全光谱高显色性钪硅酸盐LED荧光粉的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
白光发光二极管(white LED)具有全固态、体积小、寿命长、高效、环保、节能等诸多优点,被认为是新一代照明光源,是国际照明领域研究的热点。目前产生白光LED的主流方案是在蓝光GaN基LED芯片上涂敷传统的黄色荧光粉Y_3Al_5O_(12):Ce~(3+)(YAG:Ce~(3+))。YAG:Ce~(3+)的发射光谱主要为黄绿光,红光成分较少,封装的白光LED显色指数低(<80),不及传统的白炽灯和荧光灯。为解决这一问题,人们提出绿色和红色荧光粉混合的方案替代黄色荧光粉。这种方案存在着不同荧光粉之间的再吸收问题,影响白光LED的流明效率。同时,不同荧光粉还存在发光温度特性和老化特性不一致的问题,导致白光LED的色彩随温度和使用时间漂移。因此,获得光谱成分均衡的全色LED荧光粉是人们追求的更高目标。
     本论文主要针对目前蓝光基白光LED中缺少单一基质全光谱高显色性荧光粉的问题,选择新型的钪硅酸盐为基质材料开展研究。
     首先,研究了具有石榴石结构的Ca_3Sc_2Si_3O_(12)(CSS)体系。稀土离子Ce~(3+)激活的绿色荧光粉Ca_3Sc_2Si_3O_(12):Ce~(3+)(CSS:Ce~(3+))由于较高的发光效率和优越的热稳定性而引起人们的广泛关注。该荧光粉在蓝光激发下发射出峰值505nm的绿光,光谱中缺少长波成分,不能合成单一白光。针对这一问题,本论文工作采用调控基质阳离子组分、氮化技术、掺杂技术等方法,在CSS中成功引入长波发射中心,实现了全光谱发射,获得了具有高显色性的白光LED荧光粉,主要研究结果如下:
     (1)通过调控基质组分,在(Ca_(2.94-x)Lu_xCe_(0.06))(Sc_(2-y)Mg_y)Si_3O_(12)中改变Lu~(3+)-Mg~(2+)的含量,Ce~(3+)的发射光谱可从505nm的绿光连续红移至565nm的黄光。固定Mg的含量为y=1,研究了不同x值时Lu含量对晶体结构的形成、发光特性以及温度特性的改善作用。研究结果表明,Lu的引入提高了Ce~(3+)的发光亮度。这是由Ce~(3+)吸收能力增强引起而不是内量子效率增加引起。通过调节Lu的含量获得较纯的石榴石晶体,实现了Ce~(3+)的较强宽带发射。x=0.54时,Ce~(3+)的发光最强,为不含Lu,即x=0时的156%。此时含Lu荧光粉的激活能(0.2eV)大于不含Lu的(0.18eV),因而表现出较好的温度特性。该单一荧光粉与蓝光芯片结合封装制作成白光LED,其显色指数高达86、发光效率高达86lm/W。
     (2)研究了电荷平衡对石榴石晶体形成的作用,分析了Lu~(3+)和Mg~(2+)分别取代Ca~(2+)和Sc~(3+)引起的键长与共价性的变化。结果表明Ce~(3+)激发、发射光谱的移动是由Ce~(3+)的5d轨道晶场劈裂和质心位移共同作用的结果。
     (3)在(Ca_2Lu_(1-x)Ce_x)(ScMg)Si_3O_(12)中,研究了不同Ce~(3+)浓度荧光粉的发光特性,观察到了Ce~(3+)的多个发光中心以及Ce~(3+)-Ce~(3+)之间的能量传递。当x从0.01增加至0.15时,Ce~(3+)的发射位置由530nm红移至575nm。Ce~(3+)的最佳浓度为x=0.09。采用此浓度的单一荧光粉,我们获得了显色指数高达87.9、色温5814K,效率77lm/W的白光LED;x=0.15时,还获得了显色指数大于80,色温低于4000K的暖白光LED。不同Ce~(3+)浓度下荧光粉的温度特性和Ce~(3+)离子之间的能量传递机理做了研究。
     (4)采用氮化技术,研究了Si_3N_4对绿色荧光粉CSS:Ce~(3+)结构和发光特性的影响。将N引入Ce~(3+)的配位环境,不仅保持了Ce~(3+)在505nm的绿光发射,同时还增加了Ce~(3+)在610nm的红光发射。监测610nm红光中心,其激发谱为一个属于红光中心510nm的激发带和一个属于绿光中心450nm的激发带,表明Ce~(3+)的绿光中心向红光中心有能量传递,测量Ce~(3+)的荧光衰减曲线得出能量传递效率为38%。通过调节N的含量,绿色荧光粉CSS:Ce~(3+)逐渐转变为橙黄色荧光粉CSS-N:Ce~(3+)。由绿光中心向红光中心的能量传递,在CSS-N:Ce~(3+)中实现了红、绿全光谱发射。将氮化之后的CSS-N:Ce~(3+)单一荧光粉应用于白光LED时,获得了较高显色指数为86、较低色温为4700K的白光。
     (5)采用掺杂技术,将长波发射中心Mn~(2+)引入CSS:Ce~(3+)中,构建了基于能量传递机制的CSS:Ce~(3+), Mn~(2+)体系。Mn~(2+)在CSS中可以产生两个发光中心,分别为Mn~(2+)占据Ca~(2+)位置时产生的574nm黄光中心(Mn~(2+)(I))和Mn~(2+)占据Sc~(3+)位置时产生的680nm红光中心(Mn~(2+)(II))。Ce~(3+)-Mn~(2+)共掺时,Ce~(3+)向Mn~(2+)的两个发光中心同时存在有效能量传递。测量Ce~(3+)、Mn~(2+)荧光衰减曲线研究了Ce~(3+)→Mn~(2+)能量传递的动力学过程,能量传递的效率为45%,传递速率为14.01×106s-1。通过Ce~(3+)→Mn~(2+)能量传递,实现了Ce~(3+)的505nm绿光、Mn~(2+)的574nm黄光和680nm红光的全光谱发射。三价稀土离子Ln~(3+)(Ln=La、Lu、Gd、Y)占据Ca~(2+)格位可以平衡Mn~(2+)占据Sc~(3+)格位产生的电荷差,进而调节CSS:Ce~(3+), Mn~(2+)体系中Mn~(2+)的红光发射。采用Y~(3+)增加Mn~(2+)的红光发射,在CSS:Ce~(3+), Mn3+单一荧光粉中,我们获得了显色指数高达91~92白光。
     其次,研究了具有菱形结构的Ba_9Sc_2(SiO_4)_6:Ce~(3+), Mn~(2+)(BSS:Ce~(3+), Mn~(2+))体系。主要研究结果如下:
     (6)通过X射线精细扫描,Ce~(3+)、Mn~(2+)在BSS晶体中分别倾向占据Sc~(3+)、Ba~(2+)的格位。BSS:Ce~(3+)发射出峰值383nm很强的紫外光,有望用于紫外杀菌、消毒、光动力治疗以及光复印等领域。BSS:Mn~(2+)发射出峰值615nm较弱的红光。BSS:Ce~(3+), Mn~(2+)中,通过Ce~(3+)→Mn~(2+)的能量传递,Mn~(2+)的红光发射显著增强,此时该荧光粉有望为紫外基白光LED提供红色光源。
Phosphor-converted white light emitting diodes (pcWLEDs) are regarded as anew lighting source for the next generation due to their high efficiency, long lifetime,and environment friendly. The most current pcWLEDs employ the yellow emittingY_3Al_5O_(12):Ce~(3+)(YAG:Ce~(3+)) garnet phosphor and blue InGaN LEDs. Due to deficientemission in the red spectral region, YAG:Ce~(3+)phosphor limits the color renderingindex (CRI) of pcWLEDs below80, in comparison to CRIs of100for incandescentlamps and82~85for fluorescent lamps. To achieve high CRIs (>80), a phosphorblend of yellow or green emitting phosphors with a red emitting phosphor isgenerally applied. The phosphor mixture gives fluorescence reabsorption andnon-uniformity of luminescent properties, resulting in a loss of luminous efficiencyand time-dependent shift of the color point. To achieve a single phase phosphor withfull color emissions is therefore desirable.
     The main purpose of this work is to achieve a full-color-emitting phosphor forwhite LEDs with high color rendering. Therefore, studies on the novel scandiumsilicate host matrix are carried out.
