锌(Ⅱ)-钕(Ⅲ)稀夫碱配合物的合成、晶体结构与近红外发光性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于在传感器、激光、光纤通讯、荧光成像等方面具有显著应用价值,镨(Ⅲ)、钕(Ⅲ)、铒(Ⅲ)、镱(Ⅲ)等镧系金属离子配合物所发射的近红外(NIR)光近年来日益吸引着人们的兴趣和关注。为了克服镧系金属离子中宇称禁阻的f-f跃迁导致消光系数较低的不足,人们通常使用具有强吸光能力的发色团作为天线来敏化其近红外发光。本论文中采用锌离子的稀夫碱配合物作为天线来敏化钕离子的近红外发光,通过采用“配合物作配体”和“结点-连接臂”方法合成了二十个新的异双核或异多核的锌(Ⅱ)-钕(Ⅲ)稀夫碱配合物,其晶体结构全部由X射线单晶衍射确定,研究了其光致近红外发光性质,并从中选择发光性质较好的配合物制作了有机发光二极管(OLED)考察了相应的电致近红外发光性能。
     为了优化钕离子周围的配位环境使其远离可以导致近红外发光部分淬灭的高能振荡基团,如含有羟基的溶剂分子等,本论文首先在锌离子的轴向位置引入吡啶分子而得到四个异双核配合物:[Zn(μ-L~1)Nd(NO_3)_3(Py)]·MeCN(2);[Zn(μ-L~2)Nd(NO_3)_3(H_2O)(Py)](4);[Zn(μ-L~3)Nd(NO_3)_3(Py)](6)和[Zn(μ-L~4)Nd(NO_3)_3(Py)]·MeCN(8),其中配合物2,6,8中吡啶分子在锌离子的轴向配位有效消除了钕离子周围的高能振荡基团,同时重原子效应被证明对近红外发光有显著强化作用。其次通过合成两个含有手性稀夫碱的配合物:[Zn(μ-L~5)Nd(NO_3)_2(OAc)](10)和[Zn(μ-L~6)Nd(NO_3)_3(DMF)_2](12),考察了手性配体对钕离子配位环境的影响。通过合成三个假多晶型的异双核配合物:[Zn(μ-L~3)Nd(OAc)(NO_3)_2(DMF)]·Solvate(Solvate:EtOH(13);THF(14);MeCN(15)),本论文研究了分子间作用力对近红外发光的影响,固体近红外发射光谱表明分子间较强的π-π堆积作用对近红外发光有部分淬灭作用。
     通过引入4,4'-bpy和4,4'-bpe作桥联配体组装出两个异四核配合物:[Zn_2(μ-L~1)_2Nd_2(4,4'-bpy)(NO_3)_6]·Et_2O_(16)和[Zn_2(μ-L~1)_2Nd_2(4,4'-bpe)(NO_3)_6]·2H_2O(17),其近红外发光较异双核前躯体有明显增强。当采用对苯二甲酸作为桥联配体时,在不同的溶剂体系和反应物配比时合成出三种不同结构的配合物:[Zn_2(μ-L~1)2Nd_2(1,4-bdc)(NO_3)_4(EtOH)_2]·2MeCN(18); [Zn_4(μ-L~1)_4Nd_2(1,4-bdc)_2](NO_3)_2·2Et_2O·4H_2O(19)和[Zn_4(μ-L~1)_4Nd_2(1,4-bdc)_2]·[Zn(μ-L~1)Nd(NO_3)_3(OAc)_2]_2(20),其近红外发光强度按照19>20>18的顺序而递减进一步表明多发色团和多发光中心对近红外发光具有强化作用。异烟酸(HIN)作为桥联配体时,根据稀夫碱配体刚性的不同分别得到具有二维配位聚合物结构的[Zn(μ-L~1)Nd(IN)(NO_3)_2]。(21)和具有简单异双核结构的[Zn(μ-L~3)Nd(IN)(NO_3)_2(DMF)](22)。
     本论文也在不引入桥联配体的情况下合成了异多核配合物,在稀夫碱配体结合位点减少时得到两个异三核配合物:[Zn_2(μ-L~7)Nd(NO_3)_3(Py)_2]·H_2O(25)和[Zn_2(μ-L~8)Nd(NO_3)_3(Py)_2]·Et_2O·H_20(27),其中锌离子的轴向位置由吡啶分子配位,钕离子的配位球内无高能振荡基团。在Nd-O_(phenol)互补配位作用的驱动下得到两个环状四核配合物:[Zn(μ-L~(10))Nd(NO_3)_2(DMF)(Py)]_2·(Et_2O)_2(30)和[Zn(μ-L~9)Nd(NO_3)_2(DMF)_2]_2(33),并得到上述化合物中钕离子发光的内在量子产率和天线基团对钕离子的能量传递速率常数。
     最后本论文将配合物25([Zn_2(μ-L~7)Nd(NO_3)_3(Py)_2]·H_2O)掺杂入PVK中作为发光层,PEDOT-PSS作为空穴注入层制作了近红外有机发光二极管器件,器件结构为:ITO(20Ω/square)/PEDOT-PSS(70 nm)/PVK:Complex 25(30 nm)/Ca(100 nm)/Al(100 nm),在20 V驱动电压下近红外光辐射度为1.8 nW·mm~(-2),电流密度为50 mA·mm_(-2),表明这类化合物在有机发光二极管中具有潜在的应用价值。
Because of the significant technical applications in sensor, laser system, optical telecommunications and fluorescent imaging, near-infrared (NIR) luminescence from lanthanide(Ⅲ) complexes such as Pr(Ⅲ), Nd(Ⅲ), Er(Ⅲ), Yb(Ⅲ) has attracted increasingly great interest over the last few years. For overcoming very low extinction coefficients resulting from parity-forbidden f-f transitions of lanthanides, a suitable light-harvesting chromophore as antenna to sensitise the NIR luminescence was often employed. In this thesis, the complexes of Zn(Ⅱ)-Schiff base were adopted as antenna groups for sensitizing the NIR luminescence from Nd(Ⅲ). By the approaches of "complex as ligand" and "node and spacer", twenty new Zn(Ⅱ)-Nd(Ⅲ)-Schiff base heterobinuclear or heteropolynuclear complexes were synthesized. Their crystal structures were all determined by X-ray single crystal diffraction. Near-infrared photoluminescence properties of these complexes were studied. By selecting a complex with preferable optical property from those, an OLED was fabricated and near-infrared electroluminescence was observed.
     Firstly, for optimizing the coordination environment and making Nd(Ⅲ) remote from high-energy oscillators such as solvent molecule containing hydroxyl, which will quench NIR luminescence partly, pyridine was introduced as axial ligand to Zn(Ⅱ). Four heterobinuclear complexes([Zn(μ-L~1)Nd(NO_3)_3(Py)]·MeCN,2;[Zn(μ-L~2)Nd(NO_3)_3(H_2O)(Py)],4 ;[Zn(μ-L~3) Nd(NO_3)_3(Py)], 6; [Zn(μ-L~4)Nd(NO_3)_3(Py)]·MeCN, 8) with pyridine coordinating to Zn(Ⅱ) were synthesized and high-energy oscillators were removed from Nd(Ⅲ) for the complexes 2, 6, 8 thereinto. Meanwhile heavy-atom effect was proved to be capable of enhancing NIR luminescence remarkably. Two heterobinuclear complexes with chiral Schiff base ([Zn(μ-L~5)Nd(NO_3)_2(OAc)],10;[Zn(μ-L~6)Nd(NO_3)_3(DMF)_2] ,12) were synthesized for illustrating the influence of chiral ligand on the coordination of Nd(Ⅲ). The effect of intermolecular interactions on NIR luminescence was studied by synthesizing three heterobinuclear complexes with pseudopolymorphism: [Zn(μ-L~3)Nd(OAc)(NO_3)2(DMF)]·Solvate(Solvate: EtOH (13), THF (14), MeCN (15)). Solid state NIR emission spectra indicate that strongπ-πstacking would quench NIR luminescence partly.
     Next, two heterotetranuclear complexes([Zn_2(μ-L~1)_2Nd_2(4,4'-bpy)(NO_3)_6]·Et_2O,16;[Zn_2 (μ-L~1)_2Nd_2(4,4'-bpe)(NO_3)_6]·2H_2O,17) were assembled by introducing 4,4'-bpy and 4,4'-bpe as bridging ligands. Stronger NIR luminescence was observed compared with that of heterobinuclear precursor. By employing 1,4-bdc as bridging liand,[Zn_2(μ-L~1)_2Nd_2(1,4-bdc)(NO_3)_4 (EtOH)_2]·2MeCN (18),[Zn_4(μ-L~1)_4Nd_2(1,4-bdc)_2](NO_3)_2·2Et_2O·4H_2O (19) and [Zn_4(μ-L~1)_4-Nd_2(1,4-bdc)_2]·[Zn(μ-L~1)Nd(NO_3)_3(OAc)_2]_2 (20) were synthesized under different solvent and reaction stoichiometry. Their NIR luminescence intensity decrease according to the sequence: 19>20>18. This confirms introducing polychromophores and polyemitters may enhance luminescence intensity efficiently. When isonicotinic acid (HIN) was used as bridging ligand, 2D coordination polymer [Zn(##-L~1)Nd(IN)(NO_3)2]_n (21) and simple heterobinuclear adduct [Zn(μ-L~3)Nd(IN)(NO_3)_2(DMF)] (22), which was dependent on the rigidity of Schiff base ligand, were obtained respectively.
