C. de Sousa, D.M.A. Melo, L.B. Zinner, K. Zinner, L.P. Mercuri, G. Vicentini. Synthesis, characterization and thermal behavior of some addition compounds between rare earth picrates(pic) and 2,20-dithiobis(pyridine-N-oxide)[J]. Thermochimica Acta, 2000, 344, 67-72
    [68] 张永平,范丽岩,唐宁.三苦味酸根·2,2’-二硫代二(N-氧化吡啶)合稀土(Ⅲ)配合物的合成、表征及其抗肿瘤活性研究[J].无机化学学报,2001,17(3):427-429
    [69] 王刚,谭民裕,唐宁,甘新民,刘伟生.缬氨酸-N-荒氨酸镍与稀土配合物的合成、表征和抗癌、抗菌活性研究[J].兰州大学学报(自然科学版),1995,31(4),194-196
    [70] 王刚,唐宁,谭民裕.丙氨酸-N-荒酸镍与稀土多核配合物的合成、表征和抗癌、抑菌活性研究[J].化学研究与应用,1996,8(4):493-497
    [71] 章伟光,朱初耀,黎华养.稀土含硫有机配体配合物应用研究(Ⅱ)—N,N-二乙基二硫代氨基甲酸合镧对蔬菜防病促长的作用[J].稀土,1998,19(4):46-50
    [72] 樊云峰,橡胶硫化促进剂现状和发展,化工新型材料,27(1):11
    [73] 杨鑫莉,胡泳.橡胶硫化促进剂PZ的合成,广西化工,1998,4:30
    [74] [日]CMC编辑部编,吕世光译.塑料橡胶用新型添加剂[M],北京:化学工业出版社,1989.380
    [75] 章伟光,朱初耀,黎华养.橡胶硫化稀土促进剂的硫化性能研究.化学工程师,1992,27(3):7-10
    [76] 江涛,章伟光,申俊英.二乙基二硫代氨基甲酸稀土配合物的合成及促进橡胶硫化性能研究.稀土,2000,21(3):39-41
    
    
    [77] 渡边隆,硫化促进剂的最进动向,橡胶译丛,1997,2:13
    [78] 江畹兰编译.含硫、磷和氮的有机促进剂对生胶硫化过程和硫化橡胶性能的影响[J].世界橡胶工业,1999,26(3):16
    [79] Michael A.Fath.弹性体的硫化,橡胶参考资料
    [80] Zhang Qijiao,Wei Fengxian, Zhang Weiguang, Huang Miaoyou and Luo Yunfang. Synthesis, characterization and vulcanizing properties of rare earth complexes with 2-mercaptobenthiazole. J. Rare Earths, 2002, 20 (5): 395-399.
    [81] 王进文编译,黄原酸盐/二已基二硫代氨基甲酸锌促进剂并用天然橡胶的研究,橡胶参考资料,2002,1:16
    [82] 陶英丕,朱凤珍,李秀兰.硫代氨基甲酰次磺酰胺类促进剂的研究[J].合成橡胶工业,1982.6:465
    [83] Fred.Ignatz.Houver.硫化化学评述,橡胶参考资料,2000,1:1
    [84] 张启交,章伟光,黄庙由,钟昀,铁绍龙.稀土配合物促进剂在天然橡胶中的硫化性能研究.合成橡胶工业,2003,26(2):108-111
    [85] Hoffman W. Rubber Chemicals and Additives. Kunstoffe, 1990, 80(7): 58
    [86] 蒲启君,1998年橡胶助剂行业会议资料汇编,化工部橡胶工业信息站助剂分站,1998
    [87] White L. Chemicals progress extends elastomer types used inhose & belting[J]. European Rubber Journal, 2000, 182(2): 25.
    [88] Mezger M.G.安全的胺类促进剂[A].拜耳中国有限公司,拜耳中国轮胎研讨会论文集[C].北京:拜耳中国有限公司,1995,5-6.
    [89] 张国才,对橡胶硫化促进剂国家统检情况的综合分析,化工标准化与质量督,1999,2:15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700