席呋碱Zn-Ln化合物掺杂及其金属聚合物杂化材料的近红外发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于镧系金属离子如Nd3+, Yb3+以及Er3+等具有良好的近红外发光性能而在发光器件、光通讯以及荧光免疫分析等领域潜在的重要应用价值,近年来越来越受到人们的重视,成为材料领域的研究重点之一。但迫于镧系金属离子的f-f跃迁宇称禁阻,其自身摩尔吸光系数较低,使得设计合适的有机官能团(“天线效应”)来高效敏化发光成为一个重要的研究内容;此外,稀土化合物应用到实际发光材料中,还需要解决其机械强度差、热稳定性差以及分散不均匀等科学难题。
     本论文从提高基于含N202和0202结构的席呋碱-Zn(II)能量“给体”来敏化Ln3+离子(Nd3+, Yb3+及Er3+)的近红外发光的量子效率着手,系统研究了阴离子类型、反应摩尔比、溶剂和辅助配体的存在对Zn(Ⅱ)-Ln(Ⅲ)异金属配合物结构的自组装规律,探索出有高量子效率的反应控制条件;同时,通过烯丙基、苯乙烯基及噻吩基等功能性官能团的引入,以有优良近红外发光性能的含Salen类席呋碱的Zn-Ln目标化合物为结构基元,首次尝试了加成共聚或电化学均聚来制备Wolf Type Ⅱ类混金属聚合物材料的探索。一方面利用“能级匹配”原则成功地确定出量子效率接近1%的含Salen类席呋碱的Zn-Ln化合物结构基元的结构条件;并利用共价键键合的方法成功地开发出系列PMMA、PS及PVK等基质和聚噻吩类的Wolf Type Ⅱ混金属聚合物材料。具体内容如下:
     (1)基于含N202和0202结构的柔性环已烷连接基的Salen类席呋碱H2L1(N,N'-bis(3-methoxy-salicylidene)cyclohexane-1,2-diamine)的Zn2+及Ln3+的自组装规律在于:摩尔比1:1:1条件下,OAc-及N03-共存的醇溶剂体系易得到OAc-桥连Zn2+及九配位的Ln3+的异二核配合物:[Zn(OAc)Ln(L1)(NO3)2](Ln=Nd, Yb, Er或Gd, Ⅱ-2-5);溶剂体系引入DMF,可得到OAc-桥连Zn2+及十配位的Ln3+的异二核配合物[Zn(OAc)Ln(L')(NO3)2DMF](Ln=Nd, Yb, Er或Gd, Ⅱ-6-9);溶剂体系引入MeCN,可得到得到Zn2+轴向为乙腈占据及十配位的Ln3+的异二核配合物[Zn(MeCN)Ln(L1)(NO3)3](Ln=Nd, Yb, Er或Gd,11-10-13).摩尔比2:2:1条件下,单独的OAc-或Cl-可分别得到了异三核配合物:[Zn2Ln(L1)2(OAc)3](Ln=Nd, Yb, Er或Gd,11-14-17)及[Zn2Ln(L1)2(Cl)3](Ln=Nd, Yb, Er或Gd,11-18-21); Cl-与N03-共存可自组装得到[Zn2Ln(L1)2(Cl)2(NO3)](Ln=Nd, Yb, Er或Gd,Ⅱ-22-25).光物理性质表明,异三核体系相对异二核体系,由于多个发光中心的存在而表现出更高量子效率的近红外发光性能;同时减少或避免Ln3+离子周围震荡基团的存在,化合物的近红外发光性能也得到了有效的提高。
     (2)基于含N202和0202结构的柔性环已烷连接基的Salen类席呋碱H2L1的ZnCl2及Ln(NO3)3的自组装,加入辅助第二配体邻香草醛(HL2), Ln(NO3)3的不同用量大小可分别得到异三核配合物:[ZnLn2(L1)2(L2)(NO3)2Cl](Ln=Nd, Yb, Er或Gd, Ⅲ-1-4)以及异二核[Zn(Cl)Ln(L1)(L2)(NO3)(MeCN)](Ln=Nd, Yb, Er或Gd, Ⅲ-5-8);基于含N202和0202结构的柔性环已烷连接基的Salen类席呋碱H2L1在有N03-存在的Zn2+及Ln3+的自组装中,辅助配体吡啶的引入,异二核配合物[Zn(Py)Ln(L1)(NO3)3](Ln=Nd, Yb, Er或Gd, Ⅲ-9-12)尤其能稳定存在。光物理性质结果表明:吡啶第二配体在Zn2+轴向占据的异二核化合物能表现出量子效率接近1%的近红外发光性能;结构特征在于柔性环已烷连接基的引入能实现1LC及3LC的双模式敏化,且Ln3+离子周围完全避免了震荡基团的存在。
     (3)结合(1)和(2)的研究结果,利用柔性环已烷连接基的引入及Zn2+轴向吡啶第二配体的存在的前提,先通过引入烯丙基官能团得到有双烯丙基端基的席呋碱碱配体H2L3(N,N'-bis(5-allyl-3-methoxysalicylidene)cyclohexane-1,2-diamine),近一步成功自组装得到[Zn(Py)Ln(L3)(NO3)3](Ln=La, Nd, Yb, Er或Gd, Ⅳ-1-5);用此系列有双烯丙基端基的异二核配合物为单体,尝试探索了其在助催化剂AIBN作用下与甲基丙烯酸甲酯(MMA)共聚合的研究。结果表明:异二核配合物单体的烯丙基因无法自由基聚合而得到了系列PMMA基的掺杂类杂化材料PMMA/[Zn(Py)Ln(L3)(NO3)3](Ln=La, Nd, Yb, Er或Gd,IV-6-12)。同时,考察了掺杂类杂化材料的热稳定性及光物理性能。
     (4)为改进(3)的不足,利用柔性环已烷连接基的引入及Zn2+轴向吡啶第二配体的存在的前提,通过苯乙烯基官能团的引入,合成得到有双苯乙烯基端基的席呋碱碱配体H2L4(N,N'-bis(5-phenylethylene-3-methoxysalicylidene)cyclohexane-1,2-diamine),再成功自组装得至[Zn(Py)Ln(L4)(NO3)3](Ln=La, Nd, Yb, Er或Gd,V-1-5);利用此配合物为单体分别与MMA,苯乙烯(ST)以及N-乙烯基咔唑(NVK)共聚合,在助催化剂AIBN作用下成功实现了自由基共聚而得到了三个系列Wolf Type Ⅱ类含Zn2+-Ln3+的混金属聚合物材料Poly(MMA-co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Nd, Yb, Er或Gd,V-6-12),Poly(ST-co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Yb或Gd, V-13-15)以及Poly(NVK-co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Yb或Gd,V-16-18)。同时,在考察了混金属聚合物杂化材料的热稳定性及光物理性能基础上,探索了Ln3+离子的浓度淬灭效应。
     (5)利用柔性环已烷连接基的引入及Zn2+轴向吡啶第二配体的存在的前提,进一步通过噻吩官能团的引入,合成得到有双噻吩端基的席呋碱配体H2L5(N,N'-bis(5-thienyl-3-methoxysalicylidene)cyclohexane-1,2-diamine),与Zn2+和Ln3+自组装反应得到[Zn(Py)Ln(L5)(NO3)3](Ln=La, Nd, Yb, Er或Gd, Ⅵ-1-5),同时,考察了其Ln3+离子的敏化发光及能量传递,为下一步电化学聚合合成金属聚合物做准备。
The near-infrared (NIR) luminescent properties from series of lanthanide ions, such as Nd3+, Yb3+or Er3+and their potential applications in the organic light-emitting diodes (OLED), optical communications and bio-analysis become one of the focused areas in material science. However, due to the forbidden parity from f-f transitions, the low molar absorption coefficients need the necessary chromophores ("antenna effect") to sensitize the NIR luminescence of these Ln3+ions, indirectly. On the other hand, the problems to poor mechanical property, low stability and uneven dispersion in their practical use as the optical materials must be overcome.