     Heteropolynuclear complexes were also prepared without introduction of bridging ligand. Two trinuclear complexes ([Zn_2(μ-L~7)Nd(NO_3)_3(Py)_2]·H_2O,25;[Zn_2(μ-L~8)Nd(NO_3)_3(Py)2]·Et_2O·H_2O,27) were synthesized with pyridine as axial ligand to Zn(Ⅱ) and without high-energy oscillators within the coordination sphere of Nd(Ⅲ) because of decreased binding sites of corresponding ligand. Two cyclic tetranuclear complexes ([Zn(μ-L~(10))Nd(NO_3)_2-(DMF)(Py)]_2·(Et_2O)_2,30; [Zn(μ-L~9)Nd(NO_3)_2(DMF)_2]_2,33) were obtained under the driving of Nd-O_(phenol) complementary coordination. The intrinsic quantum yield of Nd(Ⅲ) emission and energy-transfer rate constant for these four compounds were determined.
     Lastly an NIR OLED device was fabricated by doping complex 25 ([Zn_2(μ-L~7)Nd(NO_3)_3 (Py)_2]·H_2O) into PVK as emitting layer and employing PEDOT-PSS as hole-injecting layer. The structure of device was ITO(20Ω/square)/PEDOT-PSS(70 nm)/PVK: Complex 25(30 nm)/Ca(100 nm)/Al(100 nm). A near-infrared irradiance of 1.8 nW·mm~(-2) and current intensity of 50 mA·mm~(-2) under driving voltage of 20 V was achieved, which demonstrates the value of potential applications in OLED for this kind of compounds.
引文
[1] Bünzli J.-C. G.Lanthanide probes in life, chemical and earth sciences: theory and practice[M]. Amsterdam : Elsevier Science Publishes B.V. 1989:219-310
    [2] Bünzli J.-C. G.Benefiting from the Unique Properties of Lanthanide Ions[J]. Accounts of Chemical Research, 2006, 39(1): 53-61
    [3] Bünzli J.-C. G.,Piguet C. Taking advantage of luminescent lanthanide ions[J]. Chemical Society Reviews, 2005, 34: 1048-1077
    [4] Ward M. D. Transition-metal sensitized near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordination Chemistry Reviews, 2007, 251:1663-1677
    [5] Weissman S. I. Intramolecular Energy Transfer The Fluorescence of Complexes of Europium[J].Journal of Chemical Physics, 1942, 10(4):214-217
    [6] Hebbink G. A., Klink S. I., Grave L. Singlet energy transfer as the main pathway in the sensitization of near-infrared Nd~(3+) luminescence by dansyl and lissamine dyes[J].CHEMPHYSCHEM, 2002, 3(12): 1014-1018
    [7] Yang C, Fu L.-M., Wang Y. et al A Highly Luminescent Europium Complex Showing Visible Light-Sensitized Red Emission: Direct Observation of the Singlet Pathway[J].Angewandte Chemie International Edition, 2004,43(38): 5010-5013
    [8] Hayes A. V., Drickamer H. G High pressure luminescence studies of energy transfer in rare earth chelates[J]. Journal of Chemical Physics, 1982, 76(1): 114-125
    [9] Sato S., Wada M. Relations between Intramolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth β-diketone Chelates[J]. Bulletin of the Chemical Society of Japan, 1970,43(7): 1955-1962
    [10] F(?)rster T. Transfer Mechanisms of Electronic Excitation[J]. Discussions of the Faraday Society, 1959, 28(27): 7-17
    [11] F(?)rster T. Zwischenmolekulare Energiewanderung und Fluoreszenz[J]. Annalen der Physik, 1948,437(1-2): 55-75
    [12] Dexter D. L. A Theory of Sensitized Luminescence in Solids[J]. Journal of Chemical Physics, 1953, 21(5): 836-850
    [13] Desá G F. Malta O. L. Donogá et al Spectroscopic properties and design of highly luminescent lanthanide coordination complexes[J]. Coordination Chemistry Reviews, 2000,196(1):165-195
    [14] Silva G.,Malta O. L., Reinhard C. et al Visible and Near-Infrared Luminescence of Lanthanide-Containing Dimetallic Triple-Stranded Helicates:Energy Transfer Mechnisms in the Sm~(Ⅲ) and Yb~(Ⅲ) Molecular Edifices[J]. The Journal of Physical Chemistry A, 2002,106(9): 1670-1677
    [15] Stein G.,Lvurzberg E. Energy gap law in the solvent isotope effect on radiationless transitions of rare earth ions[J]. Journal of Chemical Physics, 1975, 62(1): 208-213
    [16] Siebrand W. Radiationless Transitions in Polyatomic Molecules. I. Calculation of Franck-Condon Factors [J]. Journal of Chemical Physics, 1967,46(2): 440-447
    [17] Lis S. Luminescence spectroscopy of lanthanide(Ⅲ) ions in solution[J]. Journal of Alloys and Compounds, 2002, 341(1-2): 45-50
    [18] Bauer H., Blanc J., Ross D. L.et al Octacoordinate Chelates of Lanthanides. Two Series of Compounds[J]. Journal of The Americal Chemical Society, 1964, 86(23): 5125-5131
    [19] Nah M.-K., Cho H.-G., Kwon H.-J. et al Photophysical Properties of Near-Infrared-Emitting Ln(Ⅲ) Complexes with 1-(9-Anthryl)-4,4,4-trifluoro-1,3-butandione (Ln=Nd and Er)[J]. The Journal of Physical Chemistry A, 2006,110(35):10371-10374
    [20] Yuan Y.-F., Cardinaels T.,Lunstroot K.et al Rare-Earth Complexes of Ferrocene-Containing Ligands: Visible-Light Excitable Luminescent Materials[J]. Inorganic Chemistry, 2007,46(13): 5302-5309
    [21] Seltzer M. D., Fallis S., Hollins R. A. et al Curcuminoid Ligands for Sensitization of Near-Infrared Lanthanide Emission[J]. Journal of Fluorescence, 2005, 15(4): 597-603
    [22] Shavaleev N. W., Scopelliti R., Gumy F. et al Visible-Light Excitation of Infrared Lanthanide Luminescence via Intra-Ligand Charge-Transfer State in 1,3-Diketonates Containing Push-Pull Chromophores[J]. European Journal of Inorganic Chemistry, 2008, 2008(9): 1523-1529
    
