Pr和Zn/Al掺杂钛酸盐的缺陷、能带结构和光学性质的第一性原理计算
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土发光材料因其独特的发光性能在颜色显示、照明和防伪等领域有着广泛的应用,始终是材料学和物理学的一个研究热点。Pr掺杂碱土钛酸盐在紫外光激发时具有理想红光发射、微弱余辉及化学稳定性好等优良性能。近十年来,通过各种实验方法拓宽这种红色发光材料的激发范围、延长余辉等提高其发光性能的方法是发光材料重点研究领域之一。为了获得发光性能较好的产品,往往需要反复实验直到获得最佳结果为止。单凭实验研发高性能发光材料不仅时间冗长而且效率低。材料性能是材料中各微观性质的宏观表现,实验方法很难对影响宏观性质的各微观因素进行系统详细地研究。而第一性原理计算模拟方法能很好地描述材料的微观性质,进而揭示影响宏观性能的微观机理。同一实验方法合成的产品有时发光性能差异较大,实验上无法得出具体原因。据此,本论文采用基于密度泛函理论的第一性原理计算方法,以Pr掺杂CaTiO3和SrTiO3为研究对象,并结合Zn2+离子对Pr掺杂CaTiO3发光和余辉有益以及Al3+离子对Pr掺杂SrTiO3发光有益的两个实验现象,计算了Pr掺杂的CaTiO3、Pr和A1掺杂的SrTiO3的缺陷形成能和电子结构,进而预测了(Zn,Pr)掺杂CaTiO3和(Al,Pr)掺杂SrTiO3的光学性质。本工作取得的主要研究结果如下:
     (1)(Zn,Pr)掺杂的CaTiO3的缺陷、能带结构和光学性质
     计算了状态A (CaTiO3. CaO和O2平衡)和状态B (CaTiO3.TiO2和O2平衡)下CaTiO3中各本征缺陷的缺陷形成能以及电子结构。计算表明当费米能级靠近价带时,VTi4、CaTi2-和VCa2-是主要受主缺陷。各本征缺陷体系的禁带中没有缺陷能级。VTi4、CaTi2-和VCa2-本征缺陷体系能隙比完整CaTiO3能隙分别少0.21eV、0.12eV和0.06eV, Vo2+和TiCa2+体系带隙基本保持不变。浓度最大的本征缺陷体系决定着基质中电子跃迁的最低能量。带隙变小的本征缺陷体系有利于基质中电子从价带顶跃迁至导带底。因此,调整本征缺陷的组成能够降低电子吸收能量,从而使激发光谱范围变宽,对实验掺杂改性具有参考价值。
     ·计算了CaTiO3中Pr缺陷的形成能和电子结构。计算表明:Pr掺杂的格位与体系中平衡状态和电子费米位置相关。PrCa0、PrCa1+缺陷体系的禁带中没有出现缺陷能级。PrCa2+的缺陷体系在禁带中出现了缺陷能态。这缺陷能态与现有Pr作为发光中心的发光模型基本类似。
     ·计算了(Zn,Pr)掺杂的CaTiO3能带结构、电子结构和光学性质。Pr掺杂的CaTiO3在价带顶~1.30eV和~2.06eV处出现以Pr4f、O2p和Ti3d的杂化能态。(Zn,Pr)掺杂后体系仍保持Pr掺杂体系特征,但在价带顶~0.18eV出现了新的缺陷能级。(Zn,Pr)掺杂后的吸收光谱在300nm、372nm和457nm处出现了宽带吸收。这一计算结果与实验观察的吸收光谱特征330nm、375nm和458-495nm基本相符。
     (2)(Al,Pr)掺杂的SrTiO3的缺陷、能带结构和光学性质
     ·当SrTiO3、TiO2和O2三相平衡时,计算了SrTiO3中本征缺陷的形成能以及其电子结构。结果表明体系主要受主和施主缺陷分别为VSr2-和VO2+。各含本征缺陷体系禁带中没有缺陷能级。与完整SrTiO3相比,TiSr1+体系能隙增大0.05eV, VTi4-、Vo2+、SrTi2-和VSr2-带隙基本保持不变。没有明显减少的本征缺陷的带隙不利于电子从价带从导带的跃迁。
     ·当SrTiO3. TiO2和O2三相平衡时,Pr优先占据Sr格位,Al占据Ti格位。Prsr0、PrSr1+缺陷体系的禁带中没有出现缺陷能级,只有PrSr2+的缺陷体系在高于价带顶~0.73eV处出现可作为发光中心的带间态。在1573K时,Al掺杂前后SrTiO3:Pr体系电子费米能级由0.645eV下降至0.601eV,从而(Al,Pr)代替VSr2-缺陷成为主要的受主缺陷参与电中性平衡。
     ·计算了SrTiO3掺杂的(Al,Pr)(?)带结构、电子结构和光学性质。当两个Al原子与Pr原子距离最近时,Pr原子轨道发生劈裂,缺陷体系在禁带中有较多能带。SrTiO3掺杂的(287nm.308nm吸收光谱在260-400nm区间的的特征吸收峰(270nm.300nm和350nm)结果与文献实验激发峰和360nm)相接近。
     本论文从电子层面上计算了Pr和Zn/Al掺杂的钛酸盐的缺陷形成能、能带结构和光学性质,得出了与实验接近的结果。在发光材料和光催化材料等进行改性的实验研究时,本论文的相关研究成果将对掺杂种类、掺杂方法和掺杂浓度等有积极的参考价值,也将有助于提高这些材料的研发效率。
Luminescent materials doped with rare earth, which are widely applied in the fields of color display, lighting and anti-counterfeiting and so on, are one of hot research topics among materials and physics. Pr doped CaTiO3and SrTiO3luminescent materials can be excited in the ultra violet and show a unique red emission as well as weak afterglow and high chemical stability at room temperature. Better red luminescent materials have been intensively investigated by broadening excitation area and improving the long decay properties during the recent years. It takes inevitably researchers long periods to obtain a better luminescent material through iterative experiments in the laboratory. Generally speaking, macroscopical properties of materials are the statistical results of all microcosmic exhibitions. Sometimes the macroscopical property of one sample is different from that of the other which is obtained by the same treatment. It is difficult to investigate all the relative microcosmic aspects for the macroscopical properties by using only experimental methods. Meanwhile, first-principles calculations are specialized in illustrating microcosmic exhibitions and inner mechanisms. Therefore, first-principles calculations are used to obtain defects, electronic structures of Pr doped CaTiO3, Pr and Al doped SrTiO3. Based on the two experimental findings that Zn2+ions are beneficial to the afterglow and red luminescent intensities of Pr doped CaTiO3and Al3+ions are helpful to red luminescent intensities of Pr doped SrTiO3, the optical properties of (Zn,Pr) doped CaTiO3and (Al,Pr) doped SrTiO3are investigated by first-principles calculations. Main conclusions are as follows:
     (I) Defects, band structures and optical propertis Pr and (Zn,Pr) doped CaTiO3
     · Formation energies and electronic structures of native defects in orthorhombic CaTiO3are explored using the first-principles calculations under A condition in which CaTiO3is in equilibrium with CaO and O2and under condition B (TiO2, CaTiO3and O2are in equilibrium). The Ca vacancy (VCa2), Ti vacancy (VTi4-) and Ca antisite (CaTi2-) are the acceptors energetically preferable. There is no defective gap state in electronic structures of decfective CaTiO3containing either of native defects. The bandgaps of VTi4-, CaTi2-and VCa2defective systems are reduced by0.21eV,0.12eV and0.06eV in comparasion with perfect system. Those of Vo2+and TiCa2+keep unchangeable. The shinking band gaps will low the absorption energy of the transition of excited phonon from the valence band to the conduction band. Therefore, it is possible to broaden the excitation spectra by modulating the compoition of native defects.
