葡聚糖包裹的纳米氟磷灰石示踪骨髓间充质干细胞
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:
     骨髓间充质干细胞(bone marrow mesenchymal stem cells, BMSCs)作为临床骨组织工程最常用的种子细胞,已被广泛研究,其标记及示踪问题也颇受大家关注,常用的有机染料如CM-DIL和EGFP等存在荧光寿命短,体内不稳定及潜在的细胞致癌性等不足。水热法合成的掺杂镧系元素氟磷灰石(FHA:Tb3+/Eu3+, Tb/Eu-FHA)纳米粒子的粒度均匀,稳定性好,荧光寿命长,细胞亲和力高,和BMSCs共培养后可被BMSCs吞噬,在特定波长光的激发下可发出绿色/红色荧光。本实验采用水热法合成Tb/Eu-FHA,以葡聚糖进行表面修饰后和比格犬BMSCs共培养,观察Tb/Eu-FHA标记BMSCs效果,检测该纳米粒子对BMSCs增殖及分化影响,并将被标记的BMSCs植入动物体内,观察Tb/Eu-FHA在体内的稳定性,为BMSCs的体外及体内研究提供了一种新的标记手段,为进一步研究再生医学与骨组织工程中BMSCs在体内的迁移及转归提供新的思路。研究方法:
     1.以硝酸钙(Ca(NO3)2·4H2O)、硝酸铽(Tb(NO3)3·6H2O)、磷酸钠(Na3PO4·12H2O)、氟化钠(NaF)、十八胺(Octadecylamine)、油酸(Oleic acid)、乙醇(Ethanol)以及环已烷(Cyclohexane)为原料,采用水热法合成掺杂镧系元素(铕Eu或铽Tb)的纳米氟磷灰石,离心收集FHA纳米颗粒,加入环已烷与葡聚糖(Dextran)混合溶液中,并加入四氢呋喃(Tetrahyfrofuran),超声波处理后离心收集,得到经葡聚糖表面修饰的掺杂镧系元素纳米氟磷灰石。
     2.掺杂镧系元素纳米氟磷灰石的参数检测:X-射线衍射仪检测掺杂镧系元素纳米氟磷灰石的结晶程度及物象组成,红外吸收光谱分析样品中所含的阴离子基团,透射电镜下观察纳米粒子基本形态、颗粒粒径、粒径分布及团聚等情况。倒置荧光显微镜下观察掺杂不同浓度镧系元素的纳米氟磷灰石的荧光特性,荧光分光光度计检测荧光强度。
     3.全骨髓培养法从犬骨髓血中分离纯化犬BMSCs (canine bone marrow mesenchymal stem cells, cBMSCs),体外向成骨、成软骨、成脂三系诱导分化,流式细胞仪检测CD29、CD34、CD44和CD45等细胞表面标志物表达。贴壁纯化培养后的cBMSCs CD29和CD44表达为强阳性,而CD34和CD45的表达为阴性。将cBMSCs和不同浓度的葡聚糖表面修饰后的Tb/Eu-FHA纳米颗粒共培养后,检测cBMSCs增殖及分化情况。
     4.倒置荧光显微镜及激光共聚焦显微镜下观察共培养后的cBMSCs荧光强度,real-time PCR检测成骨相关因子碱性磷酸酶(alkaline phosphatase, ALP), I型胶原(alpha1chain of type I collagen, COL1α1)以及骨连蛋白(osteonectin, ON)等mRNA的表达变化,ELISA法检测ALP蛋白表达变化。
     5.将共培养后的cBMSCs按1×107/ml接种于PCL支架上,孵箱内放置3天,接种后的支架移植入裸鼠体内背部皮下,术后一个月及三个月取材,裸鼠处死,制作快速冰冻切片、HE染色切片,倒置荧光显微镜下观察。
     研究结果:
     1.水热法合成的纳米荧光氟磷灰结构规则,呈长粒状结构,直径约20nm,平均长度约110-170,微溶于水。
     2. Tb-FHA在激发光激发下呈绿色荧光,发射波长为543nm,而Eu-FHA则呈红色荧光,发射波长为617nm, XRD检测呈典型的FHA六角晶体结构。
     3.共培养后的cBMSCs在倒置荧光显微镜及激光共聚焦显微镜下可分别呈现绿色(Tb-FHA)或红色(Eu-FHA)荧光。MTS法检测共培养后细胞增殖情况,50ug/ml、100ug/ml和200ug/ml组各组中细胞增殖未受明显影响。
     4. Real-time PCR检测cBMSCs与Tb-FHA共培养后14天、21天各组成骨相关因子ALP、COL1α1和ON表达均明显升高,Tb-FHA对成骨诱导液在成骨诱导方向有协同作用,ELSIA法检测ALP蛋白表达结果与PCR一致。
     5.植入裸鼠体内后1月、3月快速冰冻切片及HE染色结果,可见绿色荧光,证明了Tb-FHA在体内可长期存在并发出荧光。
     结论:
     1.水热法合成的Tb/Eu-FHA颗粒均一,具有典型氟磷灰石晶体结构,在掺杂Tb或Eu后分别发出绿色或红色荧光,荧光强度高,在葡聚糖包裹修饰后由疏水性变为亲水性,细胞亲和力提高,适合用来进行生物学试验。
     2.全骨髓培养法可以高效的从比格犬骨髓中分离培养出BMSCs,具有向成骨、成软骨和成脂方向分化的潜能,免疫表型符合骨髓间充质干细胞的特征。
     3.葡聚糖修饰的Tb/Eu-FHA生物相容性好,细胞亲和力高,可以用来标记BMSCs。
     4.标记后的BMSCs向成骨方向分化,且Tb-FHA和传统的成骨诱导液对BMSCs成骨分化具有协同作用,100ug/ml的浓度为最佳浓度。
     5.葡聚糖修饰的Tb-FHA可以用来进行体内示踪,Tb-FHA在体内可长期稳定存在。
     6.葡聚糖修饰的Tb/Eu-FHA作为BMSCs的标记及示踪剂,价格低廉、制造简单、便于保存、使用方便且性能稳定,在骨组织工程领域中具有良好的应用前景。
Objective:
     BMSCs have been demonstrated as an attractive cell source for tissue-engineering applications because of their ability to be easily isolated and expanded from adult bone marrow aspirates and their versatility for pluripotent differentiation into mesenchymal tissues. To date, however, an ideal agent for monitoring and tracking of transplanted BMSCs is still lacking. The organic fluorescent dyes CM-Dil and BrdU are usually used to track cells in vivo, while it is difficult to achieve long-term