     In this thesis, in order to improve the NIR quantum efficiency of these Ln3+ions sensitized by Zn2+-based complexes based on the Salen-type Schiff-base ligands with both N2O2and O2O2groups as the energy donors, the reaction control conditions on high NIR quantum efficiency for the hetero-nuclear complexes are explored by studying the affects of anions, the molar ratio of the reactions, solvents and the introduction of ancillary ligands. Moreover, with the target Zn-Ln structure units with two terminal allyl, phenylethenyl and thienyl functional groups as the monomers, the constructions of series of Wolf Type II Zn2+-Ln3+-containing metallopolymer materials are obtained through the addition copolymerization. On the one hand, depending on the rule of "energy level match", the structure factors on Zn-Ln structure units with the high quantum efficiency (about1%) are studied. Moreover, series of novel PMMA, PS and PVK-supported Wolf Type II metallopolymer hybrid materials are obtained through the covalent-bonding. The detailed content is shown as follows:
     (1) On the self-assembly of Zn2+and Ln3+with Salen-type Schiff-base ligand H2L1(N, N'-bis(3-methoxy-salicylidene)cyclohexane-1,2-diamine) with both the inner cis-N2O2and the outer O2O2groups, the rules are summarized. When the reaction molar ratio of the ligand, Zn2+and Ln3+is1:1:1, the co-existence of OAc-and NOa-in alcohol-containing solvent systems, series of hetero-binuclear Zn-Ln complexes [Zn(OAc)Ln(L1)(NO3)2](Ln=Nd, Yb, Er or Gd, Ⅱ-2-5) with OAc-bridged between Zn2+and nine-coordinate Ln3+ion are obtained. While the further introduction of DMF, endows the obtainment of series of hetero-binuclear Zn-Ln complexes [Zn(OAc)Ln(L1)(NO3)2DMF](Ln=Nd, Yb, Er or Gd, Ⅱ-6-9) with OAc-bridged between Zn2+and ten-coordinate Ln3+ion. If the solvent of MeCN is used in the reaction systems, series of hetero-binuclear Zn-Ln complexes [Zn(MeCN)Ln(L1)(NO3)3](Ln=Nd, Yb, Er or Gd,11-10-13) are self-assembled, where the axial position of Zn2+is occupied by MeCN, and Ln3+are ten-coordinated from four O atoms of the O2O2moiety and six O atoms of three bidentate NO3-anions. On the other hand, under the condition of a molar ratio of2:2:1, the use of either OAc-or Cl-gives the similar series of hetero-trinuclear Zn2Ln complexes [Zn2Ln(L1)2(OAc)3](Ln=Nd, Yb, Er or Gd,11-14-17) or [Zn2Ln(L1)2(Cl)3](Ln=Nd, Yb, Er or Gd,11-18-21), respectively. Moreover, the co-existence of Cl" and NO3" also endows the obtainment of the similar series of hetero-trinuclear Zj^Ln complexes [Zn2Ln(L1)2(Cl)2(NO3)](Ln=Nd, Yb, Er or Gd,11-22-25). The results of their photophysical properties show that the hetero-trinuclear complexes exhibit relatively higher NIR quantum efficiency in comparison with the hetero-binuclear complexes, because of the plurality of more energy donors besides the reduction or avoidance of the quenching effect.
     (2) The further introduction of o-vanillin (HL2) as the ancillary ligand in self-assembly of ZnCl2and Ln(NO3)3with Salen-type Schiff base ligand H2L1, two series of hetero-trinuclear complexes [Zn(Cl)Ln2(L1)2(L2)(NO3)2](Ln=Nd, Yb, Er or Gd, Ⅲ-1-4) and [Zn(Cl)Ln(L1)(L2)(NO3)(MeCN)](Ln=Nd, Yb, Er or Gd, Ⅲ-5-8) are obtained by changing the molar amounts of Ln(NO3)3. If with pyridine as the ancillary ligand, hetero-nuclear complexes [Zn(Py)Ln(L1)(NO3)3](Ln=Nd, Yb, Er or Gd, Ⅲ-9-12) could be obtained, and the expected NIR quantum efficiency (about1%) is shown from the energy transfer of both the3LC and1LC of the ligands.
     (3) Ruled by the achievement from points (1) and (2), the introduction of two terminal allyl functional groups on the flexible Salen-type Schiff-base ligand for H2L3(N,N'-bis(5-allyl-3-methoxysalicylidene)cyclohexane-1,2-diamine), gives the products of [Zn(Py)Ln(L3)(NO3)3](Ln=La, Nd, Yb, Er or Gd, Ⅳ-1-5) complexes. Although the copolymerization with methyl methacrylate (MMA) in the presence of co-catalyst AIBN is expected, the doped hybrid materials PMMA/[Zn(Py)Ln(L3)(NO3)3])(Ln=La, Nd, Yb, Er or Gd, Ⅳ-6-12) are obtained due to the failure of radical polymerization between the terminal ally groups with MMA. Meanwhile, the thermal stability and photophysical properties of the doped hybrid materials are studied.
     (4) In order to overcome the limit of point (3), the new flexible Salen-type Schiff-base ligand H2L4(N,N'-bis(5-phenylethylene-3-methoxysalicylidene)cyclohexane-1,2-diamine) with two terminal phenylethylene functional groups is designed. With the obtained complexes [Zn(Py)Ln(L4)(NO3)3](Ln=La, Nd, Yb, Er or Gd, V-1-5) as the monomers, through the radical copolymerization with MMA, ST or NVK in the presence of co-catalyst AIBN, three series of Wolf Type Ⅱ metallopolymers Poly(MMA-Co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Nd, Yb, Er or Gd, V-6-12), Poly(ST-Co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Yb or Gd, V-13-15) and (Ln=Poly(NVK-Co-[Zn(Py)Ln(L4)(NO3)3])(Ln=La, Nd, Yb, Er or Gd, V-16-18) are successfully obtained, respectively. Also besides the check of thermal stabilities and photophysical properties, the Ln3+-based concentration quenching effect are studied, especially.