     · Formation energies and electronic structures of Pr impurities in orthorhombic CaTiO3are explored. In Pr-doped CaTiO3, Pr substituting for Ca (Prca) is likely to form under A condition. Under condition B, Pr substituting for Ti (PrTi) defect is energetically preferable depending on the Fermi levels. No gap state appears within the band gap of Prca0and PrCa1+defective system. For PrCa2+, the gap states within the band gap are suitable for luminescent centers, which agree with the proposed luminescent models of CaTiO3:Pr.
     · Band structures, electronic and optical properties are calculated for (Zn,Pr) codoped CaTiO3. There are gap states consisting of Pr4f, O2p and Ti3d hybrid orbitals above the top of valence bands of~1.30and2.06eV in Pr-doped systems, which are retained in (Zn,Pr)-codoped systems. There are new states above the top of valence bands of~0.18eV in (Zn,Pr) codoped systems. The calculated characteristic absorption peaks of (Zn,Pr) codoped systems are300nm,372nm and457nm, which are close to the experimental results of the corresponding material at330nm,375nm and458-495nm,respectively.(Ⅱ) Defcts, band structures and optical propertis (Al,Pr) doped SrTiO3
     · Formation energies and electronic structures of native defects in cubic SrTiO3are calculated under the condition that TiO2, SrTiO3and O2are in equilibrium. The Sr vacancies (VSr2-) and O vacancies (Vo2+) are found to be energetically preferable as acceptors and donors for the pure sysytem. There is no defective state in electronic structures of decfective SrTiO3. In comparasion with the perfect system, the band gap of TiSr1+defective system is enlarged by0.05eV while those of Vo2+, SrTi2,VTi4-and VSr2are kept unchangeable. The inflexible band gaps of native defects are not beneficial to the transition of excited phonon from the valence band to the conduction band.
     · Formation energies and electronic structures of Pr and Al impurities in cubic SrTiO3are calculated under the condition that TiO2, SrTiO3and O2are in equilibrium. Pr prefers to occupy Sr site while Al to Ti lattice site. The gap states of PrSr defects depend on charged states, which are similar to those of PrCa defects. The calculated Fermi-level pinning positions at1573K for Al-free and Al doped SrTiO3:Pr decline from0.645eV to~0.601eV. AlTi-defects substituting with VSr2-are major acceptors in the overall charge neutrality of (Al,Pr)-codoped SrTiO3.
     · Band structures, electronic and optical properties are calculated for (Al,Pr) doped SrTiO3. The multiple gap states of Pr orbitals within then band gap are deduced by the two Al atoms which are nearest to Pr atom. For (Al,Pr) doped SrTiO3, the calculated absorption peaks at287nm,308nm and350nm are similar to the experimental excitation peaks at270nm,300nm and360nm, respectively.
     In this paper, formation energies, band structures, electronic and optical properties are calculated for Pr and Zn/Al doped CaTiO3and SrTiO3systems. The calculated results agree reasonably with the experimental findings. The methodology of the dissertation is beneficial to obtain the logical orientation and improve the investigation efficiency for a better luminescent material and a higher efficiency photocatalyst, such as doping method, species and concentration and so on.
引文
[1]徐叙瑢,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,p3.
    [2]Okamoto S., Tanaka S., Yamamoto H. Reduction Process of Ruddlesden-Popper-Type Planar Faults in SrTiO3:Pr3+ by Al Addition[J]. Electrochemical and Solid-State Letters 2000,3 (5):242-244.
    [3]Zhang C., Yang J., Lin C., et al. Reduction of Eu3+ to Eu2+ in MAl2Si208 (M=Ca, Sr, Ba) in air condition[J]. Journal of Solid State Chemistry,2009,182 (7): 1673-1678.
    [4]Yuan X.F., Shi X.B., Shen M.R., et al. Luminescent properties of Pr3+ doped (Ca, Zn) TiO3:Powders and films[J]. Journal of Alloys and Compounds,2009,485 (1-2):831-836.
    [5]Dong G.., Xiao X., Zhang L., et al. Preparation and optical properties of red, green and blue afterglow electrospun nanofibers[J]. Journal of Materials Chemistry, 2011,21 (7):2194-2203.
    [6]Okamoto S., Yamamoto H. Characteristic enhancement of emission from SrTiO3:Pr3+ by addition of group-IIIb ions[J]. Applied Physics Letters,2001,78 (5):655-657.