efficacy. Terbium (Tb)-or europium (Eu)-doped fluorapatite nanorods (Tb/Eu-FHA) were prepared using the hydrothermal method. The surfaces of the Tb/Eu-FHA nanorods were further conjugated with hydrophilic cationic polymers, such as dextran, to enhance hydrophilicity, biocompatibility and cell penetration. Then, the dextran-coated nanorods were cocultured with bone marrow mesenchymal stem cells (BMSCs). A luminescence signal in the cells was detected after12hours with a laser scanning confocal microscope (LSCM). Our current work attempts to provide an excellent fluorescent cell labelling agent for BMSCs in bone tissue engineering.
     Methods:
     1. Eu3+or Tb3+-doped FHA nanorods were synthesized via the hydrothermal method. Ca(NO3)2·4H2O, Eu(NO3)3or Tb(NO3)3, Na3PO4·12H2O, octadecylamine, oleic acid, ethanol, NaF and Na3PO4were added sequentially and mixed. The obtained Tb/Eu-FHA nanorods doped were collected by centrifugation.
     2. The structure, morphology, and luminescence of the products were determined using X-ray diffraction (XRD), field emission scanning electron microscopy (ESEM), transmission electron microscopy (TEM), and photoluminescence spectra (PL). Surfaces of the Tb-FHA nanorods were further conjugated with hydrophilic cationic polymers such as dextran to enhance the hydrophilic, biocompatibility and cell penetrations.
     3. Bone marrow aspirates were harvested from anterior superior iliac spine of the beagle dog. The specific cell surface antigen markers of cBMSCs were examined by flow cytometry (FCM). CD29, CD44, CD34and CD45were examined. Biocompatibility evaluation of dextran-coated Tb/Eu-THA nanorods on BMSCs were performed using MTS assay.
     4. The cBMSCs and dextran-coated Tb/FHA at a concentration of100μg/mL were cocultured, and fluorescent images of cBMSCs were collected via laser scanning confocal microscope (LSCM). The mRNA levels of ALP, COLlal, and ON were analysed via real-time PCR assay on days14and21of differentiation. The ALP activity was detected by ELISA on day14and day21of differentiation.
     5. The labelled BMSCs were seeded on sterilized PCL scaffold in a concentration of1x107cells/ml, and then implanted subcutaneously into nude mice. Samples were harvested after1and3months of incubation. Specimens were used to make rapid frozen sections that were then stained with haematoxylin and eosin (HE). Images were collected via inverted fluorescence microscope.
     Result:
     1. Typical FHA nanorods doped with Tb3+are straight nanorods with a diameter of about20nm and lengths ranging from110to170nm. The nanorods possessed uniform morphology and good crystallinity, and hard to soluble in water.
     2. Tb-FHA nanorods become luminescent with a maximum emission intensity at543nm (5D4-7F5), and the emission intensity of Eu-FHA nanorods is617nm (5D0-7F2). The result of XRD shows all diffraction peaks can be indexed as typical hexagonal FHA.