     First, we investigate the novel scandium silicate Ca_3Sc_2Si_3O_(12)(CSS) withgarnet structure. Ce~(3+)doped green-emitting CSS:Ce~(3+)phosphor has attracted muchattention for its high emission intensity and high thermal stability superior to YAG:Ce~(3+). However, under blue excitation, CSS:Ce~(3+)exhibits green emissions atabout505nm, which lacks yellow and red emissive components and cannot generatewhite light by this single phosphor. In this work, to enrich the longer wavelengthvisible emission and achieve white light in the single CSS host, the approaches ofmodification by cations, nitriding, and codoping are employed. The main resultsobtained are listed as follow:
     For the Lu-Mg modified Ce~(3+):Ce~(3+)(CSS:Ce~(3+)) garnet phosphor.
     (1) In (Ca_(2.94-x)Lu_xCe_(0.06))(Sc_(2-y)Mg_y)Si_3O_(12)(x=0~0.94, y=0~1), controllableluminescent intensity and emitting color of the Ce~(3+)are studied as a function of Luand Mg contents. With increasing value of x and y, the Ce~(3+)emission shift from505to565nm, correspondingly resulting in the luminescence color of the phosphorchanges from green to yellow. Fixing the Mg content to be1, the effects of Lu ongarnet crystal structure formation, luminescence properties, and temperaturecharacteristics are discussed. It is revealed that the Lu-induced luminescentenhancement is the result of an increase in absorbance of Ce~(3+)rather than theinternal quantum efficiency. Intense and broadband emission is realized bycontrolling the Lu content to obtain a pure garnet phase. The maximumluminescence intensity is obtained at x=0.54, which is as high as156%of theLu-free phosphor. The Lu-containing phosphor also exhibits better temperaturecharacteristics for its bigger activation energy (0.20eV) than the Lu-free one (0.18eV). Combining the present phosphor with a blue LED chip, a white LED with anexcellent color rendering index of86and a high luminous efficiency of86lm/W isobtained.
     (2) The effect of charge balance on the garnet crystal structure formation isstudied. The changes of bond length and covalence caused by the replacement ofLu3+and Mg~(2+) for Ca~(2+) and Sc3+are analyzed. The shift of the Ce~(3+)emission andexcitation can be attributed to the combined results from crystal field splitting effectand centroid shift of Ce~(3+)5d levels.
     (3) In (Ca_2Lu_(1-x)Ce_x)(ScMg)Si_3O_(12)(CLSM:xCe~(3+)x=0.01~0.15), luminescence properties for various Ce~(3+)concentrations are investigated. Different Ce~(3+)emissionsite and energy transfers between them are observed, resulting in a red shift of theemission spectra from530to575nm with increasing x from0.01to0.15. Theoptimum concentration is x=0.09. Combining with blue (460nm) LEDs,CLSM:Ce~(3+)shows excellent performances for pcWLEDs with higher colorrendering index of87.4~87.9and lower color temperature of5034~5814K,especially for warm pcWLEDs with a high color rendering (CRI>80) and a lowcolor temperature (CCT <4000K). Energy transfers and thermal quenchingbehaviors depending on Ce~(3+)concentrations are discussed.
     For the N~(3-) incorporated CSS:Ce~(3+)phosphor.
     (4) Adding Si3N4into green emitting CSS:Ce~(3+)garnet phosphor generates anadditionally red emission band peaking around610nm that are assigned to Ce~(3+)ionshaving N3-in their local coordination. The excitation spectrum of the red bandconsists of not only a distinct band at510nm of itself but also an intense blue bandat450nm that belongs to the typical Ce~(3+)ions with green emission, indicating anotable energy transfer from the green emitting Ce~(3+)ions to the red ones. The energytransfer significantly enables the achievement of a broad emission spectrum coveringa red and green spectral region suitable for generating white light upon a blue LEDexcitation. The decay patterns of the red and green fluorescence are discussed inrelation to the effect of energy transfer. A white LED with a high color rendering of86and a low color temperature of4700K is fabricated using the present singlephosphor.