     (5) Through the modification of thiophene functional groups to the flexible Schiff base ligand for H2L5(N,N'-bis(5-thienyl-3-methoxysalicylidene)cyclohexane-1,2-diamine), its self-assembly with the new ligand with Zn3+, Ln3+and pyridine (Py), endows the obtainment of series of hetero-binuclear [Zn(Py)Ln(L5)(NO3)3](Ln=Nd, Yb, Er, Gd, Ⅵ-1-4). Moreover, the energy transfer and the sensitization of NIR luminescence of Ln3+ions are discussed, and their use for obtaining the conductive Zn2+-Ln3+-containing Wolf Type Ⅱ metallopolymers by electrochemical self-polymerization will be finished in the future.
引文
[1]Liu Z., Sun L., Shi L.-Y., et al. Near-Infrared Lanthanide Luminescence for Functional Materials[J]. Progress In Chemistry,2011,23:153-162
    [2]赵娜娜,姚丽华,近红外光谱技术在临床中的应用[J]. China foreign medical treatment, 2011,18:181-186
    [3]Slooff L. H., van Blaaderen A., Polman A., et al. Rare-earth doped polymers for planar optical amplifiers[J], Journal of Applied Physics,2002,91:3955-3980
    [4]Pizzoferrato R., Ziller T., Paolesse R., et al. Optical properties of novel Er-containing co-polymers with emission at 1530 nm[J]. Chemical Physics Letters,2006,426:124-129
    [5]Wang F. and Liu X.-G., Upconversion Multicolor Fine-Tuning:Visible to Near Infrared Emission from Lanthanide-Doped NaYF4 Nanoparticles[J]. Journal of The American Chemical Society,2008,130:5642-5643
    [6]Cassette E., Pons T., Bouet C., et al. Synthesis and Chracterization of Near-infrared Cu-In-Se/ZnS Core/Shell Quantum Dots for In vivo Imaging[J]. Chemistry of Materials, 2010,22:6117-6124
    [7]Boyer J. C., Carling C.-J., Gates B. D., et al. Two-way Photo-switching Using One Type of Near-infrared Light, Upconverting Nanoparticles and Changing Only the Light Intensity[J]. Journal Of The American Chemical Society,2010,132:15766-15772
    [8]Comby S. and Bunzli J.-C. G, Lanthanide Near-infrared Luminescence Probes and Devices[J]. Handbook on the Physics and Chemistry of Rare Earths,2007,37:217-470
    [9]Yang Y. X., Farley R. T., Steckler T. T., et al. Near-infrared Organic Light-emitting Devices Based on Donor-Acceptor-Donor Oligomers[J]. Applied Physics Letters,2008, 93:163305/1-163305/3
    [10]Ward. M. D., Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordination Chemistry Reviews,2007,251:1663
    [11]Koen B., Lanthanide-Based Luminescent Hybrid Materials[J]. Chemical Reviews,2009, 109:4283-4374;
    [12]Chen F.-F., Chen Z.-Q., Bian Z.-Q. et al. Sensitized luminescence from lanthanides in d-f bimetallic complexes[J]. Coordination Chemistry Reviews,2010,254:991-1010
    [13]Bunzli J. C., Benefiting from the unique properties of Lanthanide ions[J]. Accounts of Chemical Researeh,2006,39:53-6
    [14]Bunzli J. C. G., Piguet C. Taking advantage of luminescent lanthanide ions[J]. Chemieal Soeiety Reviews,2005,34:1048-1077
    [15]Ward M. D. Mechanisms of sensitization of lanthanide(III)-based luminescence in transition metal/lanthanide and anthracene/lanthanide dyads[J]. Coordination Chemistry Reviews,2010,254:2634-2642
    [16]Lis S., Elbanowski M., Makowska B., et al. Energy transfer in solution of lanthanide complexes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,150: 233-239
    [17]Weissman S. I. Intramolecular Energy Transfer The Fluorescence of complexes of Euro-Pium[J]. Jounal of Chemical Physics,1942,10:214-217
    [18]Huang W., Wu D.-Y., Guo D., et al. Efficient Near-infrared Emission of a Ytterbium(III) Compound with a Green Light Rhodamine Donor[J], Dalton Transactions,2009,2081-2084
    [19]Baner H., Blane J., Ross D, L. et al. Octacoordinate Chelates of Lanthanides. Two Series of Compounds [J]. Journal of The Americal Chemical Soeiety,1964,23:5125-5131
    [20]Sato S., Wada M. Relations between Intramolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth (3-diketone Chelates [J]. Bulletin of the Chemical Society of Japan,1970,43:1955-1962;
    [21]Nah M.-K., Cho H.-G., Kwon H.-J.m., et al. Photophysical Properties of Near-Infrared-Emitting Ln(Ⅲ) Complexes with 1-(9-Anthryl)-4,4,4-trifluoro-1,3-butandione (Ln= Nd and Er)[J]. The Journal of Physical Chemistry A,2006,35: 10371-10374;
    [22]Yuan Y.-F., Cardinaels T., Lunstroot K. et al. Rare-Earth Complexes of Fermcene-Containing Ligands:Visible-Light Excitable Luminescent Materials [J]. Inorganic Chemistry,2007,46:5302-5309
    [23]Seltzer M. D., Fallis S., Hollins R. A. et al. Curcuminoid Ligands for Sensitization of Near-Infrared Lanthanide Emission[J]. Journal of Fluorescence,2005,15:597-603
    [24]Yang. L., Gong Z., Nie D. et al. Promoting near-infrared emission of neodymium Complexes by tuning the singlet and triplet energy levels of P-diketonates[J]. New Journal of Chemistry,2006,30:791-796;
    [25]Wolbers M. P. O., van Veggel F. C. J. M., Peters F. G. A. et al. Sensitized Near-Infrared Emission from Nd3+ and Er3+ complexes of Fluoreseein-Bearing Calix[4]arene Cages[J]. Chemistry-A European Journal,1998,4:772-780
    [26]Werts M. H. V., Hofstraat J. W., Geurts F. A. J. et al. Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(Ⅲ) neodyium(Ⅲ) and erbium(III) Chelates[J]. Chemical Physics Letters,1997,276:196-201
    [27]Wolbers M. P. O., Van Veggel F. C. J. M., Snellink B. H. M. et al. Novel Preorganized HemisPherands To Eneapsulate Rare Earth Ions:Shielding and Ligand Deuteration for Prolonged Lifetimes of Exeited Eu3+ Ions[J]. Journal of The American Chemical society, 1997,119:138-144
    [28]Klink S. I., Alink P. O., Grave L. et al. Fluorescent dyes as efficient Photosensitizers for near-infrared Nd3+ emission[J] Journal of The Chemical society Perkin Transactions 2, 2001,363-372
    [29]Wolbers M. P. O., van Veggel F. C. J. M., Snellink B. H. M. et al. PhotoPhysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1:1 lanthanide ion complexes in methanol solutions[J]. Journal of The Chemical Society Perkin Transactions 2,1998,2141-2150