    [7]Boutinaud P., Pinel E., Mahiou R. Luminescence and afterglow in CaTiO3:Pr3+ films deposited by spray pyrolysis[J]. Optical Materials,2008,30:1033-1038.
    [8]Yuan X.F., Shen M.R., Fang L., et al. The effect of calcium concentration on the photoluminescence of CaTiO3:Pr3+ films prepared by the sol-gel method[J]. Optical Materials,2009,31 (8):1248-1251.
    [9]Maldiney T., Lecointre A.I., Viana B., et al. Controlling Electron Trap Depth To Enhance Optical Properties of Persistent Luminescence Nanoparticles for In Vivo Imaging[J]. Journal of the American Chemical Society,2011,133 (30): 11810-11815.
    [10]Bouzigues C, Gacoin T., Alexandrou A. Biological Applications of Rare-Earth Based Nanoparticles[J]. ACS Nano,2011,5 (11):8488-8505.
    [11]Jia W., Jia D., Rodriguez T., et al. UV excitation and trapping centers in CaTiO3:Pr3+[J]. Journal of Luminescence,2006,119-120:13-18.
    [12]Boutinaud P., Sarakha L., Cavalli E., et al. About red afterglow in Pr3+ doped titanate perovskites[J]. Journal of Physics D:Applied Physics,2009,42:045106.
    [13]Lian S.X., Qi Y, Rong C.Y., et al. Effectively leveraging solar energy through persistent dual red phosphorescence:preparation, characterization, and density functional theory study of Ca2Zn4Ti16O38:Pr+[J]. Journal of Physical Chemistry C,2010,114 (15):7196-7204.
    [14]Kyomen T., Sakamoto R., Sakamoto N., et al. Photoluminescence properities of Pr-doped (Ca,Sr,Ba)TiO3[J]. Chemistry of Materials,2005,17:3200-3204.
    [15]Zhang X.M., Cao C.Y., Zhang C.H., et al. Photoluminescence and energy storage traps in CaTiO3:Pr3+[J]. Materials Research Bulletin 2010,45:1832-1836.
    [16]苏锵.稀土化学[M].郑州:河南科学技术出版社,1993,p266.
    [17]Wang G, Peng Q., Li Y. Lanthanide-Doped Nanocrystals:Synthesis, Optical-Magnetic Properties, and Applications[J]. Accounts of Chemical Research,2011,44 (5):322-332.
    [18]李晓丽,张忠义.稀土发光材料产业现状分析[J].稀土,2010,31(2):55-59.
    [19]徐叙容,苏勉曾.发光学与发光材料[M].北京:化学工业出版社,2004,p321-330.
    [20]Ye S., Xiao F., Pan Y.X., et al. Phosphors in phosphor-converted white light-emitting diodes:Recent advances in materials, techniques and properties[J]. Materials Science and Engineering:R:Reports,2010,71 (1):1-34.
    [21]Wu Y.F., Nien Y.T., Wang Y.J., et al. Enhancement of Photoluminescence and Color Purity of CaTiO3:Eu Phosphor by Li Doping [J]. Journal of the American Ceramic Society,2011,1-7.
    [22]Lecointre A., Bessiere A., Bos A.J.J., et al. Designing a Red Persistent Luminescence Phosphor:The Example of YPO4:Pr3+,Ln3+(Ln= Nd, Er, Ho, Dy)[J]. The Journal of Physical Chemistry C,2011,115 (10):4217-4227.
    [23]Emery S.B., Cheng C.J., Kan D., et al. Phase coexistence near a morphotropic phase boundary in Sm-doped BiFeO3 films[J]. Applied Physics Letters,2010,97: 152902.
    [24]Chawla P., Lochab S.P., Singh N. Optical characterization of Bi doped SrS nanophosphors[J]. Materials Research Bulletin,2010,45 (7):783-786.
    [25]Chawla P., Lochab S.P., Singh N. Synthesis and luminescence studies of CdSrS nanostructures[J]. Journal of Alloys and Compounds,2011,509 (1):72-75.
    [26]Lian S.X., Rong C.Y., Yin D.L., et al. Enhancing solar energy conversion effeciency.a tunable dual-excitation dual-emission phosphors and time-dependent density functional theory study[J]. Journal of Physical Chemistry C,2009,113:6298-6302.
    [27]Mai P.T. Rare-earth calcium sulfide phosphors for cathode-ray displays[J]. Journal of Alloys and Compounds,1995,225:547-551.
    [28]胡运生,叶红齐,庄卫东Sr/Ca比变化对红色荧光粉Ca1-xSrxS:Eu2+的影响[J].中国稀土学报,2004,22(6):854-858.
    [29]Kottaisamy M., Jagannathan R. On the formation of flux grown Y2O2S:Eu3+ red phosphor[J]. Journal of Electrochem society,1995,142 (9):3205-3208.
    [30]金尚忠,杨翼,等.一种可用于白光LED的硅酸盐红色荧光粉发光特性的研究[J].中国稀土学报,2009,27(3):344-346.
    [31]Chen X., Zhao J., Yu L., et al. A white light emitting phosphor Sr1.5Ca0.5SiO4:Eu3+, Tb3+, Eu2+ for LED-based near-UV chip:Preparation, characterization and luminescent mechanism[J]. Journal of Luminescence,2011, 131 (12):2697-2702.
    [32]Yang P., Lin J.H., Yao G.Q. Luminescence and preparation of LED phosphor Ca8Mg(SiO4)4Cl2:Eu2+[J]. Journal of Rare Earths,2005,23 (5):633.
    [33]Wang X., Jia D., Yen W.M. Mn2+ activated green,yellow, and red long persistent phosphors[J]. Journal of Luminescence,2003,102-103:34.
    [34]Xia Z.R., Hua Z.J., Xia Z., et al. Energy transfer and red phosphorescence in stronium aluminum aluminnates co-doped with Cr3+,Eu2+ and Dy3+[J]. Journal of Luminescence,2006,119-120:327-331.
    [35]从秀华,赵月昌,吴秋芳,等.白光LED新型红色荧光粉KCaY(MoO4)3:Eu3+的制备及发光性能[J].中国稀土学报,2011,29(6):704-709.