     3. The green/red fluorescence of cBMSCs can be clearly seen in confocal images with an excitation wavelength of405nm and488nm. No obvious cytotoxicity of Tb-FHA group was observed of the MTS assay. The fluorapatite nanorods act synergistically with the biochemical reagents in osteogenic medium to promote osteogenic differentiation.
     4. The mRNA levels of ALP, COLlal, and ON mRNA detected on day14and day21are all up-regulated. Consistent with real-time PCR result, ELSIA assay also shows an increase of ALP protein level.
     5. Samples were harvested after1and3months of incubation. Fluorescent images of the rapidly frozen sections were gathered via inverted fluorescence microscope and tipical green fluorescence are shown.
     Conclusions:
     1. The fluoride substituted hydroxyapatite nanorods doped with lanthanides synthesized using hydrothermal method possess excellent luminescent properties, uniform morphology, good crystallinity, and the uniformity of sizes. The luminescence shows high photostability, high resistance to photobleaching, and long luminescent lifetime.
     2. BMSCs can be efficient isolat from the bone marrow of beagle dogs suing whole bone marrow culture method. The cBMSCs show the potential of osteogenic, adipogenic and chondrogenic differentiation. Immunephenotype matches bone marrow mesenchymal stem cell characteristics.
     3. Dextran-coated Tb/Eu-FHA nanorods proved to be successful in labelling cBMSCs. The nanorods possess excellent biocompatibility, concentration of100μg/mL is recommended, high concentration is useless.
     4. Dextran-coated Tb/Eu-FHA nanorods promote osteogenic differentiation of cBMSCs. There is a synergistic effect between the fluorapatite nanorods and biochemical reagents in osteogenic medium on osteogenic differentiation.
     5. Dextran-coated Tb/Eu-FHA nanorods can be used as an in vivo tracer, the fluorescence can persist for a long time in vivo.
     6. Lower costs, improved performance, simplicity of manufacture, facilitation of use and storage make the nanorods an make the nanorods may become excellent fluorescent cell labelling agent for BMSCs in bone tissue engineering.
引文
[1]Kay M, Young R, Posner A. Crystal structure of hydroxyapatite. Nature.1964;204:1050-2.
    [2]Fox K, Tran PA, Tran N. Recent advances in research applications of nanophase hydroxyapatite. ChemPhysChem.2012;13:2495-506.
    [3]Hassan S, Gupta M. Effect of different types of nano-size oxide particulates on microstructural and mechanical properties of elemental Mg. Journal of Materials Science.2006;41:2229-36.
    [4]Nanomaterials TD. Synthesis, Properties, Modifications, and Applications Chen, Xiaobo; Mao, Samuel S. Chemical Reviews (Washington, DC, United States).2007; 107:2891-959.
    [5]Weiner S, Wagner HD. The material bone:structure-mechanical function relations. Annual Review of Materials Science.1998;28:271-98.
    [6]Meirelles L, Arvidsson A, Andersson M, Kjellin P, Albrektsson T, Wennerberg A. Nano hydroxyapatite structures influence early bone formation. Journal of Biomedical Materials Research Part A. 2008;87:299-307.
    [7]Koutsopoulos S. Synthesis and characterization of hydroxyapatite crystals:a review study on the analytical methods. Journal of biomedical materials research.2002;62:600-12.
    [8]Liu H, Chin T, Lai L, Chiu S, Chung K, Chang C, et al. Hydroxyapatite synthesized by a simplified hydrothermal method. Ceramics International.1997;23:19-25.
    [9]Hui J, Zhang X, Zhang Z, Wang S, Tao L, Wei Y, et al. Fluoridated HAp:Ln 3+(Ln= Eu or Tb) nanoparticles for cell-imaging. Nanoscale.2012;4:6967-70.
    [10]Soini E, Kojola H. Time-resolved fluorometer for lanthanide chelates-a new generation of nonisotopic immunoassays. Clinical Chemistry.1983;29:65-8.
    [11]Hemmila I, Laitala V. Progress in lanthanides as luminescent probes. Journal of Fluorescence. 2005;15:529-42.
    [12]Neumeier M, Hails LA, Davis SA, Mann S, Epple M. Synthesis of fluorescent core-shell hydroxyapatite nanoparticles. Journal of Materials Chemistry.2011;21:1250-4.
    [13]Meijering E, Dzyubachyk O, Smal I. Methods for cell and particle tracking. Methods Enzymol. 2012;504:183-200.
    [14]Brust M, Fink J, Bethell D, Schiffrin D, Kiely C. Synthesis and reactions of functionalised gold nanoparticles. J Chem Soc, Chem Commun.1995:1655-6.
    [15]Li J, Wang, Liu Y. Tao,". J & Zhang, M & Pan, H & Xu, X & Tang, R," Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe", J Phys Chem C.2008;112:12219-24.
    [16]Chane-Ching J-Y, Lebugle A, Rousselot I, Pourpoint A, Pelle F. Colloidal synthesis and characterization of monocrystalline apatite nanophosphors. Journal of Materials Chemistry. 2007;17:2904-13.