    [23] Yang L., Gong Z., Nie D. et al Promoting near-infrared emission of neodymium complexes by tuning the singlet and triplet energy levels of β-diketonates[J]. New Journal of Chemistry, 2006, 30: 791-796
    
    [24] Wolbers M. P. O., van Veggel F. C. J. M., Peters F. G. A. et al Sensitized Near-Infrared Emission from Nd~(3+) and Er~(3+) Complexes of Fluorescein-Bearing Calix[4]arene Cages[J]. Chemistry - A European Journal, 1998, 4(5): 772-780
    
    [25] Werts M. H. V., Hofstraat J . W., Geurts F. A. J. et al Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates[J]. Chemical Physics Letters, 1997, 276(3-4): 196-201
    [26] Wolbers M P. O., van Veggel F. C. J. M., Snellink B. H. M. et al Novel Preorganized Hemispherands To Encapsulate Rare Earth Ions: Shielding and Ligand Deuteration for Prolonged Lifetimes of Excited Eu~(3+) Ions[J]. Journal of The American Chemical Society, 1997,119(1): 138-144
    
    [27] Klink S. I., Alink P. O., Grave L. et al Fluorescent dyes as efficient photosensitizers for near-infrared Nd~(3+) emission[J]. Journal of The Chemical Society Perkin Transactions 2, 2001,363-372
    
    [28] Wolbers M. P. O., van Veggel F. C. J. M., Snellink B. H. M. et al Photophysical studies of m-terphenyl-sensitized visible and near-infrared emission from organic 1 1 lanthanide ion complexes in methanol solutions[J]. Journal of The Chemical Society Perkin Transactions 2, 1998, 2141-2150
    
    [29] Tang C. W., van Slyke S. A. Organic electroluminescent diodes[J]. 1987, 51(12): 913-915
    
    [30] Torelli S., Imbert D., Cantuel M. et al Tuning the Decay Time of Lanthanide-based Infrared Luminescence from Micro- to Milliseconds through d→f Energy Transfer in Discrete Heterobimetallic Complexes[J]. Chemistry - A European Journal, 2005, 11: 3228-3242
    [31] Iwamuro M., Adachi T., Wada Y. et al Remarkable Photosensitized Luminescence of Neodymium(III) Complexes with Halogenated 8-Quinolinol Derivatives[J]. Chemistry Letters , 1999, 28(7): 539-541
    [32] Iwamuro M., Adachi T., Wada Y. et al Photosensitized Luminescence of Neodymium(III) Coordinated with 8-Quinolinolates in DMSO-d_6[J]. Bulletin of The Chemical Society of Japan, 2000, 73(6): 1359-1363
    [33] Khreis O. M., Curry R. J., Somerton M. et al Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. Journal of Applied Physics, 2000, 88(2): 777-780
    [34] Van Deun R., Fias P., Driesen K. et al Halogen substitution as an efficient tool to increase the near-infrared photoluminescence intensity of erbium(III) quinolinates in non-deuterated DMSO[J]. Physical Chemistry Chemical Physics, 2003, 5(13): 2754-2758
    [35] Albrecht M., Osetska O., Klankermayer J. Enhancement of near-IR emission by bromine substitution in lanthanide complexes with 2-carboxamide-8-hydroxyquinoline[J]. Chemical Communications, 2007, 1834-1837
    [36] Van Deun R., Fias P., Nockemann P. et al Rare-Earth Quinolinates: Infrared-Emitting Molecular Materials with a Rich Structural Chemistry[J]. Inorganic Chemistry, 2004, 43(26):8461-8469
    [37] Imbert D., Comby S., Chauvin A.S. Lanthanide 8-hydroxyquinoline-based podates with efficient emission in the NIR range[J]. Chemical Communications, 2005, 1432-1435
    [38] Comby S., Imbert D., Vanderyver C. et al A Novel Strategy for the Design of 8-Hydroxyquinolinate-Based Lanthanide Bioprobes That Emit in the Near Infrared Range[J]. Chemistry - A European Journal, 2007, 13(3): 936-944
    