    [36]周文理,朱爱玲,廉世勋,等Sr1-xZnxY2S4:Er3+,Eu2+荧光粉的合成与发光特性的研究[J].中国稀土学报,2009,27(1):40-45.
    [37]Demirors A.F., Imhof A. BaTiO3,SrTiO3,CaTiO3, and BaxSr1-xTiO3 Particles:A general approach for monodisperse colliodal perovskites[J]. Chemistry of Materials,2009,21:3002-3007.
    [38]Zhang T.J., Wang J., Jiang J., et al. Microstructure and photoluminescence properties of Ho-doped (Ba,Sr)TiO3 thin films [J]. Thin Solid Films,2007, 515:7721-7725.
    [39]Diallo P.T., Boutinaud P., Mahiou R., et al. Red luminescence in Pr3+-doped calcium titanates[J]. Phys Status Solidi A,1997,160 (1):255-259.
    [40]Fujiwara R., Sano H., Shimizu M., et al. Quantitative analysis of UV excitation bands for red emission in Pr3+-doped CaTiO3,SrTiO3 and BaTiO3 phosphors by peak fitting[J]. Journal of Luminescence,2009,129:231-237.
    [41]Guo S., Wang E. Functional Micro/Nanostructures:Simple Synthesis and Application in Sensors, Fuel Cells, and Gene Delivery[J]. Accounts of Chemical Research,2011,44 (7):491-500.
    [42]钱逸泰.结晶化学导论[M].合肥:中国科学技术大学出版社,1988,p309.
    [43]Nakajima T., Tsuchiya T., Kumagai T. Substrate effect on excimer laser assisted crystal growth in phosphor Cao.997Pro.oo2TiO3 poly crystalline thin films [J]. Applied Surface Science,2007,254:884-887.
    [44]Royce M.R., Matsuda S., Tamaki H. Red emitting long decay phosphors. [P] US. 5650094,1997.
    [45]Diallo P.T., Jeanlouis K., Boutinaud P., et al. Improvement of the optical performances of Pr3+ in CaTiO3[J]. Journal of Alloys and Compounds,2001, 323-324:218-222.
    [46]Zhang X.Y., Cheng G0., Mi X.Y., et al. Preparation and Long Persistence Red Luminescence of M0.2Ca0.8TiO3:Pr3+(M=Mg2+, Sr2+, Ba2+, Zn2+)[J]. Journal of Rare Earths,2004,22 (1):137-139.
    [47]杨志平,朱胜超,郭智,等.锌对CaTiO3:Pr3+发光亮度和余辉时间的影响[J].中国稀土学报,2002,20(增刊):42-45.
    [48]Zhang X.M., Zhang J.H., Nie Z.G., et al. Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors [J]. Applied Physics Letters,2007,90:151911.
    [49]Peng C., Hou Z., Zhang C., et al. Synthesis and luminescent properties of CaTiO3: Pr3+ microfibers prepared by electrospinning method [J]. Optics Express,2010, 18(7):7543-7553.
    [50]廉世勋,林建华,苏勉曾.Ca1-xZnxTiO3:Pr3+,R+(R+=Li+,Na+,K+,Rb+,Cs+,Ag+)的合成和发光性质[J].中国稀土学报,2001,19(6):602-605.
    [51]Tang J.F., Yu X.B., Yang L.Z., et al. Preparation and Al3+ enhanced photoluminescence properties of CaTiO3:Pr3+[J]. Material Letters,2006,60: 326-329.
    [52]Jia W., Perez-Andujar A., Rivera I. Energy Transfer Between Bi3+ and Pr3+in Doped CaTiO3[J]. Journal of The Electrochemical Society,2003,150 (7): H161-164.
    [53]Hyeon K.A., S.H.Byeon, J.C.Park, et al. Highly enhanced photoluminescence of SrTiO3:Pr by substitution of (Li0.5,La0.5) pair for Sr[J]. Solid State Commun, 2000,115:99-104.
    [54]Li T., Shen M.R., Fang L., et al. Effect of Ca deficiencies on the photoluminescence of CaTiO3:Pr3+[J]. Journal of Alloys and Compounds,2009, 474 (1-2):330-333.
    [55]Wang W., Jiang C.G., Shen M.R., et al. Effect of oxygen vacancies on the red emission of SrTiO3:Pr3+ phosphor films[J]. Applied Physics Letters,2009,94 (8): 081904-081903.
    [56]廉世勋,左成钢,尹笃林,等.纳米Ca0.8Zn0.2TiO3:Pr3+,Na+荧光粉的合成和红色发光性质[J].中国稀土学报,2006,24(2):158-162.
    [57]廉世勋,李秀英,尹笃林,等.固溶体结构对Ca2-xSrxZn4Ti15036:Pr3+发光性质的影响[J].无机化学学报,2006,22(2):336-340.
    [58]Jia W.Y., Xu W.L., Rivera I., et al. Effects of compositional phase transitions on luminescence of Sr1-xCaxTi03:Pr3+[J]. Solid State Commun,2003,126:153-157.
    [59]Ryu H., Singh B.K., Bartwal K.S., et al. Novel efficient phosphors on the base of Mg and Zn co-doped SrTiO3:Pr3+[J]. Acta Materialia,2008,56 (3):358-363.
    [60]贾冬冬,张家骅,何志毅,等.严懋勋实验室与长余辉荧光材料[J].发光学报,2008,29(4):655-659.
    [61]Wang X.S., Xu C.N., Yamada H., et al. Electro-Mechano-Optical Conversions in Pr3+-doped BaTiO3-CaTiO3 ceramics[J]. Advanced Materials,2005,17: 1254-1258.
    [62]Boutinaud P., Pinel E., Dubois M., et al. UV-to-red relaxation pathways in CaTiO3:Pr3+[J]. Journal of Luminescence,2005,111 (1-2):69-80.
    [63]Okamoto S., Yamamoto H. Luminescent properties of praseodymium-doped alkaline-earth titanates[J]. Journal of Luminescence,2003,102-103:586-589.
    [64]Marchylo O.M., Zavjalova L.V., Nakanishi Y, et al. Synthesis and luminescent properties of SrTiO3:Pr3+ phosphors prepared by sol-gel method[J]. Semiconductor Physics,Quantum Electronic & Optoelectronics 2009, 12:321-323.