    [17]Mondejar SP, Kovtun A, Epple M. Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments. Journal of Materials Chemistry.2007;17:4153-9.
    [18]Liu H, Chen F, Xi P, Chen B, Huang L, Cheng J, et al. Biocompatible fluorescent hydroxyapatite: synthesis and live cell imaging applications. The Journal of Physical Chemistry C.2011; 115:18538-44.
    [19]Li L, Liu Y, Tao J, Zhang M, Pan H, Xu X, et al. Surface modification of hydroxyapatite nanocrystallite by a small amount of terbium provides a biocompatible fluorescent probe. The Journal of Physical Chemistry C.2008;112:12219-24.
    [20]Mahmoudi M, Sant S, Wang B, Laurent S, Sen T. Superparamagnetic iron oxide nanoparticles (SPIONs):development, surface modification and applications in chemotherapy. Advanced drug delivery reviews.2011;63:24-46.
    [21]Betzig E, Trautman JK. Near-field optics:microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science.1992;257:189-95.
    [22]Chan C-M. Polymer surface modification and characterization:Carl Hanser, GmbH & Co.; 1993.
    [23]Neoh KG, Kang ET. Surface modification of magnetic nanoparticles for stem cell labeling. Soft Matter. 2012;8:2057-69.
    [24]Torchilin VP. Multifunctional nanocarriers. Advanced drug delivery reviews.2012;64:302-15.
    [25]Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials.2002;23:1553-61.
    [26]Lofas S, Johnsson B, Tegendal K, Ronnberg I. Dextran modified gold surfaces for surface plasmon resonance sensors:immunoreactivity of immobilized antibodies and antibody-surface interaction studies. Colloids and Surfaces B:Biointerfaces.1993;1:83-9.
    [27]Hornig S, Bunjes H, Heinze T. Preparation and characterization of nanoparticles based on dextran-drug conjugates. Journal of colloid and interface science.2009;338:56-62.
    [28]Lee S, Perez-Luna VH. Surface-grafted hybrid material consisting of gold nanoparticles and dextran exhibits mobility and reversible aggregation on a surface. Langmuir.2007;23:5097-9.
    [29]Koktysh D, Bright V, Pham W. Fluorescent magnetic hybrid nanoprobe for multimodal bioimaging. Nanotechnology.2011;22:275606.
    [30]Asati A, Santra S, Kaittanis C, Perez JM. Surface-charge-dependent cell localization and cytotoxicity of cerium oxide nanoparticles. ACS nano.2010;4:5321-31.
    [31]Wilson R, Spiller DG, Beckett A, Prior IA, See V. Highly stable dextran-coated quantum dots for biomolecular detection and cellular imaging. Chemistry of Materials,2010;22:6361-9.
    [32]Schulz A, Woolley R, Tabarin T, McDonagh C. Dextran-coated silica nanoparticles for calcium-sensing. Analyst.2011; 136:1722-7.
    [33]Zhang X, Hui J, Yang B, Yang Y, Fan D, Liu M, et al. PEGylation of fluoridated hydroxyapatite (FAp): Ln 3+nanorods for cell imaging. Polymer Chemistry.2013;4:4120-5.
    [34]Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells:nature, biology, and potential applications. Stem cells.2001; 19:180-92.
    [35]Derubeis AR, Cancedda R. Bone marrow stromal cells (BMSCs) in bone engineering:limitations and recent advances. Annals of biomedical engineering.2004;32:160-5.
    [36]Sohni A, Verfaillie CM. Mesenchymal Stem Cells Migration Homing and Tracking. Stem cells international.2013;2013.
    [37]Lin C-S, Xin Z-C, Dai J, Lue TF. Commonly used mesenchymal stem cell markers and tracking labels: Limitations and challenges. Histology and histopathology.2013;28:1109.
    [38]Duke S, Forward G. Calcium fluoride and fluoridated hydroxyapatite formation in relation to the acid dissolution rate of enamel mineral. Caries research.1978;12:12-20.
    [39]Yin Y, Yun S, Fang J, Chen H. Chemical regeneration of human tooth enamel under near-physiological conditions. Chemical Communications.2009:5892-4.
    [40]Ghomi F, Jalilifiroozinezhad S, Azami M. New precipitation method for synthesis of nano-fluorapatite. Materials Research Innovations.2013;17:257-62.
    [41]Bell R. Introductory Fourier transform spectroscopy:Elsevier; 2012.
    [42]Lewinski N, Colvin V, Drezek R. Cytotoxicity of nanoparticles. Small.2008;4:26-49.
    [43]Napierska D, Thomassen LC, Rabolli V, Lison D, Gonzalez L, Kirsch-Volders M, et al. Size-Dependent Cytotoxicity of Monodisperse Silica Nanoparticles in Human Endothelial Cells. Small. 2009;5:846-53.