    [39] Yang X. P., Jones R. A., Oye M. M. Near Infrared Luminescence Structure of a Helical triple-Decker Yb(III) Schiff Base Cluster[J]. Crystal Growth& Design, 2006, 6(9): 2122-2125
    [40] Bo S., Hu J., Wang Q. et al Near-infrared luminescence properties of erbium complexes with the substituted phthalocyaninato ligands[J]. Photochemical & Photobiological Sciences, 2008, 7(4): 474-480
    [41] Song J.-L., Mao J.-G. New Types of Blue, Red or Near IR Luminescent Phosphonate Decorated Lanthanide Oxalates [J]. Chemistry - A European Journal, 2005, 11(5): 1417-1424
    [42] Bassett, A. P., van Deun R., Nockemann P. Long-Lived Near-Infrared Luminescent Lanthanide Complexes of Imidodiphosphinate "Shell" Ligands[J]. Inorganic Chemistry, 2005,44(18): 6140-6142
    [43] Biinzli J.-C. G., Piguet C. Taking advantage of luminescent lanthanide ions[J]. Chemical Society Reviews, 2005, 34: 1048-1077
    [44] Klink S. I., Keizer H., van Veggel F. C. J. M. et al Transition Metal Complexes as Photosensitisers for Near-Infrared Lanthanide Luminescence[J]. Angewandte Chemie International Edition, 2000, 39(23): 4319-4321
    [45] Guo D., Duan C., Lu F. et al Lanthanide heterometallic molecular squares Ru_2-Ln_2 exhibiting sensitized near-infrared emission[J]. Chemical Communications, 2004, 1486-1488
    [46] Lazarides T., Adams H., Sykes D. et al Heteronuclear bipyrimidine-bridged Ru-Ln and Os-Ln dyads: low-energy ~3MLCT states as energy-donors to Yb(III) and Nd(III)[J]. Dalton Tranctions, 2008, 691-699
    [47] Herrera J.-M., Pope S. J. A., Meijer A. J. H. M. et al Photophysical and Structural Properties of Cyanoruthenate Complexes of Hexaazatriphenylene[J]. Journal of The American Chemical Society, 2007, 129(37): 11491-11504
    [48] Davies G. M., Pope S. J. A., Adams H. et al Structural and Photophysical Properties of Coordination Networks Combining [Ru(bipy)(CN)_4]~(2-) Anions and Lanthanide(III) Cations: Rates of Photoinduced Ru-to-Lanthanide Energy Transfer and Sensitized Near-Infrared Luminescence[J]. Inorganic Chemistry, 2005,44(13): 4656-4665
    [49] Baca S. G., Adams H., Sykes D. et al Three-component coordination networks based on [Ru(phen)(CN)_4]~(2-) anions, near-infrared luminescent lanthanide(III) cations, and ancillary oligopyridine ligands: structures and photophysical properties [J]. Dalton Transactions, 2007, 2419-2431
    [50] Shavaleev N. M., Moorcraft L. P., Pope S. J. A. et al Sensitised near-infrared emission from lanthanides using a covalently-attached Pt(II) fragment as an antenna group[J]. Chemical Communications, 2003,1134-1136
    [51] Shavaleev N. M., Moorcraft L.P.,Pope S. J. A. et al Sensitized Near-Infrared Emission from Complexes of Yb~(Ⅲ),Nd~(Ⅲ) and Er~(Ⅲ) by Energy-Transfer from Covalently Attached Pt~(Ⅱ)-Based Antenna Units[J]. Chemistry- A European Journal, 2003,9(21): 5283-5291
    [52] Shavaleev N. M., Accorsi G, Virgili D. et al Syntheses and Crystal Structures of Dinuclear Complexes Containing d-Block and f-Block Luminophores-Sensitization of NIR Luminescence from Yb(Ⅲ), Nd(Ⅲ), and Er(Ⅲ) Centers by Energy Transfer from Re(Ⅰ)- and Pt(Ⅱ)-Bipyrimidine Metal Centers[J]. Inorganic Chemistry, 2005, 44(1):61-72
    [53] Ronson T. K., Lazarides T., Adams H. et al Luminescent Pt~(Ⅱ)(bipyridyl)(diacetylide) Chromophores with Pendant Binding Sites as Energy Donors for Sensitised Near-Infrared Emission from Lanthanides: Structures and Photophysics of Pt~(Ⅱ)/Ln~(Ⅲ) Assemblies[J]. Chemistry- A European Journal, 2006,12(36): 9299-9313
    [54] Kennedy F.,Shavaleev N. M., Koullourou T et al Sensitised near-infrared luminescence from lanthanide(Ⅲ) centres using Re(Ⅰ) and Pt(Ⅱ) diimine complexes as energy donors in d-f dinuclear complexes based on 2, 3-bis(2-pyridyl)pyrazine[J]. Dalton Transactions,2007, 1492-1500
    [55] Xu H.-B., Shi L.-X., Ma E. et al Diplatinum alkynyl chromophores as sensitisers for lanthanide luminescence in Pt_2Ln_2 and Pt_2Ln_4 (Ln = Eu, Nd, Yb) arrays with acetylide-functionalized bipyridine/phenanthroline[J]. Chemical Communications, 2006,1601-1604
    [56] Xu H.-B., Zhang L.-Y., Xie Z.-L. et al Heterododecanuclear Pt_6Ln_6 (Ln = Nd, Yb) arrays of 4-ethynyl-2,2'-bipyridine with sensitized near-IR lanthanide luminescence by Pt→Ln energy transfer[J]. Chemical Communications, 2007, 2744-2747
    [57] Li X.-L., Dai F.-R., Zhang L.-Y. et al Sensitization of Lanthanide Luminescence in Heterotrinuclear PtLn_2 (Ln=Eu, Nd, Yb) Complexes with Terpyridyl-Functionalized Alkynyl by Energy Transfer from a Platinum(Ⅱ) Alkynyl Chromophore[J].Organometallics, 2007,26(18): 4483-4490
    [58] Li X.-L., Shi L.-X., Zhang L.-Y. et al Syntheses, Structures, and Sensitized Lanthanide Luminescence by Pt→Ln (Ln = Eu, Nd, Yb) Energy Transfer for Heteronuclear PtLn_2 and Pt_2Ln_4 Complexes with a Terpyridyl-Functionalized Alkynyl Ligand[J]. Inorganic Chemistry, 2007,46(25):10892-10900
    [59] Hamada Y., Sano T., Fujita M. et al Blue electroluminescence in thin films of azomethinzinc complexes[J]. Japanese Journal of Applied Physics, 1993, 32: L511-L513
    [60] Wong W.-K., Liang H., Wong W.-Y. et al Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes[J]. New Journal of Chemistry, 2002, 26(3):275-279
    [61] Lo W.-K., Wong W.-K., Guo J. et al Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes[J]. Inorganica Chimica Acta, 2004,357(15): 4510-4521
    [62] Lo W.-K., Wong W.-K., Wong W.-Y. et al Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) Phenylene-Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd~(3+) Luminescence[J]. Inorganic Chemistry, 2006,45(23):9315-9325
    [63] Yang X., Jones R. A., Wu Q. et al Synthesis, crystal structures and antenna-like sensitization of visible and near infrared emission in heterobimetallic Zn-Eu and Zn-Nd Schiff base compounds[J]. Polyhedron, 2006, 25(2): 271-278
    [64] Yang X.-P, Jones R. A., Wong W.-K. et al Design and synthesis of a near infra-red luminescent hexanuclear Zn-Nd prism[J]. Chemical Communications, 2006, 1836-1838
    [65] Yang X., Jones R. A., Lynch V. et al Synthesis and near infrared luminescence of a tetrametallic Zn_2Yb_2 architecture from a trinuclear Zn_3L_2 Schiff base complex.[J].Dalton Transactions, 2005, 849-852
    [66] Wong W.-K., Yang X., Jones R. A. et al Multinuclear Luminescent Schiff-Base Zn-Nd Sandwich Complexes[J]. Inorganic Chemistry, 2006,45(11): 4340-4345
    [67] Beeby A., Dickins R. S., FitzGerald S. F. et al Porphyrin sensitization of circularly polarised near-IR lanthanide luminescence: enhanced emission with nucleic acid[J].Chemical Communications, 2000,1183-1185
    [68] Subhan M. A., Nakata H., Suzuki T. et al Simultaneous observation of low temperature 4f-4f and 3d-3d emission spectra in a series of Cr(Ⅲ)(ox)Ln(Ⅲ) assembly[J]. Journal of Luminescence, 2003, 101(4): 307-315
    [69] Imbert D., Cantuel M., Bunzli J.-C. G. et al Extending Lifetimes of Lanthanide-Based Near-Infrared Emitters (Nd, Yb) in the Millisecond Range through Cr(III) Sensitization in Discrete Bimetallic Edifices[J]. Journal of The American Chemical Society, 2003, 125(51): 15698-15699
    [70] Torell S., Imbert D., Cantuel M. et al Tuning the Decay Time of Lanthanide-Based Near Infrared Luminescence from Micro- to Milliseconds through d→f Energy Transfer in Discrete Heterobimetallic Complexes[J]. Chemistry - A European Journal, 2005, 11(11): 3228-3242
    [71] Mehlstabl M., Kottas G. S., Colella S. et al Sensitized near-infrared emission from ytterbium(III) via direct energy transfer from iridium(III) in a heterometallic neutral complex[J]. Dalton Tranctions, 2008, 2385-2388
    [72] Chen F., Bian Z., Lou B. et al Sensitised near-infrared emission from lanthanides using an indium complex as a ligand in heteronuclear Ir_2Ln arrays[J]. Dalton Transactions, 2008, 5577-5583
    [73] Wong W.-K., Hou A., Guo J. et al Synthesis, structure and near-infrared luminescence of neutral 3d-4f bi-metallic monoporphyrinate complexes[J]. Journal of Chemical Society, Dalton Transactions, 2001,3092-3098
    