    [30]Hebbink G A., Klink S. I., Grave L. Singlet energy transfer as the main Pathway in the sensitization of near-infrared Nd3+ luminescence by dansyl and lissamine dyes[J]. A European Journal of Chemical Physics and Physical Chemistry,2002,12:1014-1018
    [31]Tang C. W., van Slyke S.A. Organic electroluminescent diodes[J].1987,51:913-915
    [32]Torelli S., Imbert D., Cantuel M. et al. Tuning the Decay Time of Lanthanide-based Infrared Luminescence from Micro-to Milliseconds through d-f Energy Transfer in Discrete Heterobimetallic Complexes[J]. Chemistry-A European Journal,2005,11: 3228-3242
    [33]Iwamuro M., Adachi T., Wada Y. et al. Remarkable photosensitized Luminescence of Neodymium(Ⅲ) Complexes with Halogenated 8-Quinolinol Derivatives[J]. Chemistry Letters,1999,28:539-541
    [34]Iwamuro M., Adaehi T., WadaY. et al. Photosensitized Luminescence of Neodymium(Ⅲ) Coordinated with 8-Quinolinolates in DMSO-d6[J]. Bulletin of The Chemical Society of Japan,2000,73:1359-1363
    [35]Van Deun R., Fias P., Driesen K. et al. Halogen substitution as an effieient tool to increase the near-infrared Photoluminescence intensity of erbium(Ⅲ) quinolinates in non-deuterated DMSO[J]. Physical Chemistry Chemical Physies,2003,13:2754-2758
    [36]Imbert D., Comby S., Chauvin A.S. Lanthanide 8-hydroxyquinoline-based Podates with efficient emission in the NIR range[J]. Chemical Communications,2005,1432-143;
    [37]Comby S., Imbert D., Vanderyver C. et al. A Novel Strategy for the Design of 8-Hydroxy quinolinate-Based Lanthanide Bioprobes That Emit in the Near Infrared Range[J]. Chemistry-A European Journal.2007,13:936-94;
    [38]Yang X.-P., Richard A. J. Anion Dependent Self-Assembly of "Tetra-Decker" and "Triple-Decker" Luminescent Tb(Ⅲ) Salen Complexes[J]. Journal of The American Chemical society,2005,127:7686-7687;
    [39]Yang X.-P., Richard A. J., Wong W.-K. Anion dependant self-assembly and the first X-ray structure of a neutral homoleptic lanthanide salen complex Tb4(salen)6[J]. Chemical Communications,2008,3266-3268;
    [40]Feng W.-X., Zhang Y, Lii X.-Q., et al. Near-infrared (NIR) luminescent homoleptic lanthanide Salen complexes Ln4(Salen)4 (Ln=Nd, Yb or Er)[J]. CrystEngCommun, 2012,14,3456-3463;
    [41]Feng W.-X., Zhang Y., Zhang Z., et al. Anion-Induced Self-Assembly of Luminescent and Magnetic Homoleptic Cyclic Tetranuclear Ln4(Salen)4 and Ln4(Salen)2 Complexes (Ln=Nd, Yb, Er, or Gd)[J]. Inorganic Chemistry,2012,51:11377-11386
    [42]Sakamoto M., Manseki K., Okawa H., d-f Heteronuclear Complex:Synthesis, Structure and Physicochemical Aspects[J], Coordination Chemistry Reviews,2001,379-414
    [43]Imbert D., Cantuel M., Biinzli J.-C. G, et al. Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(Ⅲ) Sensitization in Discrete Bimetallic Edifices[J]. Journal of the American Chemical Society,2003, 125:15698-15703
    [44]Bi W.-Y, Lu X.-Q., Chai W.-L. et al. Effect of Heavy-Atom (Br) at the Phenyl Rings of Schiff-Base Ligands on the NIR Luminescence of their Bimetallic Zn-Nd Complexes[J]. Zeitschrift fur anorganische und allgemeine Chemie.2008,634:1795-1800
    [45]Klink S. I., Keizer H. and van Veggel F. C. J. M., Organo-metal Complexes as a New Class of Photosensitizers for Near-infrared Lanthanide Eimission[J]. Angewandte Chemie International Edition,2000,39:4319-4321
    [46]Guo D., Duan C.-Y., Lu F., et al. Lanthanide Heterometallic Molecular Square Ru2-Ln2 Exhibiting Sensitized Near-infrared Emission[J]. Chemical Communications,2004, 1486-1487
    [47]Pope S. J. A., Coe B. J., Faulkner S., et al. Self-Assembly of Heterobimetallic d-f Hybrid Complexes:Sensitization of Lanthanide Luminescence by d-Block Metal-to-Ligand Charge-Transfer Excited States[J]. Journal of the American Chemical Society,2004,126:9490-9497
    [48]Pope S. J. A., Coe B. J., Faulkner S., et al. Metal-to-ligand charge-transfer sensitisation of near-infrared emitting lanthanides in trimetallic arrays M2Ln (M=Ru, Re or Os; Ln= Nd, Er or Yb)[J]. Dalton Transactions,2005,1482-1489
    [49]Shavaleev N. M., Moorcraft L. P., Pope S. J. A., et al. Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(Ⅱ) fragment as an antenna group [J]. Chemical Communications,2003,1134-1137
    [50]Shavaleev N. M., Moorcraft L. P., Pope S. J. A., et al. Sensitized Near-Infrared Emission from Complexes of YbⅢ, NdⅢ and ErⅢ by Energy-Transfer from Covalently Attached PtⅡ-Based Antenna Units[J]. Chemistry-A European Journal,2003,9:5283-
    [51]Kennedy F., Shavaleev N. M., Koullourou T., et al. Sensitised near-infrared luminescence from lanthanide(Ⅲ) centres using Re(Ⅰ) and Pt(Ⅱ) diimine complexes as energy donors in d-f dinuclear complexes based on 2,3-bis(2-pyridyl)pyrazine[J]. Dalton Transactions,2007,1492-1499
    [52]Shavaleev N. M., Accorsi G, Virgili D., et al. Syntheses and Crystal Structures of Dinuclear Complexes Containing d-Block and f-Block Luminophores. Sensitization of NIR Luminescence from Yb(Ⅲ), Nd(Ⅲ), and Er(Ⅲ) Centers by Energy Transfer from Re(Ⅰ)-and Pt(Ⅱ)-Bipyrimidine Metal Centers[J]. Inorganic Chemistry.2005,44:61-69
    [53]Shavaleev N. M., Bell Z. R., Ward M. D., A simple, general synthesis of mixed d-f complexes containing both{Re(CO)3Cl(diimine)} and lanthanide-tris (β-diketonate) luminophores linked by bis-diimine bridging ligands[J]. Journal of the Chemical Society, Dalton Transactions,2002,3925-3931
    [54]Cantuel M., Gumy F., Biinzli J.-C. G., et al. Encapsulation of labile trivalent lanthanides into a homobimetallic chromium(Ⅲ)-containing triple-stranded helicate. Synthesis, characterization, and divergent intramolecular energy transfers[J]. Dalton Transactions, 2006,2647-2654
    [55]Cantuel M., Bernardinelli G, Imbert D., et al. A kinetically inert and optically active CrⅢ partner in thermodynamically self-assembled heterodimetallic non-covalent d-f podates [J]. Journal of the Chemical Society, Dalton Transactions,2002,1929;