    [44]Pan Y, Leifert A, Ruau D, Neuss S, Bornemann J, Schmid G, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small.2009;5:2067-76.
    [45]Zhang W, Zhang F, Shi H, Tan R, Han S, Ye G, et al. Comparisons of Rabbit Bone Marrow Mesenchymal Stem Cell Isolation and Culture Methods In Vitro. PloS one.2014;9:e88794.
    [46]Nemeth K, Mayer B, Sworder B, Kuznetsov S, Mezey E. A Practical Guide to Culturing Mouse and Human Bone Marrow Stromal Cells. Current Protocols in Immunology.2013:22F.12.1-22F.12.3.
    [47]Riekstina U, Cakstina I, Parfejevs V, Hoogduijn M, Jankovskis G, Muiznieks I, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Reviews and Reports.2009;5:378-86.
    [48]Ng F, Boucher S, Koh S, Sastry KS, Chase L, Lakshmipathy U, et al. PDGF, TGF-β、and FGF signaling is important for differentiation and growth of mesenchymal stem cells (MSCs):transcriptional profiling can identify markers and signaling pathways important in differentiation of MSCs into adipogenic, chondrogenic, and osteogenic lineages. Blood.2008;112:295-307.
    [49]Takemitsu H, Zhao D, Yamamoto I, Harada Y, Michishita M, Arai T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC veterinary research.2012;8:150.
    [50]Kisiel AH, McDuffee LA, Masaoud E, Bailey TR, Gonzalez BPE, Nino-Fong R. Isolation, characterization, and in vitro proliferation of canine mesenchymal stem cells derived from bone marrow, adipose tissue, muscle, and periosteum. American journal of veterinary research.2012;73:1305-17.
    [51]Raynaud S, Champion E, Lafon J, Bernache-Assollant D. Calcium phosphate apatites with variable Ca/P atomic ratio III. Mechanical properties and degradation in solution of hot pressed ceramics. Biomaterials.2002;23:1081-9.
    [52]Wei J, Wang J, Shan W, Liu X, Ma J, Liu C, et al. Development of fluorapatite cement for dental enamel defects repair. Journal of Materials Science:Materials in Medicine.2011;22:1607-14.
    [53]Bianco A, Cacciotti I, Lombardi M, Montanaro L, Bemporad E, Sebastiani M. F-substituted hydroxyapatite nanopowders:thermal stability, sintering behaviour and mechanical properties. Ceramics international.2010;36:313-22.
    [54]Hu Q, Tan Z, Liu Y, Tao J, Cai Y, Zhang M, et al. Effect of crystallinity of calcium phosphate nanoparticles on adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells. Journal of Materials Chemistry.2007;17:4690-8.
    [55]Huang Y, Zhou G, Zheng L, Liu H, Niu X, Fan Y. Micro-/Nano-sized hydroxyapatite directs differentiation of rat bone marrow derived mesenchymal stem cells towards an osteoblast lineage. Nanoscale.2012;4:2484-90.
    [56]Wang X, Zhang Z, Chang S, Czajka-Jakubowska A, Nor JE, Clarkson BH, et al. Fluorapatite Enhances Mineralization of Mesenchymal/Endothelial Cocultures. Tissue Engineering Part A. 2013;20:12-22.
    [57]Liu Z, Zhang Z, Zhou C, Jiao Y. Hydrophobic modifications of cationic polymers for gene delivery. Progress in Polymer Science.2010;35:1144-62.
    [58]Ferreira L, Karp JM, Nobre L, Langer R. New opportunities:the use of nanotechnologies to manipulate and track stem cells. Cell stem cell.2008;3:136-46.
    [59]Bae YM, Park Yl, Nam SH, Kim JH, Lee K, Kim HM, et al. Endocytosis, intracellular transport, and exocytosis of lanthanide-doped upconverting nanoparticles in single living cells. Biomaterials. 2012;33:9080-6.
    [60]Lencer WI, Weyer P, Verkman AS, Ausiello DA, Brown D. FITC-dextran as a probe for endosome function and localization in kidney. Am J Physiol.1990;258:C309-C17.
    [61]Berezin MY, Achilefu S. Fluorescence lifetime measurements and biological imaging. Chemical reviews.2010;110:2641-84.
    [62]Bunzli J-CG Lanthanide luminescence for biomedical analyses and imaging. Chemical reviews. 2010;110:2729-55.
    [63]Probst J, Dembski S, Milde M, Rupp S. Luminescent nanoparticles and their use for in vitro and in vivo diagnostics.2012.
    [64]Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nature methods.2008;5:763-75.
    [65]Ye L, Yong K-T, Liu L, Roy I, Hu R, Zhu J, et al. A pilot study in non-human primates shows no adverse response to intravenous injection of quantum dots. Nature nanotechnology.2012;7:453-8.