    [74] Pope S. J. A., Coe B. J., Faulkner S. et al Re(I) sensitised near-infrared lanthanide lumi nescence from a hetero-trinuclear Re_2Ln array [J]. Chemical Communications, 2004, 1550-1552
    [75] Pope S. J. A., Coe B. J., Faulkner S. et al Self-Assembly of Heterobimetallic d-f Hybrid Complexes: Sensitization of Lanthanide Luminescence by d-Block Metal-to-Ligand Charge-Transfer Excited States[J]. Journal of Americal Chemical Society, 2004, 126(31): 9490-9491
    [76] Vincett P. S., Barlow W. A., Hann R. A. et al Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films[J]. Thin Solid Film, 1982, 94(2): 171-183
    [77] Burroughes J. H., Bradley D. D. C., Brown A. R. et al Light-emitting-diodes based on conjugated polymers[J], Nature, 1990, 347: 539-541
    [78] Braun D., Heeger A. J. Visible light emission from semiconducting polymer diodes[J]. Applied Physics Letters, 58(18): 1982-1984
    [79] 黄春辉,李富友,黄维.有机电致发光材料与器件导论[M].上海:复旦大学出版社,2005:48-81
    [80] Curry R. J., Gillin W. P. First report of an infra-red emitting OLED suggesting that applications for such devices may be found outside that of displays and lighting[J]. MRS Abstract, F97/B16.7,Spring Meeting, 1999
    [81] Curry R. J., Gillin W. P. Infra-red and visible electroluminescence from ErQ based OLEDs[J]. Synthetic Metals, 1999,111-112(1):35-38
    [82] Khreis O.M.,Curry R. J., Somerton M. et al Infrared organic light emitting diodes using neodymium tris-(8-hydroxyquinoline)[J]. Journal of Applied Physics, 2000, 88(2):777-780
    [83] Khreis O.M.,Gillin W. P., Somerton M. et al 980 nM electroluminescence from ytterbium tris (8-hydroxyquinoline)[J]. Organic Eletronics, 2001,2(1):45-51
    [84] Sun R.G., Wang Y. Z., Zhang Q. B. et al 1.54 urn infrared photoluminescence and electroluminescence from an erbium organic compound[J]. Journal of applied physics,2000, 87(10):7589-7591
    [85] Schanze K. S., Reynolds J R., Boncella J. M. et al Near-infrared organic light emitting diodes[J]. Synthetic Metals, 2003, 137: 1013-1014
    [86] KawaMura Y., Wada Y, Hasegawa Y. et al Observation of neodymium electroluMinescence[J]. Applied Physics Letters, 1999, 74(22): 3245-3247
    [87] Kawamura Y, Wada Y, Iwamuro M. et al Near-infrared Electroluminescence from YTterbium(Ⅲ) Complex[J]. Chemistry Letters, 2000, 29(3): 280-282
    [88] Kawamura Y, Wada Y, Yanagida S. Near-Infrared Photoluminescence and Electroluminescence of Neodymium(Ⅲ), Erbium(Ⅲ),and Ytterbium(Ⅲ) Complexes[J]. Japanese Journal of Applied Physics, 2001,40(1):350-356
    [89] SLoof L.H., PolMan A., Cacialli F. et al Near-infrared electroluminescence of polymer light-emitting diodes doped with a lissamine-sensitized Nd~(3+) complex[J]. Applied Physics Letters, 2001, 78(15):2122-2124
    [90] O'Riordan A., Deun R. V., Mairiaux E. et al Synthesis of a neodymium-quinolate complex for near-infrared electroluminescence applications[J]. Thin Solid Films, 2008, 516:5098-5102
    [91] 洪自若,梁春军,赵丹 等铒配合物的红外有机电致发光[J].发光学报,2000,21(3):269-273
    [92] Hong Z. R., Liang C. J., Li R. G et al Infrared and visible emission from organic electroluminescent devices based on praseodymium complex[J]. Applied Physics Letters,2001,79(13): 1942-1944
    [93] Li Z., Yu J., Zhou L. et al 1.54 μm Near-infrared photoluminescent and electroluminescent properties of a new Erbium (Ⅲ) organic complex[J]. Organic Electronics, 2008, 9:487-494
    [94] Li Z., Yu J., Zhou L. et al The near-infrared optical properties of an Nd (Ⅲ) complex and its potential application in electroluminescence[J].Inorganic Chemistry Communications, 2009,12:151-153.
    [95] Hebbink GA., Stauwdam J.W., Reinboudt D.N. et al Lanthanide(Ⅲ)-Doped Nanoparticles That Emit in the Near-Infrared[J]. Advanced Materials, 2002,14 (16): 1147-1150
    [96] Sloof L. H., Polman A. Wolbers M. P.O.et al Optical properties of erbium-doped organic polydentate cage complexes[J]. Journal of Applied Physics, 1998, 83(1):497-503
    [97] Wolbers M. P.O.,van Veggel F. C. J. M., Snellink B. H. M. et al Novel Preorganized Hemispherands To Encapsulate Rare Earth Ions: Shielding and Ligand Deuteration for Prolonged Lifetimes of Excited Eu~(3+) Ions[J]. 1997,119(1):138-144
    [98] Wolbers M. P.O.,van Veggel F. C. J. M, Peters F. G A. et al Sensitized near-infrared emission from Nd~(3+) and Er~(3+) complexes of fluorescein-bearing calix[4]arene cages[J].Chemistry- A European Journal, 1998,4(5):772-780
    [99] Becker P. C, Olsson N. A., Simpson J. R. Erbium-doped fiber amplifiers: fundermantals and technology[M]. New York: Academic Press,1999
    [100] Bjallev A. Optical fiber amplifiers: design and system amplications[M]. Norwood, MA:Artech House, 1993
    [101] Sloof L. H., Polman A., Klink S. L. et al Concertration effects in the photodegradation of lissamine-functionalized neodymium complexes in polymer waveguides[J]. Journal of the Optical Society of America B, 2001,18(11):1690-1694
    [102] Sloof L.H., Polman A., Klink S. I. et al Optical properties of lissamine functionalized Nd~(3+) complexes in polymer waveguides and solution[J]. Optical Materials, 2000, 14(2): 101-107
    [103] Lin S., Feuerstein R. J., Mickelson A. R. A study of neodymium-chelate-doped optical polymer waveguides[J]. Journal of Applied Physics, 1996, 79(6): 2868-2875
    [104] Koeppen C., Yamada S., Jiang G. et al Rare-earth organic complexes for amplification in polymer optical fibers and waveguides [J]. Journal of the Optical Society of America B, 1997,14(1): 155-162
    