     For the energy transfer modified CSS:Ce~(3+), Mn~(2+)phosphor.
     (5) Mn~(2+) may not only occupy Ca2+sites to generate a yellow emission (Mn~(2+)(I))at574nm but also Sc3+sites to generate a red emission (Mn~(2+)(II)) at680nm.Remarkable energy transfers from the green emitting Ce~(3+)to both Mn~(2+)(I) andMn~(2+)(II) occur upon blue excitation into Ce~(3+). Concentration dependence of Mn~(2+)emission is analyzed based on Ce~(3+)→Mn~(2+)energy transfer, steady state rateequations, and fluorescence lifetimes. Energy transfer efficiency (ηT) and rate (W) are calculated with values as high as45%and14.01×106s-1, respectively.Considerable Mn~(2+)substitution for Sc3+can be performed through balancing theircharge difference by introducing trivalent rare earth ions Ln~(3+)(Ln=La, Gd, Lu, Y)to replace Ca~(2+), making tunable full color emission available in CSS:Ce~(3+), Mn~(2+).White LEDs with excellent color rendering index of91~92are achieved by usingthe present single phosphor.
     Secondly, the investigations of the novel scandium silicate Ba9Sc2(SiO4)6:Ce~(3+),Mn~(2+)(BSS:Ce~(3+), Mn~(2+)) with rhombohedra structure are carried out. The main resultsare listed as follow:
     (6) Analysis of XRD patterns indicates that Ce~(3+)and Mn~(2+)in BSS are located atSc3+and Ba2+sites, respectively. BSS:Ce~(3+)exhibits an intense UV emission bandpeaking at383nm, indicating this phosphor could be used for phototherapy andphotocopying. Codoping Mn~(2+)into this material can generates a red emission bandat615nm of Mn~(2+)through Ce~(3+)→Mn~(2+)energy transfer. BSS:Ce~(3+), Mn~(2+)could beused for UV-based white LEDs as the red light source.
引文
[1] A. Zukaurkas, M. S. Shur, R. Gaska. Introduction to Solid State Lighting [M].New York: John Wiley&Sons, Inc.,2002,1-10
    [2]朱小清,林瀚.照明技术手册[M].第2版.北京:机械工业出版社,2004,1-7
    [3](日)照明学会编.照明手册[M].第2版.李农,杨燕译.北京:科学出版社,2005,1-17
    [4] S. Nakamura, G. Fasol. The Blue Laser Diode [M]. Berlin: Springer,1996
    [5] E. F. Schubert. Light Emitting Diode [M]. Cambridge: Cambridge UniversityPress,2003
    [6]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003
    [7] F. K. Yam, Z. Hassan. Innovative advances in LED technology.[J].Microelectronics Journal,2005,36:129-137
    [8]王晓明,郭伟玲,高国,沈光地.LED——新一代照明光源.现代显示.2005(7):15-19
    [9]孙晓园.近紫外芯片白光LED用掺Eu2+的硅酸盐荧光粉的制备发光性质研究:[博士学位论文].北京:中科院研究生院,2008
    [10]郝振东.近紫外基白光LED用Ca2P2O7:Eu2+, Mn2+及CaSc2O4:Eu3+荧光粉发光特性的研究:[博士学位论文].北京:中科院研究生院,2009
    [11]王美媛.Eu2+激活氮氧化物荧光粉的发光及其长余辉性质的研究:[博士学位论文].北京:中科院研究生院,2010
    [12]王磊.能量传递调控的高显色白光LED用YAG:Ce3+/R (R=Pr3+, Cr3+)荧光粉的研究:[博士学位论文].北京:中科院研究生院,2011
    [13] N. Narendran, N. Maliyagoda, L. Deng, et al. Characterizing LEDs for generalillumination applications: Mixed-color and phosphor-based white sources [J].SPIE-Int. Soc. Opt. Eng.,2001,4445:137-147
    [14] S. Muthu, F. Schuurmans, M. Pashley, et al. Red, green, and blue LEDs forwhite light illumination [J]. IEEE J. Selected Topics in Quantum Electronics,2002,8(2):333-338
    [15] D. Xiao, K. Kim, S. Bedair, et al. Design of white light-emitting diodes usingInGaN/AlInGaN quantum-well structures [J]. Appl. Phys. Lett.,2004,84:672-674
    [16] M. Yamada, Y. Narukawa, T. Mukai. Phosphor free high-luminous-efficiencywhite light-emitting diodes composed of InGaN multi-quantum well [J]. Jpn. J.Appl. Phys.,2002,41: L246-L248
    [17]胡兴军,江怀.半导体照明的开发与应用[J].光源与照明,2005,2:16-19
    [18]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,323-325
    [19] J. K. Park, C. H. Kim, S. H. Park, et al. Application of strontium silicate yellowphosphor for white light-emitting diodes [J]. Appl. Phys. Lett.,2004,84(10):1647-1649
    [20] J. K. Park, K. J. Choi, J. H. Yeon, et al. Embodiment of the warmwhite-light-emitting diodes by using a Ba2+codoped Sr3SiO5:Eu phosphor [J].Appl. Phys. Lett.,2004,88:043511(1-3)
    [21] N. Hirosaki, R. J. Xie, K. Kimoto, et al. Characterization and properties ofgreen-emitting β-SiAlON:Eu2+powder phosphors for white light-emittingdiodes [J]. Appl. Phys. Lett.,2005,86:211905-211907
    [22] R. J. Xie, N. Hirosaki, K. Sakuma, et al. Eu2+-doped Ca-α-SiAlON: A yellowphosphor for white light-emitting diodes [J]. Appl. Phys. Lett.,2004,84:5404-5406
    [23] R. J. Xie, N. Hirosaki, M. Mitomo, et al. Highly efficient white-light-emittingdiodes fabricated with short-wavelength yellow oxynitride phosphors [J]. Appl.Phys. Lett.,2006,88:101104(1-3)
