稀土—紫外线吸收剂配合物对聚合物光稳定作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
合成了β-二酮和邻羟基二苯甲酮紫外线吸收剂(UVA)二苯甲酰甲烷(HDBM)、苯甲酰丙酮(HBA)、2-羟基-4-正辛氧基二苯甲酮(HOBP)、2-羟基-4-甲氧基二苯甲酮(HMBP)的稀土配合物,系统比较研究了它们的紫外吸收特性、热挥发性、耐热性、耐光性、溶解性等理化特性及其对聚合物的光稳定效能,初步探讨了这些UVA—稀土配合物对聚合物光稳定作用的可能机理,得到了以下主要结果和结论:
     (1)通过对外观性状、熔融行为、溶解特性和红外光谱的观测比较,确定了由HDBM、HBA、HOBP、HMBP在乙醇—水介质中与稀土氯化物或硝酸盐反应可得到组成分别为RE(DBM)_3(H_2O)_(1-2)、RE(BA)_3(H_2O)_(1-2)、RE(OBP)_3、RE(MBP)_3的配合物,在这些配合物中形成的RE-O键具有一定程度的共价键性质。
     (2)形成稀土配合物对HDBM、HBA、HOBP、HMBP的紫外吸收特性和耐光性影响不明显,但可使其耐挥发和耐热性明显提高,在乙醇等极性溶剂中的溶解度明显降低,而在苯、环己烷等非极性溶剂中仍有一定溶解度。
     (3)以聚1,4-顺丁二烯为模型聚合物的氙灯曝露试验研究表明,形成稀土配合物可明显提高HDBM、HBA、HOBP、HMBP对聚合物的光稳定效能,提高的幅度最高可达近3倍。对于同一稀土离子,光稳定效能提高幅度:HOBP>HMBP>HDBM>HBA;当紫外线吸收剂相同时,光稳定效能提高幅度随镧系元素原子序数的增大呈现典型的“四分组效应”递变规律。
     (4)UVA—镧系配合物对聚合物光稳定效能的“四分组效应”递变规律说明形成稀土配合物对UVA光稳定效能的改进作用与某种形式的稀土配位作用有关,由于研究表明形成稀土配合物并不对UVA的紫外吸收和耐光特性产生明显影响,而UVA—稀土配合物又不具有明显的氧化—还原和自由基链终止授体或受体特性,推测UVA形成稀土配合物光稳定效能提高的原因可能主要是由于稀土配合物能与聚合物链上的光敏基团(羰基、氢过氧基等)发生配位作用而使UVA在光敏基团周围得到浓聚,这样既有效地减少了光敏基团的光吸收又强化了紫外线吸收剂对其激发态的猝灭作用。
Rare earth complexes of UV absorber "Dibenzoylmethan(HDBM), Benzoyl-acetone(HBA), 2-hydroxy-4-octoxyl-benzophenone(HOBP) and 2-hydroxy-4-meth-oxyl-benzophenone(HMBP)" have been synthesized. The physical and chemical property such as UV absorption, heat resistance, light fastness and soluability and photostabilization to polymer etal of those rare earth complexes have been discussed. And the photostabilization mechanics of those rare earth complexes were speculated. The main results and conclusion are:
    (1) By comparing the appearance, melt point, and Infra-red spectrum of the synthesized products, the method that rare earth complexes whose composition are RE(DBM)3(H2O)1-2, RE(BA)3(H2O)1-2, RE(MBP)3, RE(OBP)3 can be synthesized by HDBM, HBA, HOBP, HMBP react with rare earth chloride or nitrate in ethanol-water solution were confirmed, and the formed RE-O coordinate band have some covalent band character.
    (2) The influence on UV absorption character and light fastness property caused by the process of UV absorber change to rare earth complexes are not obvious, but the heat resistant ability has gotten obvious improvement, and the solubility in polar sovent such as ethanol etal is reduced obviously, But still have certain solubilities in nonpolarity solvent such as benzene and ring own alkane etal..
    (3) The test of photo-stabilization to polymer of rare earth - UV absorber complexes have been made in laboratory accelerate experiment, results showed that by forming rare earth complexes can improve the photostablization efficiency to polymer of UV absorber, the highest improvement effect will be triple to that of UV absorber. For same rare earth ions, the improvement effect are HOBP >HMBP> HDBM > HBA; while for same UV absober, the improve effect changed regularly as "Four Group Effect" with ith increase of the atomic number of rare earth element.
    (4) The fact the photostablization to polymer of rare earth-UV absorber complexes has "Four Group Effect" regularity disclosured that there will be exist some relationship between the photostabilization of rare earth complexes and coordination, while The influence on UV absorption character and light fastness property caused by the process of UV absorber change to rare earth complexes are not
    