    [65]徐叙瑢,苏勉曾.发光学与发光材料[J].北京:化学工业出版社,2004,p604.
    [66]Kim K.H., Park J.K., Kim C.H., et al. Synthesis of SrTiO3:Pr,Al by ultrasonic spray pyrolysis[J]. Ceramics International,2002,2829-36.
    [67]Pang Q., Shi J.X., Gong M.L. Photoluminescent prperties of SrTiO3:Pr,Al nanophosphors synthesized by microemulsion-microwave heating [J]. J Am Ceram Soc,2007,90 (12):3943-3946.
    [68]Yin S.Y., Chen D.H., Tang W.J., et al. Combustion synthesis and luminescent properties of CaTiO3:Pr, Al persistent phosphors[J]. Journal of Alloys and Compounds,2007,441:327-331.
    [69]尚用甲,郑峰.草酸盐共沉淀法制备CaTiO3:Pr3+长余辉发光材料的性能研究[J].功能材料,2009,40(1):17-19.
    [70]Zhang X.M., Zhang J.H., Ren X.G., et al. The dependence of persistent phosphorescence on annealing temperatures in CaTiO3:Pr3+ nanoparticles prepared by a coprecipitation technique[J]. Journal of Solid State Chemistry, 2008,181:393-398.
    [71]Pan Y.X., Su Q., Xu H.F., et al. Synthesis and red luminescence of Pr3+-doped CaTiO3 nanophosphor from polymer precursor[J]. Journal of Solid State Chemistry,2003,174:69-73.
    [72]Boutinaud P., Tomasella E., Ennajdaoui A., et al. Structural characterization and luminescent properties of CaTiO3:Pr3+ thin films deposited by radio frequency sputtering[J]. Thin Solid Films,2006,515 (4):2316-2321.
    [73]Yin S.Y., Chen D.H., Tang W. J., et al. Synthesis of CaTiO3:Pr persistent phosphors by a modified solid-state reaction[J]. Materials Science and Engineering B,2007,136:193-196.
    [74]Liu X., Jia P., Lin J., et al. Monodisperse spherical core-shell structured SiO2-CaTiO3:Pr3+phosphors for field emission displays[J]. Journal of Applied Physics,2006,99 (12):124902-124907.
    [75]Nakajima T., Tsuchiya T., Kumagai T. Low-Temperature Fabrication of Red Phosphor Ca0.997Pr0.002TiO3 Thin Film Using Excimer Laser Assisted Metal Organic Deposition[J]. Japanese Journal of Applied Physics,2007,46 (15): L365-368.
    [76]苏锵.稀土化学[M].郑州:河南科学技术出版社,1993,p318.
    [77]张天之,苏锵.MAl2O4:Eu2+,RE3+长余辉发光性质研究[J].发光学报,1999,12(2):170-175.
    [78]Matsuzawa T., Aoki Y, Takeuchi N., et al. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+,Dy3+[J]. Journal of The Electrochemical Society,1996,143 (8):2670-2673.
    [79]Dieke G.H., Crosswhite H.M. The spectra of the doubly and triply ionized rare earths[J]. Applied Optics,1963,2:675-686.
    [80]Inaguma Y., Muronoi T., Sano K., et al. An approach to control of band gap energy and photoluminescence upon band gap excitation in Pr3+-doped perovskites La1/3MO3 (M= Nb, Ta):Pr3+[J]. Inorganic Chemistry,2011,50 (12): 5389-5395.
    [81]Pinel E., Boutinaud P., Mahiou R. What makes the luminescence of Pr3+different in CaTiO3 and CaZrO3?[J]. Journal of Alloys and Compounds,2004,380: 225-229.
    [82]Zhang X.M., Cao C.Y., Zhang C.H., et al. Improved photoluminescence and afterglow in CaTiO3:Pr3+ with addition of nanosized SiO2[J]. Physica B,2011, 406 (20):3891-3895.
    [83]Haranath D., Khan A.F., Chander H. Bright red luminescence and energy transfer of Pr3+-doped (Ca,Zn)TiO3 phosphor for long decay applications [J]. Journal of Physics D:Applied Physics,2006,39:4956-4960.
    [84]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社环境科学与工程出版中心,2003,p555-556.
    [85]Aitasalo T., Holsa J., Jungner H., et al. Mechanisms of persistent luminescence in Eu2+, RE3+ doped alkaline earth aluminates[J]. Journal of Luminescence,2001, 94-95:59-63.
    [86]Gregorkiewicz T. Direct spectral probing of energy storage in Si:Er by a free-electron laser[J]. Applied Physics Letters,1999,75 (26):4121-4123.
    [87]Wang A., Shang S. L., Du Y., et al. Effects of pressure and vibration on the thermal decomposition of cubic Ti1-xAlxN, Ti1-xZrxN, and Zr1-xAlxN coatings: a first-principles study [J]. Journal of Materials Science, in press, doi:10.1007/s10853-011-6223-z,2012.
    [88]Feng J., Xiao B., Wan C.L., et al. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore[J]. Acta Materialia,2011,59 (4):1742-1760.
    [89]Zhao J.L., Zhang W.Q., Li X.M., et al. Convergence of the formation energies of intrinsic point defects in wurtzite ZnO:first-principles study by projector augmented wave method [J]. JPhys:CondensMater,2006,18 (5):1495-1508.
    [90]Onishi T. The theoretical study on the bandgap change in the nitrogen-doped perovskite-type titanium oxide of SrTiO3[J]. Top Catal,2010,53:566-570.
    [91]Zhao D., Kong Y., Wang A., et al. Self-Diffusion Coefficient of fcc Mg: First-Principles Calculations and Semi-Empirical Predictions[J]. Journal of Phase Equilibria and Diffusion,2011,32 (2):128-137.
    [92]Wang J.C., Du Y, Xu H.H., et al. Native defects in LiNH2:A first-principles study[J]. Physical Review B,2011,84 (2):024107.
    [93]Wang J.C., Du Y, Xu H.H., et al. Diffusion of hydrogen vacancy in Na3AlH6[J]. Applied Physics Letters,2009,95 (11):111910-111913.