    [56]Wong W.-K., Hou A.-X., Guo J.-F., et al. Synthesis, structure and near-infrared luminescence of neutral 3d-4f bi-metallic monoporphyrinate complexes[J]. Journal of the Chemical Society, Dalton Transactions,2001,3092-3099
    [57]Wong W.-K., Liang H.-Z., Wong W.-Y., et al. Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes[J]. New Journal of Chemistry,2002,26:275
    [58]Lo W.-K., Wong W.-K., Guo J.-F., et al. Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes[J]. Inorganica Chimica Acta,2004, 357:4510-4518
    [59]Lo W.-K., Wong W.-K., Wong W.-Y, et al. Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) Phenylene-Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence[J]. Inorganic Chemistry 2006,45:9315-3921
    [60]Yang X.-P., Richard.A. J., Wu Q.-Y, et al. Synthesis, crystal structures and antenna-like sensitization of visible and near infrared emission in heterobimetallic Zn-Eu and Zn-Nd Schiff base compounds[J]. Polyhedron,2006,25:271-278
    [61]Bi W.-Y, Lu X.-Q., Chai W.-L., et al. Synthesis, structure and near-infrared (NIR) luminescence of three solvent-induced pseudo-polymorphic complexes from a bimetallic Zn-Nd Schiff-base molecular unit[J]. Inorganic Chemistry Communication,2008,11: 1316-1321
    [62]Bi W.-Y., Lu X.-Q., Chai W.-L., et al. Construction and NIR luminescent property of hetero-bimetallic Zn-Nd complexes from two chiral salen-type Schiff-base ligands [J]. Journal of Molecular Structure,2008,891:450-456
    [63]Yang X.-P., Richard A. J., Lynch V., et al. Synthesis and near infrared luminescence of a tetrametallic Zn2Yb2 architecture from a trinuclear Zn3L2 Schiff base complex[J]. Dalton Transactions,2005,849-855
    [64]Yang X.-P., Richard A. J., Wong W.-K., et al. Design and synthesis of a near infra-red luminescent hexanuclear Zn-Nd prism[J]. Chemical Communication,2006,1836
    [65]Lu X.-Q., Bi W.-Y., Chai W.-L., Richard A. J., et al. Tetranuclear NIR luminescent Schiff-base Zn-Nd complexes[J]. New Journal of Chemistry,2008,32:127-133
    [66]Wong W.-K., Yang X.-P., Richard A. J., et al. Multinuclear Luminescent Schiff-Base Zn-Nd Sandwich Complexes[J]. Inorganic Chemistry,2006,45:4340-4348
    [67]Feng W.-X., Hui Y.-N., Wei T., et al. Anion-induced near-infrared (NIR) luminescent Zn2Nd and ZnNd complexes based on the pure Salen-type Schiff-base ligand[J]. Inorganic Chemistry Communications,2011,14:75-78
    [68]Hui Y.-N., Feng W.-X., Wei T., et al. Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln3+ complexes [J]. Inorganic Chemistry Communications,2011,14:200-204
    [69]Feng W.-X., Hui Y-N., Shi G.-X., Synthesis, structure and near-infrared (NIR) luminescence of series of Zn2Ln (Ln=Nd, Yb or Er) complexes based on the Salen-type Schiff-base ligand with the flexible linker [J]. Inorganic Chemistry Communications, 2012,20:33-36
    [70]Zhang Y., Feng W.-X., Liu H., et al. Photo-luminescent hetero-trinuclear Zn2Ln (Ln=Nd, Yb, Er or Gd) complexes based on the binuclear Zn2L precursor[J]. Inorganic Chemistry Communications,2012,24:148-152
    [71]Wang Z., Feng W.-X., Su P.-Y., et al. Hetero-trinuclear near-infrared (NIR) luminescent ZnLn2 (Ln=Nd, Yb or Er) complexes based on monomer ZnL Schiff-base precursor and o-vanillin[J]. Inorganic Chemistry Communications,2013,36:11-13
    [72]Lu X.-Q., Feng W.-X., Hui Y.-N., et al. Near-Infrared Luminescent, Neutral, Cyclic Zn2Ln2 (Ln=Nd, Yb, and Er) Complexes from Asymmetric Salen-Type Schiff Base Ligands[J]. European Journal of Inorganic Chemistry,2010,2714-2722
    [73]Lii X.-Q., Bi W.-Y, Chai W.-L., et al. Multinuclear NIR Luminescent 1,4-BDC Bridged Schiff-base Complexes of Nd(Ⅲ)[J]. Polyhedron,2009,28:27-32
    [74]Bunzli J.-C. Comby G, S., Chauvin A.-S., et al. New Opportunities for Lanthanide Luminescence [J]. journal of rare earths,2007,25:257-274
    [75]Yan, B. Recent progress in photofunctional lanthanide hybrid materials[J]. RSC Advances,2012,2:9304-9324
    [76]Wolff N. E., Pressly R. J. Optical maseraxtion in Eu3+-containing organic matrix[J]. Applied Physics Letters,1963,8:152-154
    [77]J. M de Souza, S Alves Jr., G. F De Sa, et al. Doped polymers with Ln (Ⅲ) complexes: simulation and control of light colors[J]. Journal of Alloys and compounds,2002,344: 320-322
    [78]Bonzanini R., Dias D. T., Girottoa E. M., et al. Spectroscopic properties of polycarbonate and poly(methylmethacrylate) blends doped with europium(Ⅲ) acetylacetonate[J]. Journal of Luminescence,2006,117:61-67
    [79]Bonzanini R., Girottoa E. M., Goncalves M. C., et al. Effeets of europium (Ⅲ) acetylacetonate doping on the miscibility and photoluminescent properties of polycarbonate and poly(methyl methacrylate) blends[J]. Polymer,2005,46:253-259
    [80]Holliday B. J., Swager T. M., Conducting metallopolymers:the roles of molecular architecture and redox matchin[J]. Chemical Communication,2005,23-29
    [81]Manners I., Synthetic Metal-Containing Polymers[M], Wiley-VCH,2004
    [82]Wolf M. O., Transition-Metal-Polythiophene Hybrid Materials [J]. Advanced Materials, 2001,545-551
    [83]Whittell G R., Hager M. D., Schubert U. S., et al. Functional soft materials from metallopolymers and metallosupramolecular polymers[J]. Nature Material,2011,10: 176-184
    [84]Wang X.-Z., Ho C.-L., Yan L., et al. Synthesis, Characterization and Photovoltaic behavior of a Very Narrow-Bandgap Metalpolyyne of Platium:Solar Cell and Photocurrent Extended to Near-infrared Wavelength[J], Journal of Inorganic and Organometallic Polymers and Materials,2010,20:478-487
    [85]Mejia M. L., Agapiou K., Yang X., et al. Seeded Growth of CdS Nanoparticles within a Conducting Metallopolymer Matrix [J]. Journal of the American Chemical Society,2009, 131:18196-18204
    [86]Mejia M. L., Reeske G, Holliday B. J., Gallium-containing conducting metallopolymers which display chemically tunable reactivity for the growth of Ga2S3 semiconducting nanoparticles[J]. Chemical Communication,2010,46:5355-5362