    
    
    obvious. And rare earth complexes have no obvious oxidation-reduction and free radical seize ability, so the function mechanics of photostabilization to polymer of rare earth UV absorber complexes can be speculated that those complexes may coordinated with photo-senstive group on polymer band such as carbonyl or/and hydroperoxides etal, so concentration of complexes besides photo-senstive group can be accumulated that not only decreased the light absorption of photo-senstive group but also increased the quenching effect to excitation state of rare earth complexes.
引文
[1] 朱福海.高分子材料光降解和光稳定.合成材料老化与应用,1999,(1):24~26
    [2] Hawkins, W. L.. Polymer Stabilization. New York: Wiley Interscience, 1972. 5~6
    [3] 杨明.塑料添加剂应用手册.南京:江苏科学技术出版社,2002.16~26
    [4] N. S. Allen, J. F. Rabek. New Trends in the Photochemistry of Polymers. London: Elsevier Applied Science Publishers, 1985. 209~211
    [5] 周大纲,谢鸽成.塑料老化与防老化技术.北京:中国轻工业出版社,1998.108~115
    [6] 钟士云,许乾慰,王公善.聚合物降解与稳定化.北京:化学工业出版社,2002.174~176
    [7] [德]R.盖希,H.米勒.塑料添加剂手册.陈振兴,杨新源,王自昌等译.北京:中国石化出版社出版,1992.119~121
    [8] 舒万艮,申雄军.内外光稳定剂的发展现状及趋势.精细与专用化学品,2002,(5):3~5
    [9] 王克智.塑料助剂开发及应用—光稳定剂.塑料科技,1995,(4):37~45
    [10] Geuskens G., Kanda M. N.. The oxidation of hindered amine light stabilizers to nitroxy radicals in solution and in polymers, Ⅱ. Polym. Degrad. Stab., 1996, 51(12): 227~232
    [11] 山西化工研究所编.塑料橡胶加工助剂.北京:化学工业出版社,1983.195~200
    [12] Haacke G., Andrawes F. F., Campbell B. H.. Migration of light stabilizers in acrylic/melamine clearcoats. J. Coat. Technol., 1996, 68(55): 57~62
    [13] Gray Robert L.. A novel nonreactive HALS polyolefin stability. Plast. Eng., 1991, 47(6): 21~23
    [14] 申雄军,舒万艮,周忠诚.甘油锌和光稳定剂NBC、BZ的光稳定作用测试与评价.中国塑料,2003,17(1):85~86
    [15] 王克智,李训刚.聚合物稳定化助剂技术进展.中国塑料,2001,15(4):1~6
    [16] 何光耀.聚合物光稳定化进展.合成材料老化与应用,1998,(2):36~46
    [17] 刘仲文,潘江庆,崔孟元.苯乙烯-甲基丙烯酸四甲基哌啶醇酯共聚物(PDS)
    
    与紫外线吸收剂并用对聚丙烯光防护行为研究.高分子学报,1989,(12):702~708
    [18] 潘江庆,张伟,崔松.双功能受阻胺光稳定剂GW—540与紫外线吸收剂并用效应的研究.感光科学与光化学,1990,12(1):14~21
    [19] 马洪玺.受阻胺光稳定剂开发进展及发展趋势.金山油化纤,2000,(2):36~40
    [20] Minagawa M.. New developments in polymer stabilization. Polym. Degrad. Stab., 1989, 25(2): 121~141
    [21] 李社青,王昭亚,张立基.光稳定剂分子量对其稳定效能的影响.塑料技术,1993,(1):36~40
    [22] 汪辉亮,陈文琇.受阻胺光稳定剂的热失重分析.北京师范大学学报(自然科学版),1998,34(2):219~223
    [23] Patel Mahendra, Parmar J. S.,Patel M. R.etal. Synthesis and study of Polymeric ultraviolet absorbers I. J. Macromol Sci. Chem., 1986, A23(11): 1363~1380
    [24] Patel Mahendra, Parmar J. S., Patel M. R.etal. Synthesis and study of Polymeric ultraviolet absorbers Ⅱ. J. Macromol Sci. Chem., 1987, A24(9): 1085~1097
    [25] 张泽朋.受阻胺类光稳定剂的现状及发展趋势.精细石油化工,1998,(2):51~57
    [26] 戴光松,刘鲁生,吴世康.一种新型的紫外吸收剂—二苯甲酰甲烷的光谱特性及光稳定能力的初步研究.高分子学报,1987,(1):40~45
    [27] 时永莉,佟振合,吴世康.α-取代β-二酮类化合物光化学行为的研究.化学学报,1991,(49):259~264
    [28] Wu S. K., Dai G. S., Liu L. S. etal.. A Study of Photostablizing Behavious of β —diketones. Polym. Degrad. Stab., 1986, (16): 169~177
    [29] G. A. Crosby, R. E. Whan,R. M. Alire. Intramolecular Energy Transfer in Rare Earth Chelates. Role of the Triplet State. The Journal of Chemical Physics, 1961, 34(3): 743~748
    [30] 于安池,应立明,赵新生等.稀土配合物的发光特性及其能量传递研究.物理化学学报,1998,14(9):811~814
    [31] 刘德文,宝春云,赵宇.稀土、有机配体三元混配络合物的合成及发光性能研
    