    [24] J. S. Kim, P. E. Jeon, J. C. Choi. Warm-white-light emitting diode utilizing asingle-phase full-color Ba3MgSi2O8:Eu2+, Mn2+phosphor [J]. Appl. Phys. Lett.,2004,84(15):2931-2933
    [25] J. S. Kim, P. E. Jeon, Y. H. Park, et al. White-light generation throughultraviolet-emitting diode and white-emitting phosphor [J]. Appl. Phys. Lett.,2004,85:3696-3698
    [26] W. J. Yang, T. M. Chen. White-light generation and energy transfer inSrZn2(PO4)2:Eu, Mn phosphor for ultraviolet light-emitting diodes [J]. Appl.Phys. Lett.,2006,88:101903(1-3)
    [27] X. Y. Sun, J. H. Zhang, X. Zhang, S. Z. Lu, X. J. Wang. A white light phosphorsuitable for near ultraviolet excitation [J]. J. Lumin.,2007,122–123:955–957
    [28]孙晓园,张家骅,张霞,蒋大鹏,王笑军.新一代白光LED照明用一种适于近紫外光激发的单一白光荧光粉[J].发光学报,2005,26:404-406
    [29] H. S. Jang, D. Y. Jeon. Yellow-emitting Sr3SiO5:Ce3+, Li+phosphor forwhite-light-emitting diodes and yellow-light-emitting diodes [J]. Appl. Phys.Lett.,2007,90:041906(1-3)
    [30] N. Lakshminarasimhan, U. V. Varadaraju. White-light Generation inSr2SiO4:Eu2+, Ce3+under Near-UV Excitation [J]. J. Electrochem. Soc.,2005,152(9): H152-H156
    [31]陈大华.现代光源基础[M].上海:学林出版社,1987,1-24
    [32] Z. D. Hao, J. H. Zhang, X. Zhang, et al. White light emitting diode by usingα-Ca2P2O7:Eu2+, Mn2+phosphor [J]. Appl. Phys. Lett.,2007,90:261113(1-3)
    [33] Z. D. Hao, J. H. Zhang, X. Zhang, et al. Phase dependent photoluminescenceand energy transfer in Ca2P2O7:Eu2+, Mn2+phosphors for white LEDs [J]. J.Lumin.,2008,128:941-944
    [34] Z. D. Hao, J. H. Zhang, X. Zhang, et al. Luminescence and Energy Transfer inEu2+and Mn2+Co-doped Ca2P2O7for White Light-Emitting Diodes [J]. J.Electrochem. Soc.,2008,155(8): H606-H610
    [35]方志烈.发光二极管材料与历史、现状和展望[J].物理.2003,32(5):295-301
    [36]张思远,毕宪章.稀土光谱理论[M].吉林科学技术出版社,1991.第2章,第9章
    [37]李建宇.稀土发光材料及其应用[M].化学工业出版社,2003,第1章
    [38]聂兆刚.镨在六角碱土铝酸盐中的量子剪裁和真空紫外光谱:[博士学位论文].北京:中科院研究生院,2007
    [39]徐光宪,稀土(下)(第二版)[M].北京:冶金工业出版社,1995
    [40]苏锵,稀土化学[M].郑州:河南科学技术出版社,1993,267
    [41]张洪杰,洪广言,李得谦,牛春吉,倪嘉瓒,我国稀土化学的进展[J].化学通报,2001,6:325-329
    [42] G. Blasse, B. C. Grabmaier. Luminescent Materials [M]. Springer, Berlin,1994,chap.1
    [43] G. Gauglitz, T. V. Dinh. Handbook of Spectroscopy [M]. Wiley-Vch BerlagGmbh&KGaA, Weinhibeim ISBN3-527-29782-0, Sec. II
    [44] G. Blasse, B. C. Grabmaier. Luminescent Materials [M]. Springer, Berlin,1994,chap.5
    [45] T. F rster. Experimentelle und theoretische Untersuchung deszwischenmolekularen übergangs von Elektronen-anregungsenergie [J]. Z.Naturforschung,1949,4a,321
    [46] D. L. Dexte. A theory of sensitized luminescence in solids [J]. J. Chem. Phys.,1953,21:836-850
    [47] S. Shionoya, W. M. Yen, William. Phosphor Handbook [M]. New York: CRCPress,2000,109-112
    [48] T. Miyakawa, D. L. Dexter. Phonon Sidebands, Multiphonon Relaxation ofExcited States and Phonon-Assisted Energy Transfer between Ions in Solids [J].Phys. Rev. B,1970,1:2961-2969
    [49] T. Holstein, S. K. Lyo, R. Orbach. Phonon-assisted energy transport ininhomogeneously broadened systems [J]. Phys. Rev. Lett.,1976,36:891-894
    [50] W. M. Yen, P. M. Selzer. Laser Spectroscopy of Solids (T. Holstein, S. K. Lyo, R.Orbach. Excitation Transfer in Disordered Systems)[M]. Berlin: Springer,1986,49:39-82
    [51] S. D. Xia, P. A. Tanner. Theory of one-phonon-assisted energy transfer betweenrare-earth ions in crystals [J]. Phys. Rev. B.,2002,66:214305(1-17)
    [52]黄世华.离子中心的发光动力学[M].北京:科学出版社,2002,第一版,第四章
    [53] W. M. Yen, P. M. Selzer. Laser Spectroscopy of Solids (D. L. Huber. Dynamicsof incoherent transfer)[M]. Berlin: Springer,1986,49:83-111
    [54] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. I. transition probability calculation [J]. J. Phys. Soc.Jpn.,1973,34:1318-1326
    [55] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. II. comparison with experiment [J]. J. Phys. Soc.Jpn.,1973,34:1327-1333
    [56] T. Kushida. Energy transfer and cooperative optical transitions in rare-earthdoped in organic materials. III. dominant transfer mechanism [J]. J. Phys. Soc.Jpn.,1973,34:1334-1337
    [57] M. Inokuti, F. Hirayama. Influence of energy transfer by the exchangeMechanism on donor luminescence [J]. J. Chem. Phys.,1965,43:1978-1989