    [66]Wu J, Zhao N, Zhang X, Xu J. Cellulose/silver nanoparticles composite microspheres:eco-friendly synthesis and catalytic application. Cellulose.2012; 19:1239-49.
    [67]Majedi FS, Hasani-Sadrabadi MM, Emami SH, Shokrgozar MA, VanDersarl JJ, Dashtimoghadam E, et al. Microfluidic assisted self-assembly of chitosan based nanoparticles as drug delivery agents. Lab on a Chip.2013;13:204-7.
    [68]Lobov SA, King DW, Knox KJ, Senden TJ, Stephens RW. Cationised radiolabelled nanoparticles for perfusion imaging of the lungs. Biomaterials.2013;34:1732-8.
    [69]Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. science.1999;284:143-7.
    [70]Kee N, Sivalingam S, Boonstra R, Wojtowicz J. The utility of Ki-67 and BrdU as proliferative markers of adult neurogenesis. Journal of neuroscience methods.2002;115:97-105.
    [71]Liu N, Han G, Cheng J, Huang J, Tian J. Erythropoietin promotes the repair effect of acute kidney injury by bone-marrow mesenchymal stem cells transplantation. Experimental Biology and Medicine. 2013;238:678-86.
    [72]Chen J, Guo R, Zhou Q, Wang T. Injection of composite with bone marrow-derived mesenchymal stem cells and a novel synthetic hydrogel after myocardial infarction:A protective role in left ventricle function. The Kaohsiung Journal of Medical Sciences.2014.
    [73]Rakic P. Adult neurogenesis in mammals:an identity crisis. The Journal of Neuroscience. 2002;22:614-8.
    [74]Coyne TM, Marcus AJ, Woodbury D, Black IB. Marrow stromal cells transplanted to the adult brain are rejected by an inflammatory response and transfer donor labels to host neurons and glia. Stem cells. 2006;24:2483-92.
    [75]Kuan C-Y, Schloemer AJ, Lu A, Burns KA, Weng W-L, Williams MT, et al. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain. The Journal of neuroscience.2004;24:10763-72.
    [76]Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proceedings of the National Academy of Sciences.2008; 105:2415-20.
    [77]Mead TJ, Lefebvre V. Proliferation Assays (BrdU and EdU) on Skeletal Tissue Sections. Skeletal Development and Repair:Springer; 2014. p.233-43.
    [78]Lin G, Huang Y-C, Shindel AW, Banie L, Wang G, Lue TF, et al. Labeling and tracking of mesenchymal stromal cells with EdU. Cytotherapy.2009; 11:864-73.
    [79]Ning H, Albersen M, Lin G, Lue TF, Lin C-S. Effects of EdU labeling on mesenchymal stem cells. Cytotherapy.2013;15:57-63.
    [80]Lin G, Ning H, Banie L, Qiu X, Zhang H, Lue TF, et al. Bone marrow cells stained by azide-conjugated Alexa fluors in the absence of an alkyne label. Stem cells and development. 2012;21:2552-9.
    [81]Stephens DJ, Allan VJ. Light microscopy techniques for live cell imaging. Science.2003;300:82-6.
    [82]Zhang G, Gurtu V, Kain SR. An enhanced green fluorescent protein allows sensitive detection of gene transfer in mammalian cells. Biochemical and biophysical research communications.1996;227:707-11.
    [83]Stauber R, Horie K, Carney P, Hudson E, Tarasova N, Gaitanaris G, et al. Development and applications of enhanced green fluorescent protein mutants. Biotechniques.1998;24:462-71.
    [84]Harting MT, Jimenez F, Cox Jr CS. Isolation of mesenchymal stem cells (MSCs) from green fluorescent protein positive (GFP+) transgenic rodents:the grass is not always green (er). Stem cells and development.2009; 18:127-36.
    [85]Ormo M, Cubitt AB, Kallio K, Gross LA, Tsien RY, Remington SJ. Crystal structure of the Aequorea victoria green fluorescent protein. Science.1996;273:1392-5.
    [86]Billinton N, Knight AW. Seeing the wood through the trees:a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence. Analytical biochemistry.2001;291:175-97.
    [87]Anderson DA, Wu Y, Jiang S, Zhang X, Streeter PR, Spangrude GJ, et al. Donor marker infidelity in transgenic hematopoietic stem cells. Stem Cells.2005;23:638-43.
    [88]Brazelton TR, Blau HM. Optimizing techniques for tracking transplanted stem cells in vivo. Stem cells.2005;23:1251-65.
    [89]Shaner NC, Steinbach PA, Tsien RY. A guide to choosing fluorescent proteins. Nature methods. 2005;2:905-9.
    [90]Spitzer N, Sammons GS, Price EM. Autofluorescent cells in rat brain can be convincing impostors in green fluorescent reporter studies. Journal of neuroscience methods.2011;197:48-55.