    [94]Meyer B., Padilla J., Vanderbilt D. Theory of PbTiO3,BaTiO3, and SrTiO3 surfaces[J]. Faraday Discuss,1999,114:395-405.
    [95]Padilla J., Vanderbilt D. Ab initio study of BaTiO3 surface[J]. Physical Review B, 1997,56:1625-1631.
    [96]Piskunov S., Kotomin E.A., Heifets E., et al. Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces[J]. Surface Science,2005,575:75-78.
    [97]Ghanbarian V., Mohammadizadeh M.R. Different self-consistent electronic structrues of PrBa2Cu3O7 from LSDA+U calculations [J]. Physical Review B, 2008,78:144505.
    [98]Suthirakun S., Ammal S.C., Xiao G.L., et al. Density functional theory study on the electronic structure of n-and p-type doped SrTiO3 at anodic solid oxide fuel cell conditions[J]. Physical Review B,2011,84 (20):205102-205109.
    [99]Lee H.S., Mizoguchi T., Yamamoto T., et al. First-principles calculation of defect energetics in cubic-BaTiO3 and a comparison with SrTiO3[J]. Acta Materialia, 2007,55 (19):6535-6540.
    [100]Long R., English N.J. Tailoring the electronic structure of TiO2 by cation codoping from hybrid density functional theory calculations[J]. Physical Review B,2011,83 (15):155209-155205.
    [101]Zhang Y.B., Yuan X., Sun X.D., et al. Comparative study of structural and electronic properties of Cu-based multinary semiconductors [J]. Physical Review B,2011,84 (7):075127.
    [102]Duan X.M., Stampfl C., Bilek M.M.M., et al. Codoping of aluminum and gallium with nitrogen in ZnO:A comparative first-principles investigation[J]. Physical Review B,2009,79 (23):235208.
    [103]Uchida K., Tsuneyuki S. First-principles calculations of carrier-doping effects in SrTiO3[J]. Physical Review B,2003,68:174107.
    [104]Choi M., Oba F., Tanaka I. Role of Ti antisitelike defects in SrTiO3[J]. Physical Review Letters,2009,103 (18):185502-185504.
    [105]Gai Y.Q., Li J.B., Li S.S., et al. Design of Narrow-Gap TiO2:A Passivated Codoping Approach for Enhanced Photoelectrochemical Activity [J]. Physical Review Letters,2009,102 (3):036402.
    [106]Zhang C., Lin C., Li C., et al. Enhanced Luminescence of BPO4 by Mixing with SiO2 and Al2O3[J]. The Journal of Physical Chemistry C,2008,112 (6): 2183-2192.
    [107]Lin C.C., Xiao Z.R., Guo G.Y., et al. Versatile Phosphate Phosphors ABPO4 in White Light-Emitting Diodes:Collocated Characteristic Analysis and Theoretical Calculations[J]. Journal of the American Chemical Society,2010, 132 (9):3020-3028.
    [108]Ghanbarian V., Mohammadizadeh M.R. Electric field gradients in PrBa2Cu3O7:LSDA+U results and comparison with experiment[J]. The European Physical Journal B,2008,61:309-318.
    [109]Irie H., Maruyama Y., Hashimoto K. Ag+and Pb2+-doped SrTiO3 photocatalysts. A correlation between band structure and photocatalytic activity [J]. Journal of Physical Chemistry C,2007,111:1847-1852.
    [110]Born M., Oppenheimer J.R. Concerning the quantum theory of molecules[J]. Annals of Physics,1927,84:457-484.
    [111]Hartree D.R. The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1928,24 (01):89-110.
    [112]Fock V. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems[J]. Zeitschrift fur Physik A Hadrons and Nuclei,1930,61 (1):126-148.
    [113]Thomas L.H. The calculation of atomic fields[J]. Mathematical Proceedings of the Cambridge Philosophical Society,1927,23 (05):542-548.
    [114]Hohenberg P., Kohn W. Inhomogeneous Electron Gas[J]. Physical Review,1964, 136(3B):B864-B871.
    [115]Kohn W, Sham L.J. Self-Consistent Equations Including Exchange and Correlation Effects[J]. Physical Review,1965,140 (4):A1133-A1138.
    [116]Perdew J.P., Chevary J.A., Vosko S.H., et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Physical Review B,1992,46 (11):6671-6687.
    [117]Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B,1992,45 (23): 13244-13249.
    [118]Slater J.C. A Simplification of the Hartree-Fock Method[J]. Physical Review, 1951,81 (3):385-390.
    [119]Lee C., Yang W., Parr R.G.,Development of Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B,1988, 37 (2):785-789.
    [120]Becke A.D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Physical Review A,1988,38 (6):3098-3100.
    [121]Perdew J.P., Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple[J]. Physical Review Letters,1996,77 (18):3865-3868.
    [122]Ann E.M., Peter A.S., Michael P.D., et al. Designing meaningful density functional theory calculations in materials science-a primer[J]. Modelling and Simulation in Materials Science and Engineering,2005,13 (1):R1.
    [123]张跃,谷景华,尚家香,等.计算材料学基础[M].北京:北京航空航天出版社,2007,p17.
    [124]黄昆.固体物理[M].1988,北京:高等教育出版社.
    [125]Zhang H., Chen G., Li Y., et al. Electronic structure and photocatalytic properties of copper-doped CaTiO3[J]. International Journal of Hydrogen Energy,2010,35 (7):2713-2716.
    [126]Yin S.Y., Chen D.H., Tang W.J., et al. Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties[J]. J Mater Sci,2007,42: 2886-2890.
    [127]Cho S.H., Yoo H.S. Synthesis and low-voltage charactreistics of CaTiO3:Pr luminescent powder[J]. Journal Electrochemistry society,1996,143 (10): L231-L234.
    [128]Yin S.Y., Chen D.H., Tang W.J., et al. Synthesis of CaTiO3:Pr, Al phosphors by sol-gel method and their luminescence properties[J]. Journal of Materials science,2007,2007 (42):2886-2890.