    [87]Zhu X.-J., Holliday B. J., Electropolymerization of a Ruthenium(Ⅱ) Bis-(pyrazolyl)pyridine Complex to Form a Novel Ru-Containing Conducting Metallopolymer [J]. Macromolecular Rapid Communications,2010,31:904-911
    [88]Holliday B. J., Stanford T. B., Swager T.M., Chemoresistive Gas-Phase Nitric Oxide Sensing with Cobalt-Containing Conducting Metallopolymers[J]. Chemistry of Materials,2006,18:5649-5655
    [89]Clot O., Wolf M. O., Patrick B. O., Electropolymerization of a Cyclometalated Terthiophene:A Hybrid Material with a Palladium-Carbon Bond to the Backbone[J]. Journal of the American Chemical Society,2000,122:10456-10462
    [90]Rogers C. W., Wolf M. O., Luminescent molecular sensors based on analyte coordination to transition-metal complexes [J]. Coordination Chemistry Reviews,2002, 233-234:341-349
    [91]Angell S. E., Rogers C. W., Zhang Y, et al. Hemilabile coordination complexes for sensing applications [J]. Coordination Chemistry Reviews,2006,250:1829-1836
    [92]Zhu S. S., Carroll P. J., Swager T. M., Conducting Polymetallorotaxanes:A Supramolecular Approach to Transition Metal Ion Sensors [J]. Journal of the American Chemical Society,1996,118:8713-8722
    [93]Shunmugam R., Tew G. N., Polymers that Contain Ligated Metals in their Side Chain: Building a Foundation for Functional Materials in Opto-Electronic Applications with an Emphasis on Lanthanide Ions[J]. Macromolecular Rapid Communications[J].2008,29: 1355-1363
    [94]Binnemans K., Lanthanide-Based Luminescent Hybrid Materials[J]. Chemical Reviews, 2009,109:4283-4304
    [95]李孝红,吕培芝,袁小燕等.稀土-丙烯酸共聚物配合物水溶液稳定性的研究[J].稀土,1998,6:9-14
    [96]杨云峰,高保娇,徐立等.光致发光稀土铕高分子配合物的合成研究初探[J].华北工学院学报,2002,3:216-218
    [97]Kwok C.-C., Yu S.-C., Sham I. H. T., et al. Self-assembled Zinc(II) SchifF Base Polymers for Applications in Polymer Light-emitting Devices[J]. Chemical Communication,2004,2758-2759
    [98]Peng Q., Xie M.-G., Huang Y., et al. Novel Supramolecular Polymers Based on Zinc-Salen Chromophores for Efficient Light-Emitting Diodes [J]. Macromolecular Chemistry and Physics,2005,206:2373-2380
    [99]Wang X.-Z., Ho C.-L., Yan L., et al. Synthesis, Characterization and Photovoltaic behavior of a Very Narrow-Bandgap Metalpolyyne of Platium:Solar Cell and Photocurrent Extended to Near-infrared Wavelength[J]. Journal of Inorganic and Organometallic Polymers,2010,20:478-487
    [100]Pietrangelo A., Sih B. C., Boden B. N., et al. Nonlinear Optical Properties of Schiff-base-containing Conductive Polymer Films Electro-deposited in Microgravity[J]. Advanced Materials,2008,20:2280-2284
    [101]Desa G F., Malta O. L., Donoga, et al. Spectroscopic properties and design of highly lumi-nescent lanthanide coordination complexes[J]. Coordination Chemistry Reviews, 2000,1:165-195
    [102]Fan W. Q., Feng J., Song S. Y, et al. Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA[J]. Nanoscale,2010,2:2096-2103
    [103]Chen X.-Y, Yang X.-P., Holliday B. J., Photoluminescent Europium-containing Inner Sphere Conducting Metallopolymer[J]. Journal of American Chemical Society,2008, 130:1546-1547
    [104]Kang T.-S., Harrison B. S., Bouguettaya M., et al. Near-infrared Light-emitting Diodes (LEDs) Based on Poly(ohenylene)/Yb-tris(β-diketonate) Complexes[J], Advanced Functional Materials,2003,13:205-210
    [105]Riordan A. O., Deun R. V., Mairiaux E., et al. Synthesis of a Neodymium-quinolate Complex for Near-infrared Electroluminescence Application[J]. Thin Solid Films.2008, 516:5098-5102
    [106]Chen Z.-Q., Ding F., Bian Z.-Q., Efficient Near-infrared Organic Light-emitting Diodes Based on Multimetallic Assemblies of Lanthanides and Iridium Complexes[J]. Organic Electronics,2010,11:369-376
    [107]Wolf M. O., Zhu Y., Electropolymerization of Oligothienylferrocene Complexes [J]. Advanced Materials,2000,12:599-609
    [108]Hesterberg T. W., Yang X., Holliday B. J., Polymerizable cationic iridium(III) complexes exhibiting color tunable light emission and their corresponding conducting metallopolymers[J]. Polyhedron,2010,29:110-118
    [109]Chou M.-Y., Leung M.-K., Su Y O., et al. Electropolymerizations of Starburst Triarylamines and Their Applications to Electrochromism and Electroluminescence [J]. Chemistry of Materials,2004,16:654-661
    [110]Gu C., Fei T., Yao L., et al. Multilayer Polymer Stacking by In Situ Electrochemical Polymerization for Color-Stable White Electroluminescence [J]. Advanced Materials, 2011,23:527-533
    [1]Marius. A, Compartmental Schiff-base ligands a rich library of tectons in designing magnetic and luminescent materials[J], Chemical Communication,2011,47:3025-3042
    [2]Petond S., Cohen S. M., Bunzli J.-C. G. et al Stable lanthanide luminescence agents highly emissive in aqueous solution:multidentate 2-hydroxyisopthalamide complexes of Sm3+, Eu3+, Tb3+, Dy3+[J]. Journal of the American Chemical Society,2003,44:13324-13325
    [3]Rachel. C. E, Peter. D, Christopher. J. W, Coordination complexes exhibiting room-temperature phosphorescence:Evaluation of their suitability as triplet emitters in organic light emitting diodes[J], Coordation Chemistry Reviews,2006,50:2093-2113
    [4]Otto. S. W, Wu M, Lin Z.-H., Fluorescent Imaging of Citrate and Other Intermediates in the Citric Acid Cycle[J]. Angewandte Chemie International Edition,2002,41:4495-4503
    [5]Pandya S., Yu J.-H., Parker D., Engineering emissive europium and terbium complexes for molecular imaging and sensing[J]. Dalton Trans.2006,2757-2762
    [6]Yuan J.-L., Wang G.-L., Lanthanide-based luminescence probes and time-resolved luminescence bioassays[J]. TRAC Trends in Analytical Chemistry,2006,25:490-498
    [7]Motson G. R., Fleming J. S., Brooker S., Potential Applications For The Use Of Lanthanide Complexes As Luminescent Biolabels[J]. Advances In Inorganic Chemistry 2004,55:361-366