    [91]Juers DH, Heightman TD, Vasella A, McCarter JD, Mackenzie L, Withers SG, et al. A structural view of the action of Escherichia coli (lac Z) β-galactosidase. Biochemistry.2001;40:14781-94.
    [92]Juers DH, Matthews BW, Huber RE. LacZ β-galactosidase:Structure and function of an enzyme of historical and molecular biological importance. Protein Science.2012;21:1792-807.
    [93]Dembinski JL, Wilson SM, Spaeth EL, Studeny M, Zompetta C, Samudio I, et al. Tumor stroma engraftment of gene-modified mesenchymal stem cells as anti-tumor therapy against ovarian cancer. Cytotherapy.2013; 15:20-32. e2.
    [94]Weiss DJ, Liggitt D, Clark JG. Histochemical discrimination of endogenous mammalian β-galactosidase activity from that resulting from lac-Z gene expression. The Histochemical journal. 1999;31:231-6.
    [95]Shimada A, Komatsu K, Nakashima K, Poschl E, Nifuji A. Improved methods for detection of β-galactosidase (lacZ) activity in hard tissue. Histochemistry and cell biology.2012; 137:841-7.
    [96]Kopp H, Hooper A, Shmelkov S, Rafii S. β-Galactosidase staining on bone marrow. The osteoclast pitfall.2007.
    [97]Parish CR. Fluorescent dyes for lymphocyte migration and proliferation studies. Immunology and cell biology.1999;77:499-508.
    [98]Honig MG, Hume RI. Fluorescent carbocyanine dyes allow living neurons of identified origin to be studied in long-term cultures. The Journal of cell biology.1986;103:171-87.
    [99]YIN F, GUO L, MENG C-y, ZHOU Y-b, ZHANG H, WANG D-y, et al. Labeling bone marrow mesenchymal stem cells by CM-Dil and tracking in intestine tissue of burned rat models.2012.
    [100]ZHAO W-j, CHEN Y-j, LIU W. The Study of Rat Bone Marrow Mesenchymal Stem Cell Separation and Dil Labeled. Heilongjiang Medical Journal.2005;12:009.
    [101]解芳,靳小雷,徐家杰,卢建建,张超,曾海峰,et al.体内构建组织工程骨的示踪观察:CM-Dil长效示踪骨髓间充质干细胞的可行性研究.组织工程与重建外科.2012;8:195-200.
    [102]Bensaid W, Triffitt J, Blanchat C, Oudina K, Sedel L, Petite H. A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials.2003;24:2497-502.
    [103]Onifer S, White L, Whittemore S, Holets V. In vitro labeling strategies for identifying primary neural tissue and a neuronal cell line after transplantation in the CNS. Cell transplantation.1992;2:131-49.
    [104]Kruyt MC, Dhert WJ, Oner C, van Blitterswijk CA, Verbout AJ, de Bruijn JD. Optimization of bone-tissue engineering in goats. Journal of Biomedical Materials Research Part B:Applied Biomaterials. 2004;69:113-20.
    [105]Krause DS. Bone marrow-derived cells and stem cells in lung repair. Proceedings of the American Thoracic Society.2008;5:323.
    [106]Schormann W, Hammersen FJ, Brulport M, Hermes M, Bauer A, Rudolph C, et al. Tracking of human cells in mice. Histochemistry and cell biology.2008;130:329-38.
    [107]Paul JH. Use of Hoechst dyes 33258 and 33342 for enumeration of attached and planktonic bacteria. Applied and environmental microbiology.1982;43:939-44.
    [108]Rossignol J, Boyer C, Thinard R, Remy S, Dugast AS, Dubayle D, et al. Mesenchymal stem cells induce a weak immune response in the rat striatum after allo or xenotransplantation. Journal of cellular and molecular medicine.2009; 13:2547-58.
    [109]Iwashita Y, Blakemore WF. Areas of demyelination do not attract significant numbers of Schwann cells transplanted into normal white matter. Glia.2000;31:232-40.
    [110]Mohorko N, Kregar-Velikonja N, Repovs G, Gorensek M, Bresjanac M. An in vitro study of Hoechst 33342 redistribution and its effects on cell viability. Human & experimental toxicology.2005;24:573-80.
    [111]Wang Zj, Zhang Fm, Wang Ls, Yao Yw, Zhao Q, Gao X. Lipopolysaccharides can protect mesenchymal stem cells (MSCs) from oxidative stress-induced apoptosis and enhance proliferation of MSCs via Toll-like receptor (TLR)-4 and PI3K/Akt. Cell biology international.2009;33:665-74.
    [112]Rowlands AS, George PA, Cooper-White JJ. Directing osteogenic and myogenic differentiation of MSCs:interplay of stiffness and adhesive ligand presentation. American Journal of Physiology-Cell Physiology.2008;295:C1037-C44.