    [105] Gao R., Koeppen C., Zhang G. et al In Rare-earth-doped polymers for optical amplification and lasing, Rare-Earth-Doped Devices II[J]. Proceeedings of SPIE, 3280: 1998, 14- 22
    [106] Suzuki H., Hattori Y., Iizuka T. et al Organic infrared optical materials and devices based on an organic rare earth complex[J]. Thin Solid Films, 2003,438-439: 288-293
    [107] Kobayashi T., Kuriki K., Nishihara S. et al In Rare-earth-doped polymer optical fibers for opticak amplification, Rare-earth-doped materials and devices. IV[J]. Proceedings of SPIE, 3942: San Jose, CA, USA, 2000,158-165
    [108] Sosa R., Flores M., Dodiriguez R. et al In Evidence for energy transfer in Nd~(3+)-doped PMMA: PAAC copolymer samples,Rare-Earth-Doped materials and devices IV[J]. Proceedinds of SPIE 3942: San Jose, CA, USA, 2000, 276-281
    [109] Faulker S., Pope S. J. A., Burton B.P. Lanthanide complexes for luminescent imaging applications[J]. Applied Spectroscopy Reviews, 2005,40(1): 1-31
    [110] Bunzli J.-C. G. Lanthanide luminescent biophobes(LLBS)[J]. Chemistry Letters, 2009, 38(2): 104-109
    [111] Yu G., Liu Y., Wu X. et al A new blue light-emitting material[J]. Synthetic Metals, 2001, 117:211-214
    [112] Sato T., Nishio Y., Hamada Y. et al Design of conjugated molecular materials for opto- Electronics[J]. Journal of Materials Chemistry, 2000, 10: 157-161
    [113] Kwok C.-C., Yu S.-C., Sham I. H. T. et al Self-assembled zinc(II) Schiff base polymers for applications in polymer light-emitting devices[J]. Chemical Communications, 2004, 2758-2759
    [114] Su Q., Wu Q.-L., Li G.-H., et al Bis-salicylaldiminato zinc complexes: Syntheses,characterization and luminescent properties[J]. Polyhedron, 2007, 26: 5053-5060
    [115] Xu B., Hao Y., Fang X., et al Optical and electrical properties of [N, N'- bis(salicylicdene)-ethylenediamine]zinc as an electroluminescent material[J]. Applied Physics Letters, 2007,90:053903(1-3).
    [116] Sun S.-S., Stern C. L., Nguyen S. T. et al Directed Assembly of Transition-Metal-Coordinated Molecular Loops and Squares from Salen-Type Components. Examples of Metalation-Controlled Structural Conversion[J]. Journal of the American Chemical Society, 2004, 126: 6314-6326
    [117] Splan K.E.,Massari A. M., Morris G. A. et al Photophysical and Energy-Transfer Properties of (Salen)zinc Complexes and Supramolecular Assemblies[J]. European Journal of Inorganic Chemistry, 2003, 2348-2351
    [118] Kleij A. W., Kuil M., Tooke D. M. et al Metal-directed self-assembly of a Zn~(Ⅱ)-salpyr complex into a supramolecular vase structure[J].Inorganic Chemistry, 2007,46:5829-5831
    [119] Kleij A.W., Kuil M., Tooke D. M. et al Zn~(Ⅱ)-Salphen Complexes as Versatile Building Blocks for the Construction of Supramolecular Box Assemblies[J]. Chemistry-A European Journal, 2005,11:4743-4750
    [120] Hui J K.-H., Yu Z., MacLachlan M. J. Supramolecular Assembly of Zinc Salphen Complexes: Access to Metal-Containing Gels and Nanofibers[J]. Angewandte Chemie International Edition, 2007,46:7980-7983
    [1] Wong W.-K., Liang H., Wong W.-Y. et al Synthesis and near-infrared luminescence of 3d-4f bi-metallic Schiff base complexes[J]. New Journal of Chemistry, 2002, 26(3):275-279
    [2] Lo W.-K., Wong W.-K., Guo J. et al Synthesis, structures and luminescent properties of new heterobimetallic Zn-4f Schiff base complexes[J]. Inorganica Chimica Acta, 2004,357(15): 4510-4521
    [3] Lo W.-K., Wong W.-K., Wong W.-Y. et al Heterobimetallic Zn(Ⅱ)-Ln(Ⅲ) Phenylene-Bridged Schiff Base Complexes, Computational Studies, and Evidence for Singlet Energy Transfer as the Main Pathway in the Sensitization of Near-Infrared Nd~(3+) Luminescence[J].Inorganic Chemistry, 2006,45(23): 9315-9325
    [4] Yang X., Jones R.A., Wu Q. et al Synthesis, crystal structures and antenna-like sensitization of visible and near infrared emission in heterobimetallic Zn-Eu and Zn-Nd Schiff base compounds[J]. Polyhedron, 2006, 25(2): 271-278
    [5] Silva G,Malta O.L., Reinhard C. et al Visible and near-infrared luminescence of Lanthanide-containing dimetallic triple-stranded helicates: energy transfer mechanisms in the Sm~(Ⅲ) and Yb~(Ⅲ) molecular edifices[J]. The Journal of Physical Chemistry A, 2002,106(9):1670-1677
    [6] Kleij A.W., Kuil M., Lutz M. et al Supramolecular zinc(Ⅱ)salphen motifs: Reversible dimerization and templated dimeric structures[J].Inorganica Chimica Acta, 2006, 359:1807 -1814
    [7] Chang K.-H., Huang C.-C., Liu Y.-H. et al Synthesis of photo-luminescent Zn(II) Schiff base complexes and its derivative containing Pd(II) moiety[J]. Dalton Transactions, 2004, 1731-1738
    
    [8] Albrecht M., Osetska O., Klankermayer J. et al Enhancement of near-IR emission by bro mine substitution in lanthanidecomplexes with 2-carboxamide-8- hydroxylquinoline[J]. Chemical Communications, 2007,1834-1836
    [9] Brinkmann M., Gadret G., Muccini M. et al Correlation between Molecular Packing and Optical Properties in Different Crystalline Polymorphs and Amorphous Thin Films of mer-Tris(8-hydroxyquinolme)alummum(III)[J]. Journal of the American Chemical Society, 2000,122: 5147-5157
    [10] Muccini M., Brinkmann M., Gadret G. et al Optical spectroscopy of unsolvated and solvated crystalline Alq_3[J]. Synthetic Metals, 2001,122: 31-35
    [11] Braun M., Gmeiner J., Tzolov M. et al A new crystalline phase of the electroluminescent material tris(8-hydroxyquinoline) aluminum exhibiting blueshifted fluorescence [J]. The Journal of Chemical Physics, 2001,114: 9625-9632
    [12] Colle M., Dinnebier R. E., Briitting W. et al The structure of the blue luminescent δ-phase of tris(8-hydroxyquinoline)Aluminium(IH)(Alq_3)[J]. Chemical Communications 2002, 2908-2909
    