    [58] А. И. Бурштейн. Концетрционное тушение некогерентных вожзбуждений врастворах.УФН [J].1984,143:553-600
    [59] M. Yokota, O. Tanimoto. Effect of diffusion on energy transfer by resonance [J].J. Phys. Soc. Jpn.,1967,22:779-784
    [60] А. И. Бурштейн. Прыжковый механизм передачи энергии [J]. ЖЭТФ,1972,62:1695-1701
    [61] B. V. Mill, E. L. Belokoneva, M. A. Simonov, N. V. Belov. Refine crystalstructures of the scandium garnets Ca3Sc2Si3O12, Ca3Sc2Ge3O12andCd3Sc2Ge3O12[J]. J. Struct. Chem.1977,18:321-323
    [62] S. Geller. Crystal chemistry of the garnets [J]. Z. Kristallogr.,1967,125:1-47
    [63] D. T. Palumbo, J. J. Brown. Electronic States of Mn2+-Activated Phosphors. I.Green-Emitting Phosphors [J]. J. Electrochem. Soc.,1970,117:1184-1188
    [64] D. T. Palumbo, J. J. Brown. Electronic States of Mn2+-Activated Phosphors. II.Orange-to-Red Emitting Phosphors [J]. J. Electrochem. Soc.,1971,118:1159-1164
    [65] K. Narita. Energy Spectrum of Mn++ion in Calcium Fluorophosphate I.[J]. J.Phys. Soc. Jpn.,1961,16:99-105
    [66] A. L. N. Stevels. Red Mn2+-luminescence in hexagonal aluminates [J]. J. Lumin.,1979,20(2):99-109
    [67]黄世华.激光光谱学原理和方法[M].长春:吉林大学出版社.2001.第一章
    [68] Y. Shimomura. T. Honma. M. Shigeiwa. T. Alai. K. Okamoto, N. Kijima.Photoluminescence and Crystal Structure of Green-Emitting Ca3Sc2Si3O12:Ce3+Phosphor for White Light Emitting Diodes [J]. J. Electrochem. Soc.,2007,154:J35-J38
    [69] Y. Suzuki, M. Kakihana, Y. Shimomura, N. Kijima. Synthesis ofCa3Sc2Si3O12:Ce3+phosphor by hydrothermal Si alkoxide gelation [J]. J. Mater.Sci.,2008,43:2213-2216
    [70] Y. H. Liu, J. H. Hao, W. D. Zhuang, Y. S. Hu. Structural and luminescentproperties of gel-combustion synthesized green-emitting Ca3Sc2Si3O12:Ce3+phosphor for solid-state lighting [J]. J. Phys. D: Appl. Phys.,2009,42,245102
    [71] N. Enomoto, T. Sakai, M. Inada, Y. Tanaka, J. Hojo. Synthesis ofCa3Sc2Si3O12:Ce3+phosphor via newly developed emulsion route [J]. J. Ceram.Soc. Jpn.,2010,118(11):1067-1070
    [72] S. Nakamura, T. Mukai, M. Senoh. Candela-class high-brightnessInGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Appl. Phys.Lett.,1994,64:1687-1689
    [73] E. F. Schubert, J. K. Kim. Solid-state light sources getting smart [J]. Science,2005,308:1274-1278
    [74] J. K. Park, M. A. Lim, C. H. Kim, H. D. Park, J. T. Park, S. Y. Choi. Whitelight-emitting diodes of GaN-based Sr2SiO4:Eu and the luminescent properties[J]. Appl. Phys. Lett.,2003,82(5):683-685
    [75] K. Bando, K. Sakano, Y. Noguchi, Y. Shimizu. Development of high-bright andpure-white LED lamps [J]. J. Light Visual Environ.,1998,22:2-5
    [76] Y. Narukawa, J. Narita, T. Sakamoto, K. Deguchi, T. Yamada, T. Mukai.Ultra-high efficiency white light emitting diodes [J]. Jpn. J. Appl. Phys.,2006,45(Part2): L1084-L1086
    [77] G. Blasse, A. Bril. A new pohsphor for flying-spot cathode-ray tubes for colortelevision: yellow-emitting Y3Al5O12:Ce3+[J]. Appl. Phys. Lett.,1967,11(2):53-55
    [78] G. Blasse, A. Bril. Investigation of Some Ce3+-Activated Phosphors [J]. J. Chem.Phys.,1967,47(12):5139-5145
    [79] L. Kong, S. C. Gan, G. Y. Hong, J. L. Zhang, Relationship between crystalstructure and luminescence properties of (Y0.96-xLnxCe0.04)3Al5O12(Ln=Gd, La,Lu) phosphors [J]. J. Rare Earths,2007,25:692-696
    [80] K. Zhang, W. B. Hu, Y. T. Wu, H. Z. Liu. Photoluminescence investigations of(Y1-xLnx)3Al5O12:Ce (Ln3+=Gd3+, La3+) nanophosphors [J]. Phys. B,2008,403:1678-1681
    [81] W. W. Holloway, Jr. M. Kestiglan. Optical Properties of Cerium-ActivatedGarnet Crystals [J]. J. Opt. Soc. Am.,1969,59(1):60-63
    [82] T. Y. Tien, E. F. Gibbons, R. G. Delosh, P. J. Zacmanidis, D. E. Smith, H. L.Stadler. Ce3+Activated Y3Al5O12and Some of Its Solid Solutions [J]. J.Electrochem. Soc.,1973,120(2):278-281
    [83] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, G. Chandran, H. Aiyer, M. V.Shankar, S. E. Weaver. Ce3+Based Phosphors for Blue LED Excitation [J]. Proc.SPIE,2004,5187:142-149
    [84] A. A. Setlur, W. J. Heward, Y. Gao, A. M. Srivastava, R. G. Chandran, M. V.Shankar. Crystal Chemistry and Luminescence of Ce3+-DopedLu2CaMg2(Si,Ge)3O12and Its use in LED Based Lighting [J]. Chem. Mater.,2006,18:3314-3322
    [85] Y. Shimomura, T. Kurushima, M. Shigeiwa, N. Kijima. Redshift of GreenPhotoluminescence of Ca3Sc2Si3O12:Ce3+Phosphor by Charge CompensatoryAdditives [J]. J. Electrochem. Soc.,2008,155(2): J45-J49