    [129]Zhang X.M., Zhang J.H., Nie Z.G., et al. Enhanced red phosphorescence in nanosized CaTiO3:Pr3+ phosphors[J]. Applied Physics Letters,2007,90 (151911):1-3.
    [130]Sarakha L., Begou T, Goullet A., et al. Influence of synthesis conditions on optical and electrical properties of CaTiO3:Pr3+ thin films deposited by radiofrequency sputtering for electroluminescent device [J]. Surface and Coatings Technology,2011,205, Supplement 2 (0):S250-S253.
    [131]Yamamoto H., Okamoto S., Kobayashi H. Luminescence of rare-earth ions in perovskite-type oxides:from basic research to applications[J]. Journal of Luminescence,2002,100 (1-4):325-332.
    [132]Li S., Liang X. Preparation and luminescent properties of CaTiO3:Pr3+, Al3+ persistent phosphors by nitrate-citric acid combustion method[J]. Journal of Materials science,2008,19:1147-1152.
    [133]http://boomeria.org/chemlectures/textass2/firstsemass.html.
    [134]Van de Walle, G. C., Neugebauer J. First-principles calculations for defects and impurities:Applications to Ⅲ-nitrides[J]. Journal of Applied Physics,2004,95 (8):3851-3879.
    [135]Yin W.J., Wei S.H., Al-Jassim M.M., et al. Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory[J]. Physical Review B,2011,83 (15):155102.
    [136]Choi M., Oba F., Tanaka I. First-principles study of native defects and lanthanum impurities in NaTaO3[J]. Physical Review B,2008,78 (1):014115.
    [137]Poykko S., Puska M.J., Nieminen R.M. Ab initio study of fully relaxed divacancies in GaAs[J]. Physical Review B,1996,53 (7):3813-3819.
    [138]Mattila T., Zunger A. Deep electronic gap levels induced by isovalent P and As impurities in GaN[J]. Physical Review B,1998,58 (3):1367-1373.
    [139]Lee H., Mizoguchi T., Yamamoto T., et al. First Principles Study on Intrinsic Vacancies in Cubic and Orthorhombic CaTiO3[J]. Materials Transactions,2009, 50 (5):977-983.
    [140]Lange B., Freysoldt C., Neugebauer J. Native and hydrogen-containing point defects in Mg3N2:A density functional theory study[J]. Physical Review B, 2010,81 (22):224109.
    [141]Kresse G., Furthm, uuml, et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Physical Review B, 1996,54(16):11169.
    [142]Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B,1999,59 (3):1758.
    [143]Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77 (18):3865.
    [144]Marel D.v.d., G.A.Sawatzky. Electron-electron interaction and location in d anf f transition metals[J]. Physical Review B,1988,37 (18):10674.
    [145]Nirpendra S., Sapan M.S., Tashi N., et al. Electronic structure and optical properties of rare earth sesquioxides (R2O3,R=La,Pr,and Nd)[J]. J Appl Phys, 2006,100:083525.
    [146]Prokofiev A.V., al e. Periodicity in the band gap variation of Ln2X3(X= O, S, Se) in the lanthanideseries[J]. Journal of Alloys and Compounds,1996,242:41.
    [147]Boudali A., Abada A., Driss Khodja M., et al. Calculation of structural, elastic, electronic, and thermal properties of orthorhombic CaTiO3[J]. Physica B: Condensed Matter,2010,405 (18):3879-3884.
    [148]Boutinaud P., Cavalli E., Bettinelli M. Emission quenching induced by intervalence charge transfer in Pr3+ or Tb3+ doped YNbO4 and CaNb2O6[J]. Journal of Physics:Condensed Matter,2007,19 (38):386230.
    [149]Diallo P.T., Jeanlouis K., Boutinaud P., et al. Improvement of the optical performances of Pr3+ in CaTiO3[J]. Journal of Alloys and Compounds,2001, 323-324:218.
    [150]李秀英,廉世勋,朱爱玲,等.掺Pr3+钛酸盐红色长余辉发光性质比较[J].湖南师范大学自然科学学报,2005,28(1):48-51.
    [151]李秀英,廉世勋,刘利民,等.红色长余辉发光材料Ca2Zn4T15O36:Pr3+的合成和发光性质[J].中国稀土学报,2005,23(1):16-20.
    [152]周文理.碱土-稀土三元硫化物红色荧光粉的合成与发光性质[J].湖南师范大学硕士学位论文,2009,p28.
    [153]张瑞西,钱志萍,王海波.半导体照明用红色荧光粉的研究现状(上)[J].中国照明电器,2011,(8):1-6.
    [154]Feng J.W., Zhang W.Q., Jiang W. Ab initio study of Ag/Al2O3 and Au/Al2O3 interfaces[J]. Physical Review B,2005,72 (11):115423.
    [155]Djermouni M., Zaoui A., Kacimi S., et al. Vacancy defects in strontium titanate: Ab initio calculation[J]. Computation Materials Science,2010,49 (4):904-909.
    [156]Pang M.J., Zhan Y.Z., Wang H.Z., et al. Structural, electronic, elastic and thermodynamic properties of AlSi2RE (RE=La, Ce, Pr and Nd) from first-principle calculations[J]. Computation Materials Science,2011,50 (12): 3303-3310.
    [157]Long R., English N.J. Tailoring the electronic structure of TiO2 by cation codoping from hybrid density functional theory calculations[J]. Physical Review B,2011,83(15):155209.
    [158]Fasoli M., Vedda A., Nikl M., et al. Band-gap engineering for removing shallow traps in rare-earth LU3Al5O12 garnet scintillators using Ga3+doping[J]. Physical Review B,2011,84 (8):081102.
    [159]Jiang C., Fang L., Shen M., et al. Effects of Eu substituting positions and concentrations on luminescent, dielectric, and magnetic properties of SrTiO3 ceramics[J]. Applied Physics Letters,2009,94 (7):071110-071113.
    [160]Liu C., Liu P. Two kinds of anomalous dielectric phenomena in Pr-doped SrTiO3 ceramics:The Debye-like and ferroelectric-like behaviors[J]. Physica B, 2010,405:4881-4885.
    [161]Duran A., Martinez E., Diaz J.A., et al. Ferroelectricity at room temperature in Pr-doped SrTiO3[J]. Journal of Applied Physics,2005,97 (10): 104109-104104.