    [13] Mizukami S., Houjou H., Sugaya K. et al Fluorescence Color Modulation by Intramole cular and Intermolecular π-π Interactions in a Helical Zinc(II) Complex[J].Chemistry of Materials, 2005, 17:50-56
    [14] Lam F., Xu J. Chan B. S. et al Binucleating ligands: synthesis of acyclic achiral and chiral Schiff base-pyridine and Schiff base-phosphine ligands[J]. The Journal of Organic Chemistry, 1996, 61: 8414-8418
    [15] Lacroix P.G., Di Bella S., Ledoux I. Synthesis and Second-Order Nonlinear Optical Properties of New Copper(II), Nickel(II), and Zinc(II) Schiff-Base Complexes. Toward a Role of Inorganic Chromophores for Second Harmonic Generation[J]. Chemistry of Materials, 1996, 8: 541-545
    [16] Sheldrick G. M. SADABS, Empirical Absorption Correction Program[M]. University of G(?)ttingen, Gdttingen, Germany, 1997
    [17] Sheldrick G. M. Shelx-97, A Software Package for the Solution and Refinement of X-ray Data[M]. University of Gottingen, Gottingen, Germany, 1997
    [18] Gao T., Yan P.-F.,Li G-M. et al N, N'-ethylene-bis(3-methoxysalicylideneimine) mono-nuclear (3d-4f) metal complexes: synthesis, crystal structure and luminescent properties[J]. Inorganica Chimica Acta, 2008, 361: 2051-2058
    [19] Janiak C. et al A critical account on n-n stacking in metal complexes with aromatic nitrogen-containing ligands[J]. Journal of chemical Society, Dalton Transactions, 2000, 3885-3896
    [20] Bond A. D., Griffiths J., Rawson J. M. et al Inducing structural polarity using fluorinated organics: X-ray crystal structures of p-XC_6F_4CN (X=Cl,Br,I)[J]. Chemical Communications, 2001,2488-2489
    [21] Aragoni M. C, Arca M, Devillanova F. A. et al First example of an infinite polybromide 2D-network[J]. Chemical Communications, 2003,2226-2228
    [22] Yanagida S., Hasegawa Y, Murakoshi K. et al Strategies for enhancing photoluminescence of Nd~(3+) in liquid media[J].Coordination Chemistry Reviews,1998,171: 461-480
    [23] Seddon K. R. Pseudopolymorph: A Polemic[J]. Crystal growth & design, 2004,4:1087-1087
    [24] Desiraju G R. Counterpoint: What's in a name[J]. Crystal growth & design, 2004,4:1089-1090
    [25] Castineiras A., Sicilia-Zafra A. G., Gonzalez-Perez J. M. et al Intramolecular"Aryl-Metal Chelate Ring" π,π-Interactions as Structural Evidence for Metalloaromaticity in (Aromatic α,α'- Diimine)-Copper(Ⅱ) Chelates: Molecular and Crystal Structure of Aqua(1,10-phenanthroline)(2-benzylmalonato)copper(Ⅱ) Three-hydrate[J]. Inorganic Chemistry,2002,41:6956-6958
    [26] Masui H. Metalloaromaticity[J]. Coordination Chemistry Reviews, 2001,219-221:957-992
    [27] Tomic J. D., Leovac V. M., Pokorni S. V. et al Crystal Structure of Bis [acetone-1-naph-thoylhydrazinato(-1)]copper(Ⅱ) and Investigations of Intermolecular Interactions[J].European Journal of Inorganic Chemistry, 2003,1222-1226
    [28] Deda M. L., Ghedini M., Aiello I. et al A New Blue Photoluminescent Salen-like Zinc Complex with Excellent Emission Quantum Yield[J]. Chemistry Letters, 2004, 33: 1060-1061
    [29] Iglesias C. P., Elhabiri M., Hollenstein M. et al Effect of a halogenide substituent on the stability and photophysical properties of lanthanide triple-stranded helicates with ditopic ligands derived from bis(benzimidazolyl)pyridine[J]. Journal of Chemical Society, Dalton Transactions, 2000, 2031-2043
    [1] Gable R.W., Hoskins B. E, Robson R.A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4, 4'-bipyridine)zinc hexafluo-rosilicate[J]. Journal of the Chemical Society, Chemical Communications,1990, 1677-1678
    [2] Andruh M. Binuclear complexes as tectons in designing supramolecular solid-state architectures[J]. Pure and Applied Chemistry, 2005, 77(10):1685-1706
    [3] Andruh M. Oligonuclear complexes as tectons in crystal engineering: structural diversity and magnetic properties[J]. Chemical Communications, 2007, 2565-2577
    [4] Dexter D. L. A Theory of Sensitized Luminescence in Solids[J]. Journal of Chemical Physics, 1953,21(5): 836-850
    [5] Sheldrick G. M. SADABS, Empirical Absorption Correction Program[M]. University of Gottingen, G(?)ttingen, Germany,1997
    [6] Sheldrick G. M. Shelx-97, A Software Package for the Solution and Refinement of X-ray Data[M]. University of G(?)ttingen, Gottingen, Germany, 1997
    [7] Yang X.-P., Jones R. A., Wong W.-K.et al Design and synthesis of a near infra-red lumi- nescent hexanuclear Zn-Nd prism[J]. Chemical Communications, 2006,1836-1838
    [8] Gheorghe R., Cucos P. Andruh M. et al Oligonuclear 3d-4f Complexes as Tectons in Designing Supramolecular Solid-State Architectures: Impact of the nature of Linkers on the Structural Diversity[J]. Chemistry- A European Journal, 2006,12:187-203
    [9] Gheorghe R., Andruh M., Muller A. et al Heterobinuclear Complexes as Building Blocks in Designing Extended Structures[J]. Inorganic Chemistry, 2002,41:5314-5316
    [10] Yang X., Jones R. A. Anion Dependent Self-Assembly of "Tetra-Decker" and "Triple-Decker" Luminescent Tb(Ⅲ) Salen Complexes[J]. Journal of The American Chemical Society, 2005, 127: 7686-7687
    [11] Wong W.-K., Yang X., Jones R. A. et al Multinuclear Luminescent Schiff-Base Zn-Nd Sandwich Complexes[J]. Inorganic Chemistry, 2006,45:4340-4345
    [12] Baca S. G, Adams H., Sykes D. et al Three-component coordination networks based on [Ru(phen)(CN)4]~(2-) anions, near-infrared luminescent lanthanide(Ⅲ) cations, and ancillary oligopyridine ligands: structures and photophysical properties[J]. Dalton Transactions,2207,2419-2430
    [13] Meech S. R., Philips D. J. Photophysics of some common fluorescence standards[J].Journal of Photochemistry, 1983, 23: 193-217
    [14] Petond S., Cohen S. M., Biinzli J.-C. G et al Stable lanthanide luminescence agents highly emissive in aqueous solution: multidentate 2-hydroxyisophthalamide complexes of Sm~(3+),Eu~(3+), Tb~(3+),Dy~(3+)[J].Journal of the American Chemical Society, 2003,125(44):13324-13325
    [15] Klink S. I., Grave L., Reinhoudt D. N. et al A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu~(3+),Tb~(3+),Nd~(3+),Yb~(3+),and Er~(3+) Complexes[J]. The Journal of Physical Chemistry A, 2000,104,5457-5468