    [86] N. P. Kumar, M. S. Kishore, R. G. Chandran, A. A. Setlur. Controlling Ce3+Emission Color in Silicate Garnet Phosphor [J]. Electrochem. Soc. Trans.,2008,16(30):57-64
    [87] M. S. Kishore, N. P. Kumar, R. G. Chandran, A. A. Setlur. Solid SolutionFormation and Ce3+Luminescence in Silicate Garnets [J]. Electrochem.Solid-State Lett.,2010,13: J77-J80
    [88] Y. H. Liu, W. D. Zhuang, Y. S. Hu, W. G. Gao. Improved photoluminescence ofgreen-emitting phosphor Ca3Sc2Si3O12:Ce3+for white light emitting diodes [J]. J.Rare Earth,2010,28(2):181-184
    [89] Y. H. Liu, W. D. Zhuang, Y. S. Hu, W. G. Gao, J. H. Hao. Synthesis andluminescence of sub-micron sized Ca3Sc2Si3O12:Ce green phosphors for whitelight-emitting diode and field-emission display applications [J]. J. Alloy.Compd.,2010,504:488-492
    [90] Y. B. Chen, M. L. Gong, K. W. Cheah. Effects of fluxes on the synthesis ofCa3Sc2Si3O12:Ce3+green phosphors for white light-emitting diodes [J]. Mater.Sci. Eng. B,2010,166:24-27
    [91] Y. B. Chen, K. W. Cheah, M. L. Gong. Low thermal quenching andhigh-efficiency Ce3+, Tb3+-co-doped Ca3Sc2Si3O12green phosphor for whitelight-emitting diodes [J]. J. Lumin.,2011,131:1589-1593
    [92]陈旖勃.稀土和Mn(IV)激活复合氧化物荧光粉制备、发光及在WLED的应用:[博士学位论文].广州:中山大学,2009
    [93] Y. F. Liu, X. Zhang, Z. D. Hao, W. Lu, X. Y. Liu, X. J. Wang, J. H. Zhang.Crystal structure and luminescence properties of (Ca2.94-xLuxCe0.06)(Sc2-yMgy)-Si3O12phosphors for white LEDs with excellent colour rendering and highluminous efficiency [J]. J. Phys. D: Appl. Phys.,2011,44,075402
    [94]刘永福,张霞,郝振东,王笑军,张家骅.荧光粉(Ca2.94-xLuxCe0.06)(ScMg)Si3O12的晶体结构和发光性质[J].发光学报,2011,32(5):445-450
    [95] Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, J. H. Zhang. Crystalstructure and luminescence properties of Lu3+and Mg2+incorporated silicategarnet [Ca3-(x+0.06)LuxCe0.06](Sc2-yMgy)Si3O12[J]. J. Lumin.,2012,132:1257-1260
    [96] X. Zhang, Y. F. Liu, Z. D. Hao, Y. S. Luo, X. J. Wang, J. H. Zhang.Yellow-emitting (Ca2Lu1-xCex)(ScMg)Si3O12phosphor and its application forwhite LEDs [J]. Materials Research Bulletin,2012,47:1149-1152
    [97] B. Henderson, G. F. Imbusch. Optical Spectroscopy of Inorganic Solids [M].Clarendon Press, Oxford,1989
    [98] D. Pauwels, N. le Masson, B. Vianan, A. Kahn-Harari, E. V. D. van Loef, P.Dorenbos, C. W. E. van Eijk. A Novel Inorganic Scintillator: Lu2Si2O7:Ce3+(LPS)[J]. IEEE Trans. Nucl. Sci.,2000,47(6):1787-1790
    [99] P. Dorenbos.5d-level energies of Ce3+and the crystalline environment. III.Oxides containing ionic complexes [J]. Phys. Rev. B,2001,64:125117(1-12)
    [100] P. Dorenbos. Relating the energy of the [Xe]5d1configuration of Ce3+ininorganic compounds with anion polarizability and cation electronegativity [J].Phys. Rev. B,2002,65:235110(1-6)
    [101] P. Dorenbos.5d-level energies of Ce3+and the crystalline environment. IV.Aluminates and “simple” oxides [J]. J. Lumin.,2002,99:283-299
    [102] P. Dorenbos. Calculation of the energy of the5d barycenter ofLa3F3[Si3O9]:Ce3+[J]. J. Lumin.,2003,105:117-119
    [103] C. C. Chiang, M. S. Tsai, M. H. Hon. Luminescent Properties ofCerium-Activated Garnet Series Phosphor: Structure and Temperature Effects[J]. J. Electrochem. Soc.,2008,155(6): B517-B520
    [104] D. J. Robbins. The Effects of Crystal Field and Temperature on thePhotoluminescence Excitation Efficiency of Ce3+in YAG [J]. J. Electrochem.Soc.,1979,126(9):1550-1555
    [105] V. Bachmann, C. Ronda, A. Meijerink. Temperature Quenching of Yellow Ce3+Luminescence in YAG:Ce [J]. Chem. Mater.,2009,21:2077-2084
    [106] V. Venkatramu, P. Babu, I. R. Martin, V. Lavin, et. al. Role of the local structureand the energy trap centers in the quenching of luminescence of the Tb3+ions influorescence glasses: A high pressure study [J]. J. Chem. Phys.,2010,132:114505(1-11)
    [107] M. Zeuner, P. J. Schmidt, W. Schnick. One-Pot Synthesis of Single-SourcePrecursors for Nanocrystalline LED Phosphors M2Si5N8:Eu2+(M=Sr, Ba)[J].Chem. Mater.,2009,21:2467-2473
    [108] K. Uheda, N. Hirosaki, Y. Yamamoto, A. Naito, T. Nakajima, H. Yamamoto.Luminescence Properties of a Red Phosphor, CaAlSiN3:Eu2+for WhiteLight-Emitting Diodes [J]. Electrochem. Solid-State Lett.,2006,9(4): H22-H25