    [8]Steemers F. J., Verboom W., Reinhoudt D. N., et al New Sensitizer-Modified Cali-x[4] arenes Enabling Near-UV Excitation of Complexed Luminescent Lanthanide I-ons[J]. Journal of the American Chemical Society,1995,117:9408-9414
    [9]Ward M.D., Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordation Chemistry Reviews,2007,251:1663-1685
    [10]Klink S.I., Keizer H., van Veggel F.C.J.M., Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence[J]. Angewandte Chemie International Edition,2000,39:4319-4324
    [11]Lo W.-K., Wong W.-K., Guo J.-P., et al Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiffbase complexes[J]. Inorganica Chimica Acta,2004, 35:4510-4521
    [12]Zhao S.-S., Lu X.-Q., Hou A.-X., et al, Heteronuclear trimetallic and 1D polymeric 3d-4f Schiff base complexes with OCN- and SCN- ligands[J]. Dalton Transactions, 2009,9595-9602;
    [13]Gao T., Xu L.-L., Zhang Q., et al Salen-type heteronuclear 3d-4f complexes engineering by anion PF6 with near-infrared (NIR) and luminescent properties [J]. Inorganic Chemistry Communications,2012,26:60-63
    [14]Lu X.-Q., Bi W.-Y., Chai W.-L., et al Tetranuclear NIR luminescent Schiff-base Zn-Nd complexes[J], New Journal if Chemistry,2008,32:127-131
    [15]Gao T., Yan P.-F., Li G.-M., et al N, N'-Ethylene-bis(3-methoxysalicylideneimine) mononuclear (4f) and heterodinuclear (3d-4f) metal complexes:synthesis, crystal structure and luminescent properties [J], Inorganica Chimica Acta,2008,361:2051-2058
    [16]Bi W.-Y., Lu X.-Q., Chai W.-L., et al Effect of heavy-atom (Br) at the phenyl rings of Schiff-base ligands on the NIR luminescence of their bimetallic Zn-Nd complexes[J], Zeitschrift fur anorganische und allgemeine Chemie,2008,634:1795-1800
    [17]Feng W.-X., Hui Y.-N., Shi G.-X., et al Synthesis, structure and near-infrared (NIR) luminescence of series of Zn2Ln (Ln=Nd, Yb or Er) complexes based on the Salen-type Schiff-base ligand with the flexible linker[J], Inorganic Chemistry Communications,2012,20:33-36
    [18]Lo W.-K., W.-K. Wong, W.-Y. Wong, et al Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) phenylene-bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd3+ luminescence[J], Inorganic Chemistry,2006,45:9315-9325
    [19]G. M. Sheldrick, SADABS, University of Gottingen,1996
    [20]Lam F., Xu J.-X., Chan K.S. Binucleating Ligands:Synthesis of Acyclic Achiral and Chiral Schiff Base-Pyridine and Schiff Base-Phosphine Ligands[J]. Journal of Organic Chemistry,1996,61:8414
    [21]Hui Y.-N., Feng W.-X., Wei T., et al Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln+ complexes [J], Inorganic Chemistry Communications 2011,14,200-204
    [22]Wei T., Zhao S.-S., Bi W.-Y., et al Co-existence of heterometallic Zn2Er and ZnEr arrayed chromophores for the sensitization of near-infrared (NIR) luminescence[J], Inorganic Chemistry Communications 2009,14:1216-1219
    [23]Yang X.-P., Chan C., Lam D., et al Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J], Dalton Trans,2012,41,11449;
    [24]Carnall W. T., Fields P. R., Rajnak K., Electronic energy levels of trivalent lanthanide aquo ions. Ⅱ. Gd3+[J], Journal of Chemical Physics,1968,49:4443-4446
    [25]Freidzon A. Y., Scherbinin A. V., Bagaturyants A. A., et al Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices[J], Journal of Physical Chemistry A,2011,115:4565-4573
    [26]Dexter D. L., A theory of sensitized luminescence in solid[J], Journal of Chemical Physics,953,21:836-850
    [27]Weber M. J., Radiative and multiphonon relaxation of rare-ions in Y2O3[J], Physical Review,1968,171:283-291
    [1]Lo W-K., Wong W-K., Wong W-Y, et al, Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) Phenylene-Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd3+ Luminescence[J]. Inorganic Chemistry,2006,45:9315-9325
    [2]Zhao S.-S., Liu X.-R., Feng W.-X., et al, Effective enhancement of near-infrared emission by carbazole modification in the Zn-Nd bimetallic Schiff-base complexes[J]. Inorg. Chemical Communication,2012,20:41-45
    [3]Bi W.-Y., Lu X.-Q., Chai W.-L., et al, Effect of heavy-atom (Br) at the phenyl rings of Schiff-base ligands on the NIR luminescence of their bimetallic Zn-Nd complexes[J]. Zeitschrift fur anorganische und allgemeine Chemie,2008,634:1795-1800
    [4]Bi W.-Y., Lu X.-Q., Chai W.-L., et al, Construction and NIR luminescent property of hetero-bimetallic Zn-Nd complexes from two chiral Salen-type Schiff-base ligands[J]. Journal of Molecular Structure,2008,891:450-455
    [5]Lu X.-Q., Feng W.-X., Hui Y.-N., et al, Near-Infrared Luminescent, Neutral, Cyclic Zn2Ln2 (Ln=Nd, Yb, and Er) Complexes from Asymmetric Salen-Type Schiff Base Ligands[J], European Journal of Inorganic Chemistry,2010,2714-2722
    [6]Bi W.-Y., Wei T., LuX.-Q., et al, Hetero-trinuclear near-infrared (NIR) luminescent Zn2Ln complexes from Salen-type Schiff-base ligands [J]. New Journal of Chemistry, 2009,33:2326-2334
    [7]Lu X.-Q., Bi W.-Y, Chai W.-L., et al, Tetranuclear NIR luminescent Schiff-base Zn-Nd complexes[J], New Journal of Chemistry,2008,32:127-131
    [8]Lu X.-Q, Bi W.-Y, Chai W.-L., et al, Multinuclear NIR luminescent 1,4-BDC bridged Schiff-base complexes of Nd(Ⅲ)[J]. Polyhedron,2009,28:27-32
    [9]Ward. M. D., Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordation Chemistry Reviews,2007,251:1663
    [10]Yang X.-P., Chan C., Lam D., et al, Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J]. Dalton Transactions,2012,41: 11449-11458
    [11]Carnall W. T., Fields P. R., Rajnak K., Electronic energy levels of trivalent lanthanide aquo ions. Ⅱ. Gd3+[J], Journal of Chemical Physics,1968,49:4443-4446
    [12]Freidzon A. Y., Scherbinin A. V., Bagaturyants A. A., edt al, Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices[J], Journal of Physical Chemistry A,2011,115:4565-4573