    [1] Bencini A., Benelli C, Caneschi A. et al Crystal and molecular structure of and magnetic coupling in two complexes containing gadolinium(Ⅲ) and copper(Ⅱ) ions[J]. Journal of The Americal Chemical Society, 1985,107: 8128-8136
    [2] Kahn M. L., Rajendiran T.m,Jeannin Y. et al Ln~(Ⅲ)Cu~(Ⅱ) Schiff base compounds (Ln=Ce, Gd, Tb, Dy, Ho, Er): structural and magnetic properties[J]. Les Comptes Rendus de l'Acad(?)mie des sciences.S(?)rie IIc,Chimie,2000, 3: 131-137
    [3] Binnemans K., Lodewyckx K., Donnio B. et al Mixed copper-lanthanide metallomesogens[J]. Chemistry - A European Journal, 2002, 8:1101-1105
    [4] Kido T., Nagasato S., Sunatsuki Y. et al A cyclic tetranuclear Cu2Gd2 complex with an S=8 ground state derived from ferromagnetic spin-coupling between copper(Ⅱ) and gadolinium(Ⅲ) ions arrayed alternately[J]. Chemical Communications, 2000,2113-2114
    [5] Kido T.,Ikuta Y., Sunatsuki Y. et al Nature of copper(Ⅱ)-lanthanide(Ⅲ) magnetic interactions and generation of a large magnetic moment with magnetic anisotropy of 3d-4f cyclic cylindrical tetranuclear complexes [Cu~(Ⅱ)LLn~(Ⅲ)(hfac)_2]_2,(H_3L=1-(2-Hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzylideneamino)ethane and Hhfac=Hexafluoroacetylacetone,Ln~(Ⅲ)=Eu, Gd, Tb, Dy)[J]. Inorganic Chemistry, 2003, 42:398-408
    [6] Osa S., Kido T., Matsumoto N. et al A tetranuclear 3d-4f single molecule magnet:[Cu~(Ⅱ)LTb~(Ⅲ)(hfac)_2]_2[J].Journal of the Americal Chemical Society, 2004,126:420-421
    [7] Hamamatsu T., Yabe K., Towatari M. et al Synthesis and magnetic property of copper(Ⅱ)-lanthanide(Ⅲ) complexes [{Cu~(Ⅱ)LLn(Ⅲ)(o-van)(CH_3COO)(MeOH)}2].2H_2O(Ln~(Ⅲ)=Gd~(Ⅲ),Tb~(Ⅲ),and Dy~(Ⅲ);H_3L=1-(2-hydroxybenzamido)-2-(2-hydroxy-3-methoxybenzyl ideneamino)ethane;o-van=3-methoxysalicylaldehydato)[J]. Bulletin of the Chemical Society of Japan,2007,80:523-529
    [8] Costes J.-P., Shova S., Juan J. M. C. et al The first example of a hetero-tetranuclear [(VO)Gd]_2 complex:synthesis, crystal structure and magnetic properties of [VOLGd-(hfa)_2CH_3OH]_2·2CH_3OH·2(CH_3)_2CO[J].Dalton Transactions, 2005, 2830-2832
    [9] Lam F., Xu J., K. S. Chan. Binucleating ligands: synthesis of acyclic achiral and chiral Schiff base-pyridine and Schiff base-phosphine ligands[J]. The Journal of Organic Chemistry,1996, 61:8414-8418
    [10] Lacroix P. G., Di Bella S., Ledoux I. Synthesis and Second-Order Nonlinear Optical Properties of New Copper(Ⅱ),Nickel(Ⅱ),and Zinc(Ⅱ) Schiff-Base Complexes. Toward a Role of Inorganic Chromophores for Second Harmonic Generation[J]. Chemistry of Materials, 1996, 8:541-545
    [11] Sheldrick G. M. SADABS, Empirical Absorption Correction Program[M]. University of Gottingen, Gottingen, Germany, 1997
    [12] Sheldrick G. M. Shelx-97, A Software Package for the Solution and Refinement of X-ray Data[M]. University of Gottingen, Gottingen, Germany, 1997
    [13] Wong W.-K., Yang X., Jones R. A. et al Multinuclear Luminescent Schiff-Base Zn-Nd Sandwich Complexes[J]. Inorganic Chemistry, 2006,45: 4340-4345
    [14] Klink S. I., Grave L., reinhoudt D. N. et al A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu~(3+), Tb~(3+), Nd~(3+), Yb~(3+), and Er~(3+) Complexes[J]. The Journal of Physical Chemistry A, 2000,104: 5457-5468
    [15] Ward M. D. Transition-metal sensitized near-infrared luminescence from lanthanides in d-f heteronuclear arrays[J]. Coordination Chemistry Reviews, 2007, 251: 1663-1677
    [16] Lo W.-K., Wong W.-K. Wong W.-Y. et al Heterobimetallic Zn(II)-Ln(III) Phenylene bridged Schiff base complexes, computational studies, and evidence for singlet energy transfer as the main pathway in the sensitization of near-infrared Nd~(3+) luminescence[J]. Inorganic Chemistry, 2006,45: 9315-9325
    [17] Shavaleev N. M., Scopelliti R., Gumy F. et al Visible-light excitation of infrared lanthanide luminescence via intra-ligand charge-transfer state in 1, 3-diketonates containing push-pull chromophores[J]. European Journal of Inorganic Chemistry, 2008, 1523-1529
    [1] Kajii H.,Taneda T., Ohmori Y. Organic light-emitting diode fabricated on a polymer substrate for optical links[J]. Thin Solid Films, 2003,438-439: 334-338
    [2] O'Riordan. A., O'Connor E., Moynihan S. et al Near infrared electroluminescence from neodymium complex-doped polymer light emitting diodes[J]. Thin Solid Films, 2006,497: 299-303
    [3] Meinardi F., Colombi N., Destri S. et al Novel erbium complexes with low band-gap for infrared laser and optical amplifiers[J]. Synthetic Metals, 2003, 137: 959-960
    [4] Sloof L. H., Blaaderen A., Polman A. et al Rare-earth doped polymers for planar optical amplifiers[J]. Journal of Applied Physics, 2002, 91(7): 3955-3980
    [5] Curry R. J., Gillin W. P.1.54 urn electroluminescence from erbium(Ⅲ) tris(8-hydroxy-quinoline) (ErQ)-based organic light emitting diodes[J]. Applied Physics Letters, 1999,75(10): 1380-1382
    [6] Curry R. J., Gillin W.P. Electroluminescence of organolanthanide based organic light emitting diodes[J]. Current Opinion in Solid State and Materials Science, 2001, 5: 481-486
    [7] Khreis O. M., Gillin W. P., Somerton M. et al 980 ran eletroluminescence from ytterbium tris(8-hydroxyquinoline)[J]. Organic Electronics, 2001, 2: 45-51
    [8] Kawamura Y., Wada Y., Hasegawa Y. et al Observation of neodymium electrolumines- cence[J]. Applied Physics Letters, 1999, 74(22): 3245-3247
    [9] Kawamura Y., Wada Y., Iwamuro M. et al Near-infrared electroluminescence from ytter- bium(III) complex[J]. Chemistry Letters, 2000, 280-281
    
    [10] Williams E. L., Li J., Jabbour G. E. Organic light-emitting diodes having exclusive near-infrared eletrophosphorescence[J]. Applied Physics Letters, 2006, 89: 083506(1-3)
    [11] Borek C., Hanson K., Djurovich P. I. et al Highly Efficient, Near-Infrared Electrophos-phorescence from a Pt-Metalloporphyrin Complex[J]. Angewandte Chemie International Edition, 2007,46: 1109-1112
    [12] O'Riordan A., Deun R. V., Mairiaux E. et al Synthesis of a neodymium-quinolate complex for near-infrared electroluminescence applications[J]. Thin Solid Films, 2008, 516: 5098-5102
    
    [13] Li Z., Yu J., Zhou L. et al The near-infrared optical properties of an Nd (III) complex and its potential application in electroluminescence[J]. Inorganic Chemistry Communications, 2009,12:151-153

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700