    [109] T. Fiedler, T. Fries, F. Jermann, M. Zachau, F. Zwaschka. Luminous substanceand light source comprising such a luminous substance [P]. World Patent,2005,WO2005/061659A1
    [110] P. J. Schmidt, W. Mayr, J. Meyer, B. Schreinemacher. Illumination systemcomprising a radiation source and a luminescent material [P]. World Patent,2006, WO2006/095284A1
    [111] A. A. Setlur, W. J. Heward, M. E. Hannah, U. Happek. Incorporation of Si4+-N3-into Ce3+-Doped Garnets for Warm White LED Phosphors [J]. Chem. Mater.,2008,20:6277-6283
    [112] Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao. High Photoluminescence ofSi–N-co-doped BaAl12O19:Mn2+Green Phosphors [J]. Electrochem. Solid-StateLett.,2010,13(10): J119-J121
    [113] Y. F. Wang, X. Xu, L. J. Yin, L. Y. Hao. High Thermal Stability andPhotoluminescence of Si–N-Codoped BaMgAl10O17:Eu2+Phosphors [J]. J. Am.Ceram. Soc.,2010,93(6):1534-1536
    [114] Y. Q. Li, G. de With, H. T. Hintzen. Luminescence Properties of Eu2+-DopedMAl2xSixO4xNx(M=Ca, Sr, Ba) Conversion Phosphor for White LEDApplications [J]. J. Electrochem. Soc.,2006,153(4): G278-G282
    [115] B. G. Yun, Y. Miyamoto, H. Yamamoto. Luminescence Properties of(Sr1uBau)Si2O2N2:Eu2+, Yellow or Orange Phosphors for White LEDs,Synthesized with (Sr1uBau)2SiO4:Eu2+as a Precursor [J]. J. Electrochem. Soc.,2007,154(10): J320-J325
    [116] K. S. Sohn, J. H. Kwak, Y. S. Jung, H. Yan, M. J. Reece. Luminescence ofSr2SiO4xN2x/3:Eu2+Phosphors Prepared by Spark Plasma Sintering [J]. J.Electrochem. Soc.,2008,155(2): J58-J61
    [117] Y. H. Liu, Z. Y. Mao, W. H. Yu, Q. F. Lu, D. J. Wang. Green-light-emittingphase in Ba3MgSi2O8:Eu2+, Mn2+full-color phosphor for white-light-emittingdiodes via addition of Si3N4[J]. J. Alloy. Compd.,2010,493:406–409
    [118] M. Y. Wang, J. H. Zhang, X. Zhang, Y. S. Luo, X. G. Ren, S. Z. Lu, X. R. Liu, X.J. Wang. Photoluminescent properties of yellow emitting Ca1xEuxSi2O2δN2+2δ/3phosphors for white light-emitting diodes [J]. J. Phys. D: Appl. Phys.,2008,41,205103
    [119] Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, J. H. Zhang. Generation ofbroadband emission by incorporating N3-into Ca3Sc2Si3O12:Ce3+garnet for highrendering white LEDs [J]. J. Mater. Chem.,2011,21:6354-6358
    [120] S. P. Feofilov, D. V. Arsentyev, A. B. Kulinkin, R. I. Zakharchenya. Sc2O3:Ce3+nanocrystals: Fluorescence and its dependence on the surrounding gas pressure[J]. J. Lumin.,2011,131(3):438-441
    [121] R. Mueller-Mach, G. O. Mueller, M.R. Krames, T. Trottier. High-PowerPhosphor-Converted Light-Emitting Diodes Based on III-Nitrides [J]. IEEE J.Select. Topics Qunt. Electron.,2002,8(2):339-345
    [122] H. S. Jang, W. Bin. Im, D. C. Lee, D. Y. Jeon, S. S. Kim. Enhancement of redspectral emission intensity of Y3Al5O12:Ce3+phosphor via Pr co-doping and Tbsubstitution for the application to white LEDs [J]. J. Lumin.,2007,126:371-377
    [123] H. Yang, Y. S. Kim. Energy transfer-based spectral properties of Tb-, Pr-, orSm-codoped YAG:Ce nanocrystalline phosphors [J]. J. Lumin.,2008,128:1570-1576
    [124] L. Wang, X. Zhang, Z. D Hao, Y. S. Luo, J. H. Zhang. Enriching red emission ofY3Al5O12: Ce3+by codoping Pr3+and Cr3+for improving color rendering ofWhite LEDs [J]. Opt. Express,2010,18(24):25178
    [125] S. Ye, J. H. Zhang, X. Zhang, S. Z. Lu, X. G. Ren, X. J. Wang. Mn2+concentration manipulated red emission in BaMg2Si2O7:Eu2+, Mn2+[J]. J. Appl.Phys.,2007,101,033513(1-5)
    [126] G. Q. Yao, J. H. Lin, L. Zhang, G. X. Lu, M. L. Gong, M. Z. Su. Luminescentproperties of BaMg2Si2O7:Eu2+, Mn2+[J]. J. Mater. Chem.,1998,8(3):585-588
    [127] N. Guo, H. P. You, Y. H. Song, M. Yang, K. Liu, Y. H. Zheng, Y. J. Huang, H. J.Zhang. White-light emission from a single-emitting-componentCa9Gd(PO4)7:Eu2+, Mn2+phosphor with tunable luminescent properties fornear-UV light-emitting diodes [J]. J. Mater. Chem.,2010,20:9061-9067
    [128] U. G. Caldino. On the Ce-Mn clustering in CaF2in which the Ce3+→Mn2+energy transfer occurs [J]. J. Phys.: Condens. Matter,2003,15:3821-3830
    [129] S. Ye, X. M. Wang, X. P. Jing. Energy Transfer among Ce3+, Eu2+, and Mn2+inCaSiO3[J]. J. Electrochem. Soc.,2008,155(6): J143-J147
    [130] Y. Ding, L. B. Liang, M. Li, D. F. He, L. Xu, P. Wang, X. F. Yu. Efficientmanganese luminescence induced by Ce3+-Mn2+energy transfer in rare earthfluoride and phosphate nanocrystals [J]. Nanoscale Res. Lett.,2011,6:119(1-5)