    [162]Duran A., Morales F., Fuentes L., et al. Specific heat anomalies at 37,105 and 455 K in SrTiO3:Pr[J]. Journal of Physics:Condensed Matter,2008,20 (8): 085219.
    [163]Ranjan R., Hackl R., Chandra A., et al. High-temperature relaxor ferroelectric behavior in Pr-doped SrTiO3[J]. Physical Review B,2007,76 (22):224109.
    [164]Okamoto S., Kobayashi H. Enhancement of characteistic red emission from SrTiO3:Pr3+ by Al addition[J]. Journal of Applied Physics,1999,86 (10): 5594-5597.
    [165]Liu C., Liu P., Zhou J.-p., et al. Colossal dielectric constant and relaxation behaviors in Pr:SrTiO3 ceramics[J]. Journal of Applied Physics,2010,107 (9): 094108-094104.
    [166]Wang X., Lu X., Weng Y., et al. Improved electrical properties of Pr-doped films[J]. Solid State Commun,2010,150 (5-6):267-270.
    [167]Zhai Z.Y., Wu X.S., Jiang Z.S., et al. Strain distribution in epitaxial SrTiO3 thin films[J]. Applied Physics Letters,2006,89 (26):262902-262903.
    [168]Tanaka T., Matsunaga K., Ikuhara Y., et al. First-principles study on structures and energetics of intrinsic vacancies in SrTiO3[J]. Physical Review B,2003,68 (20):205213-205218.
    [169]Kotomin E.A., Zhukovskii Y.F., Piskunov S., et al. Hybrid DFT calculations of the F centers in cubic ABO3 perovskites[J]. Journal of Physics:Conference Series,2008,117 (1):012019.
    [170]Alexandrov V.E., Kotomin E.A., Maier J., et al. First-principles study of bulk and surface oxygen vacancies in SrTiO3 crystal [J]. The European Physical Journal B,2009,72:53-57.
    [171]Kim Y.S., J.Kim, Moon S.J., et al. Localized electronic states induced by defects and possible origin of ferroelectricity in stronium titanate thin films [J]. Applied Physics Letters,2009,94:202906.
    [172]Gentils A., Copie O., Herranz G., et al. Point defect distribution in high-mobilty conductive SrTiO3 crystals[J]. Physical Review B,2010,81:144109.
    [173]Mo S.D., Ching W.Y., Chisholm M.F., et al. Electronic strcuture of a grain-boundary model in SrTiO3[J]. Physical Review B,1999,60:2416.
    [174]Okamato S., Millis A.J., Spaldin N.A. Lattice relaxtion in oxide heterostructures: LaTiO3/SrTiO3 superlattice[J]. Physical Review B,2006,97:056802.
    [175]Carrasco J., Illas F., Lopez N., et al. First-principles calculations of the atomic and electronic structure of F centers in the bulk nd on the (001) surface of SrTiO3[J]. Physical Review B,2006,73:064106.
    [176]Wen W.X. Ab intio calculation and study of luminescence properties of SrTiO3:Pr3+ materials co-doped with metal ions, http://ieeexplore.ieee.org/ stamp/stamp jsp?arnumber=05780563
    [177]Benthem K.V., Elsasser C. Bulk electronic structure of SrTiO3 Experiment and theory[J]. Journal of Applied Physics,2001,90:6156-6164.
    [178]Yamada Y., Kanemitsu Y. Band-to-band photoluminescence in SrTiO3[J]. Physical Review B,2010,82:121103.
    [179]http://www.freshney.org.
    [180]Rinke P., Schleife A., Kioupakis E., et al. First-Principles Optical Spectra for F Centers in MgO[J]. Physical Review Letters,2012,108 (12):126404.
    [181]Yu H., Irie H., Hashimoto K. Conduction Band Energy Level Control of Titanium Dioxide:Toward an Efficient Visible-Light-Sensitive Photocatalyst[J]. Journal of the American Chemical Society,2010,132 (20):6898-6899.
    [182]Wang P., Liu Z., Lin F., et al. Optimizing photoelectrochemical properties of TiO2 by chemical codoping[J]. Physical Review B,2010,82 (19):193103.
    [183]Xu L., Tang C.Q., Qian J., et al. Theoretical and experimental study on the electronic structure and optical absorption properties of P-doped TiO2[J]. Applied Surface Science,2010,256 (9):2668-2671.
    [184]Wang Y., Wang J.J., Wang W.Y., et al. A mixed-space approach to first-principles calculations of phonon frequencies for polar materials[J]. Journal of Physics:Condensed Matter,2010,22 (20):202201.
    [185]Freeman C.L., Dawson J.A., Chen H.-R., et al. A new potential model for barium titanate and its implications for rare-earth doping [J]. Journal of Materials Chemistry,2011,21:4861-4868.
    [186]Nisar J., Arhammar C., Jamstorp E., et al. Optical gap and native point defects in kaolinite studied by the GGA-PBE, HSE functional, and GW approaches[J]. Physical Review B,2011,84 (7):075120.
    [187]叶良修.半导体物理学(第二版)[M].北京:高等教育出版社,2007,p516.
    [188]Kamal K. S., Tanusri S.D., Abhijit M., et al. Optical properties of perovskite alkaline-earth titanates:a formulation[J]. Journal of physics:condensed matter, 2002, (14):3849-3863.
    [189]Ueda K., Yanagi H., Noshiro R., et al. Vacuum ultraviolet reflectance and electron energy loss spectra of CaTiO3[J]. J Phys:Condens Matter,1998, 10:3669-3677.
    [190]袁小芳.Ca组分偏离和Zn掺杂对CaTiO3:Pr薄膜发光性能的影响[D].苏州大学,2009,p46.
    [191]Kan D., Terashima T., Kanda R., et al. Blue-light emission at room temperature from Ar+-irradiated SrTiO3 [J]. Nature Materials,2005,4 (11):816-819.
    [192]Kan D., Kanda R., Kanemitsu Y. Blue luminescence from electron-doped SrTiO3[J]. Applied Physics Letters,2006,88:191916.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700