    究-Ⅰ、稀土、β-二酮配体三元混配络合物的合成及发光性能研究.中国照明电器,1998,(7):5~9
    [32] 李夏,王娓,胡秋菊.稀土与二苯甲酰甲烷及与安替吡啉三元配合物的合成和性质.化学研究与应用,1996,8(4):559~562
    [33] 朱琴玉,戴洁,项苏留等.稀土与β- 配及2-(2-吡啶)苯并咪唑三元配合物的研究.无机化学学报,1999,15(6):831~834
    [34] 吴茂英.硬脂酸稀土用作无毒聚氯乙烯热稳定剂的研究.稀土,1998,19(4):51~54
    [35] 李文连.稀土有机配合物发光研究的新进展.化学通报,1991,(8):1~9
    [36] 黄春辉.稀土配位化学.北京:科学出版社,1997.66~76
    [37] 刘大森,单安山.稀土饲料添加剂的代谢及安全性.饲料工业,2001,22(11):17~19
    [38] 张若桦.稀土元素化学.天津:天津科学出版社,1987.190~196
    [39] 舒万艮,申雄军,牛聪伟等.国内外光稳定剂的现状及发展趋势.现代塑料加工应用,2000,12(5):51~53
    [40] 刘功塑译.光稳定剂增长迅速.化工中间体,2003,(8):46~46
    [41] 汪联辉,章文贡.稀土金属醇盐的合成、性质和应用.稀土,1997,18(2):31~36
    [42] 吕敬慈,粱重山.La,Nd,Tb与PMBP配合物的固相反应合成和表征.中国科学技术大学学报,1997,27(4):455~459
    [43] 吕敬慈,粱重山.La,Nd,Tb与HDBM配合物的固相反应合成与表征.无机化学学报,1998,14(3):340~342
    [44] Liu R. X., Wu S. K.. Metal salts of 2-(2, 4-dihydroxybenzoyl)benzoic acid as a new class of effective photostabilizers. J. Polym. Sci. Part C: Polym. Lett., 1988, 26(1): 17~24
    [45] Weir, N.A., Arct, J., Golubski, Z.. Metal salts of 2-(2-hydroxy-5-methylbenzoyl)benzoic acid and 2-(2-hydroxy-4, 4-dimethylbenzoyl) benzoic acids as photo-stabilizers for cis-1, 4-polybutadiene. Polym. Degrad. Stab., 1989, 26(2): 126~134
    [46] Dai Guangsong, Wu ShiKang. Functional Polymers Ⅳ Photochemical behavior
    
    of 2-(2-hydroxyphenyl)-2H-benzotriazole derivatives 2. Influence of substituents on the ultraviolet spectra of 2-(2-hydroxyphenyl)-2H-benzotriazoles. Polym. Bull.(Berlin), 1988, 20(1): 67~74
    [47] B.朗比,J.F.拉贝尔著.聚合物的光降解、光氧化和光稳定.崔孟元,潘江庆,张灿等译.北京:科学出版社,1986.82~86
    [48] [乌克兰]A.E.涅斯捷罗夫编.聚合物物理化学手册.闫家宾,张玉昆译.北京:中国石化出版社,1995.70~72
    [49] 金斗满,朱文祥.配位化学研究方法.北京:科学出版社,1999.66~68
    [50] 彭勤纪,王璧人.波谱分析在精细化工中的应用.北京:中国石化出版社,2001.4~6
    [51] 董庆年.红外光谱法.北京:石油化学工业出版社,1977.130~132
    [52] 洪山海.光谱解析法在有机化学中的应用.北京:科学出版社,1980.57~58
    [53] 赵凤英,薛珍,赵永亮.二元、三元二苯甲酰甲烷铕配合物的荧光研究.化学试剂,2002,24(5):257~259
    [54] Charles R G, Ohimann R C. Europium Dibenzoylmethide adducts. Inorg. Nucl. Chem., 1965, (27): 119~127
    [55] 齐玉兰,杨汝栋.稀土与苯甲酰丙酮和二安替吡啉甲烷配合物的合成和性质.中国稀土学报,1993,11(4):364~367
    [56] Seizo Misumi, Noriko Iwasaki. The Infrared Spectra and Some Properties of Tris-(acetylacetonato) Lanthanide(Ⅲ) Complexes. Bulletin of the Chemical Society of Japan, 1967, 40(3): 550~554
    [57] 戴光松,刘鲁生,张建科等.β-二酮化合物光稳定行为的研究.化学学报,1987,(45):564~568
    [58] 顾庆超,楼书聪,丁漪等.新编化学用表.南京:江苏教育出版社,1996.742~743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700