    [131] X. J. Wang, D. D. Jia, W. M. Yen. Mn2+activated green, yellow, and red longpersistent phosphors [J]. J. Lumin.,2003,102-103:34-37
    [132] N. Suriyamurthy, B. S. Panigrahi. Luminescence of BaAl2O4:Mn2+, Ce3+phosphor [J]. J. Lumin.,2007,127,483-488
    [133] X. H. Xu, Y. H. Wang, X. Yu, Y. Q. Li, Y. Gong. Investigation of Ce-Mn EnergyTransfer in SrAl2O4:Ce3+, Mn2+[J]. J. Am. Ceram. Soc.,2011,94(1):160-163
    [134] A. Nag, T. R. N. Kutty. Photoluminescence due to efficient energy transfer fromCe3+to Tb3+and Mn2+in Sr3Al10SiO20[J]. Mater. Chem. Phys.,2005,91:524-531
    [135] C. H. Huang, T. W. Kuo, T. M. Chen. Novel Red-Emitting PhosphorCa9Y(PO4)7:Ce3+, Mn2+with Energy Transfer for Fluorescent Lamp Application[J]. ACS Appl. Mater. Interfaces,2010,2(5):1395-1399
    [136] C. F. Guo, L. Luan, Y. Xu, F. Gao, L. F. Liang. White Light-GenerationPhosphor Ba2Ca(BO3)2:Ce3+, Mn2+for Light-Emitting Diodes [J]. J.Electrochem. Soc.,2008,155(11): J310-J314
    [137] C. Kulshreshtha, J. H. Kwak, Y. J. Park, K. S. Sohn. Photoluminescent anddecay behaviors of Mn2+and Ce3+coactivated MgSiN2phosphors for use inlight-emitting-diode applications [J]. Opt. Lett.,2009,34(6):794-796
    [138] Y. Yonesaki, T. Takei, N. Kumada, N. Kinomura. Sensitized red luminescencefrom Ce3+, Mn2+-doped glaserite-type alkaline-earth silicates [J]. J. Solid StateChem.,2010,183:1303-1308
    [139] C. M. Zhang, S. S. Huang, D. M. Yang, X. J. Kang, M. M. Shang, C. Peng, J.Lin. Tunable luminescence in Ce3+, Mn2+-codoped calcium fluorapatite throughcombing emissions and modulation of excitation: a novel strategy to white lightemission [J]. J. Mater. Chem.,2010,20:6674-6680
    [140] X. G. Zhang, M. L. Gong. Photoluminescence properties and energy-transfer ofthermal-stable Ce3+, Mn2+-codoped barium strontium lithium silicate redphosphors [J]. J. Alloy. Compd.,2011,509:2850-2855
    [141] C. H. Huang, T. M. Chen. A Novel Single-Composition TrichromaticWhite-Light Ca3Y(GaO3)(BO3)4:Ce3+, Mn2+, Tb3+Phosphor for UV-LightEmitting Diodes [J]. J. Phys. Chem. C,2011,115:2349-2355
    [142] Y. F. Liu, X. Zhang, Z. D. Hao, X. J. Wang, J. H. Zhang. Tunablefull-color-emitting Ca3Sc2Si3O12:Ce3+, Mn2+phosphor via charge compensationand energy transfer [J]. Chem. Commun.,2011,47:10677-10679
    [143] Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, J. H. Zhang. Generatingyellow and red emissions by co-doping Mn2+to substitute for Ca2+and Sc3+sites in Ca3Sc2Si3O12:Ce3+green emitting phosphor for white LED applications[J]. J. Mater. Chem.,2011,21:16379-16384
    [144] Y. F. Liu, X. Zhang, Z. D. Hao, Y. S. Luo, X. J. Wang, L. Ma, J. H. Zhang.Luminescence and energy transfer in Ca3Sc2Si3O12:Ce3+, Mn2+white LEDphosphors [J]. J. Lumin.,2012,
    [145] K. V. Ivanovskikh, A. Meijerink, F. Piccinelli, A. Speghini, E. I. Zinin, C. Ronda,M. Bettinelli. Optical spectroscopy of Ca3Sc2Si3O12, Ca3Y2Si3O12andCa3Lu2Si3O12doped with Pr3+[J]. J. Lumin.,2010,130:893-901
    [146] F. Piccinelli, A. Speghini, K. Ivanovskikh, A. Meijerink, C. Ronda, M. Bettinelli.UV and visible luminescence of Pr3+doped oxides: new materials [J]. Mater.Res. Soc. Symp. Proc.,2009,1111-D08-07
    [147] T. Nakano, Y. Kawakami, K. Uematsu, T. Ishigaki, K. Toda, M. Sato. NovelBa-Sc-Si-oxide and oxynitride phosphors for white LED [J]. J. Lumin.,2009,129:1654-1657
    [148] L. H. Wang, L. F. Schneemeyer, R. J. Cava, T. Siegrist. A New BariumScandium Silicate: Ba9Sc2(SiO4)6[J]. J. Solid State Chem.,1994,113:211-214
    [149] W. L. Morison. Phototherapy and photochemotherapy: an update [J]. Semin.Cutan. Med. Surg.,1999,18(4):297-306
    [150] H. C. Dittmar, D. Pflieger, E. Sch pf, J. C. Simon. UVA1phototherapy. Pilotstudy of dose finding in acute exacerbated atopic dermatitis [J]. Der Hautarzt,2001,52(5):423-427
    [151] A. Morita, K. Kobayashi, I. Isomura, T. Tsuji, J. Krutmann. Ultraviolet A1(340-400nm) phototherapy for scleroderma in systemic sclerosis [J]. J. Am.Acad. Dermatol.,2000,43:670-674
    [152] M. Millard, J. L. M. Hawk. Ultraviolet therapy in lupus [J]. Lupus,2001,10(3):185-187
    [153] R. C. Ropp. Luminescence and the Solid State [M]. Amsterdam: Elsevier,1991

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700