    [13]Dexter D. L., A theory of sensitized luminescence in solid[J], Journal of Chemical Physics,1953,21:836-850
    [14]Weber M.J., Radiative and multiphonon relaxation of rare-ions in Y2O3[J], Physics Review,1968,171:283-291
    [1]Whittell G. R., Manners I., Metallopolymers:New multifunctional materials[J]. Advanced Materials,2007,19:3439-3468
    [2]Chen Z.-Q., Ding F., Bian Z.-Q. et al, Efficient Near-infrared Organic Light-emitting Diodes Based on Multimetallic Assemblies of Lanthanides and Indium Complexes[J]. Organic Electronics,2010,11:369-376
    [3]Pope S. J. A., Coe B. J., Faulkner S., et al, Metal-to-ligand Charge-transfer Sensitisation of Near-infrared Emitting Lanthanides in Trimetallic Arrays M2Ln (M=Ru, Re or Os; Ln =Nd, Er or Yb)[J], Dalton Transactions,2005,1482-1490
    [4]O'Riordan A., Deun R. V., Mairiaux E., et al, Synthesis of a Neodymium-quinolate Complex for Near-infrared Electroluminescence Application[J]. Thin Solid Films,2008, 516:5098-5102;
    [5]Kang T.-S., Harrison B. S., Bouguettaya M., et al, Near-infrared Light-emitting Diodes (LEDs) Based on Poly(ohenylene)/Yb-tris(P-diketonate) Complexes[J]. Advanced Functional Materials,2003,13:205-210
    [6]Chen X.-Y., Yang X.-P., Holliday B. J., Photoluminescent Europium-containing Inner Sphere Conducting Metallopolymer[J]. Journal of American Chemical Society,2008,130: 1546-1547
    [7]Hui Y.-N., Feng W.-X., Wei T., et al Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln3+ complexes [J], Inorganic Chemistry Communications,2011,14,200-204
    [8]Ward. M. D., Transition-metal sensitised near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordation Chemistry Reviews,2007,251:1663-1682
    [9]Yang X.-P., Chan C., Lam D., et al, Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J]. Dalton Transactions,2012,41: 11449-11456
    [10]Carnall W.T., Fields P.R., Rajnak K., Electronic energy levels of trivalent lanthanide aquo ions. II. Gd3+[J], Journal of Chemical Physics,1968,49:4443-4446
    [11]Freidzon A. Y., Scherbinin A. V., Bagaturyants A. A., et al Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices[J], Journal of Physics Chemistry A,2011,115:4565-4573
    [12]Dexter D. L., A theory of sensitized luminescence in solid[J], The Journal of Chemical Physics,1953,21:836-850
    [13]Weber M. J., Radiative and multiphonon relaxation of rare-ions in Y2O3[J], Physics Review,1968,171:283-291
    [1]Hui Y.-N., Feng W.-X., Wei T., et al Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln3+ complexes [J], Inorganic Chemistry Communications,2011,14:200-204
    [2]Carnall W. T., Fields P. R., Rajnak K., Electronic energy levels of trivalent lanthanide aquo ions. Ⅱ. Gd3+[J], The Journal of Chemical Physics,1968,49:4443-4446
    [3]毕卫宇.锌(Ⅱ)-钕(Ⅲ)席呋碱配合物的合成、晶体结构与近红外发光性质研究[D].西安:西北大学,2009
    [4]Freidzon A. Y., Scherbinin A. V., Bagaturyants A. A., et al Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices[J], Journal of Physical Chemistry A,2011,115:4565-4573
    [5]Yang X.-P., Chan C., Lam D., et al Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J], Dalton Transactions,2012,41, 11449-11456
    [6]Dexter D. L., A theory of sensitized luminescence in solid[J], The Journal of Chemical Physics,1953,21:836-850
    [7]Weber M. J., Radiative and multiphonon relaxation of rare-ions in Y2O3[J], Physics Review.1968,171:283-291
    [1]Vorotyntsev M. A., Vasilyeva S. V., Metallocene-containing conjugated polymers[J]. advances in colloid and interface science,2008,139:97
    [2]Byrne P. D., Lee D., Muller P., et al. Polymerization of thiophene containing cyclobutadiene Co cyclopentadiene complexes[J]. Synthetic Metals,2006,156,784
    [3]Skompska M., Vorotyntsev M. A., Goux J., et al. Moise, Electrochemical properties of metallocene hydroxo and oxo complexes of Ta(V):[Cp*(CpR)TaOHCl]+Cl-, R=H, SiMe3 or (CH2)3NC4H4, Cp*(Cp(CH2)3NC4H4) TaOCl:Electrochemical deposition of conducting polymer film with incorporated tantalocene complexes [J]. Electrochim Acta, 2008,53:3844
    [4]Chen X.-Y., Yang X.-P., Holliday B. J., Photoluminescent Europium-Containing Inner Sphere Conducting Metallopolymer[J]. Journal of American Chemical Society,2008,130: 1546-1547
    [5]Yao C.-J, Yao J.-N, Zhong Y.-W., Metallopolymeric Films Based on a Biscyclometalated Ruthenium Complex Bridged by 1.3.6.8-Tetra(2-pyridyl) pyrene:Applications in Near-Infrared Electrochromic Windows[J]. Inorganic Chemistry,2012,51:6259-6263
    [6]Jones C., Richard P. R., Andreas S., Synthesis and characterisation of zinc gallyl complexes:First structural elucidations of Zn-Ga bonds [J]. Dalton Transactions,2007, 2229
    [7]Hui Y.-N., Feng W.-X., Wei T., et al. Adjustment of coordination environment of Ln3+ ions to modulate near-infrared luminescent properties of Ln3+complexes [J]. Inorganic Chemistry Communications,2011,14:200-204
    [8]Yang X.-P., Chan C., Lam D., et al. J. Holliday, W.-K. Wong, S.C. Chen and Q. Chen, Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J]. Dalton Transactions,2012,41:11449
    [9]Yang X.-P., Chan C., Lam D., et al Anion-dependent construction of two hexanuclear 3d-4f complexes with a flexible Schiff base ligand[J], Dalton Trans,2012,41,11449;
    [10]Carnall W. T., Fields P. R., Rajnak K., Electronic energy levels of trivalent lanthanide aquo ions. Ⅱ. Gd3+[J]. Journal of Chemical Physics,1968,49:4443-4446
    [11]Dexter D. L., A theory of sensitized luminescence in solid[J]. Journal of Chemical Physics,1953,21:836-850
    [12]Freidzon A. Y., Scherbinin A. V., Bagaturyants A. A., et al. Ab initio study of phosphorescent emitters based on rare-earth complexes with organic ligands for organic electroluminescent devices[J]. Journal of Physical Chemistry A,2011,115:4565-4573
    [13]Weber M. J., Radiative and multiphonon relaxation of rare-ions in Y2O3[J]. Physics Review,1968,171:283-291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700