    [113]Kapuscinski J. DAPI:a DNA-specific fluorescent probe. Biotechnic & Histochemistry. 1995;70:220-33.
    [114]Zink D, Sadoni N, Stelzer E. Visualizing chromatin and chromosomes in living cells. Methods. 2003;29:42-50.
    [115]Weissleder R, Mahmood U. Molecular imaging. RADIOLOGY-OAK BROOK IL-2001;219:316-33.
    [116]Bos C, Delmas Y, Desmouliere A, Solanilla A, Hauger O, Grosset C, et al. In Vivo MR Imaging of Intravascularly Injected Magnetically Labeled Mesenchymal Stem Cells in Rat Kidney and Liver 1. Radiology.2004;233:781-9.
    [117]Geraldes CF, Laurent S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast media & molecular imaging.2009;4:1-23.
    [118]Guzman R, Uchida N, Bliss TM, He D, Christopherson KK, Stellwagen D, et al. Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proceedings of the National Academy of Sciences.2007; 104:10211-6.
    [119]Bogart LK, Taylor A, Cesbron Y, Murray P, Levy RI. Photothermal microscopy of the core of Dextran-coated iron oxide nanoparticles during cell uptake. ACS nano.2012;6:5961-71.
    [120]Oude Engberink RD, van der Pol SM, Dopp EA, de Vries HE, Blezer EL. Comparison of SPIO and USPIO for in Vitro Labeling of Human Monocytes:MR Detection and Cell Function 1. Radiology. 2007;243:467-74.
    [121]Lin C, Cai S, Feng J. Positive contrast imaging of SPIO nanoparticles. Journal of Nanomaterials. 2012;2012:6.
    [122]Kim Y, Kim C, Han Y, Park G, Hwang S, Yu H. Comparison of gadoxetic acid-enhanced MRI and superparamagnetic iron oxide-enhanced MRI for the detection of hepatocellular carcinoma. Clinical radiology.2010;65:358-65.
    [123]Leutwyler WK, Biirgi SL, Burgl H. Semiconductor clusters, nanocrystals, and quantum dots. Science. 1996;271:933-7.
    [124]Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, et al. Quantum dots for live cells, in vivo imaging, and diagnostics. science.2005;307:538-44.
    [125]Chan WC, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. Luminescent quantum dots for multiplexed biological detection and imaging. Current opinion in biotechnology.2002;13:40-6.
    [126]Collins MC, Gunst PR, Cascio WE, Kypson AP, Muller-Borer BJ. Labeling and imaging mesenchymal stem cells with quantum dots. Nanoparticles in Biology and Medicine:Springer; 2012. p. 199-210.
    [127]Higuchi Y, Wu C, Chang K-L, Irie K, Kawakami S, Yamashita F, et al. Polyamidoamine dendrimer-conjugated quantum dots for efficient labeling of primary cultured mesenchymal stem cells. Biomaterials.2011;32:6676-82.
    [128]Ranjbarvaziri S, Kiani S, Akhlaghi A, Vosough A, Baharvand H, Aghdami N. Quantum dot labeling using positive charged peptides in human hematopoetic and mesenchymal stem cells. Biomaterials. 2011;32:5195-205.
    [129]Hossain MA, Frampton AE, Bagul A. Challenges facing in vivo tracking of mesenchymal stem cells used for tissue regeneration. Expert review of medical devices.2014;11:9-13.
    [130]Katsumiti A, Gilliland D, Arostegui I, Cajaraville M. Cytotoxicity and cellular mechanisms involved in the toxicity of CdS quantum dots in hemocytes and gill cells of the mussel< i> Mytilus galloprovincialis. Aquatic Toxicology.2014.
    [131]Gallo J, Garcia I, Genicio N, Penades S. CdTe-Based QDs:Preparation, Cytotoxicity, and Tumor Cell Death by Targeting Transferrin Receptor. Particle & Particle Systems Characterization. 2014;31:126-33.
    [132]Selvaraj V, Bodapati S, Murray E, Rice KM, Winston N, Shokuhfar T, et al. Cytotoxicity and genotoxicity caused by yttrium oxide nanoparticles in HEK293 cells. International Journal of Nanomedicine.2014;9:1379.
    [133]Saez G, Aye M, Meo M, Aime A, Bestel I, Barthelemy P, et al. Genotoxic and oxidative responses in coelomocytes of Eisenia fetida and Hediste diversicolor exposed to lipid-coated CdSe/ZnS quantum dots and CdC12. Environmental toxicology.2014.
    [134]Feng S, Lu X, Liu Z, Zhang Y, Liu T, Li J, et al. Dynamic distribution of bone marrow-derived mesenchymal stromal cells and change of pathology after infusing into mdx mice. Cytotherapy. 2008; 10:254-64.
    [135]Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, et al. T cell responses to allogeneic human mesenchymal stem cells:immunogenicity, tolerance, and suppression. Journal of biomedical science.2005;12:47-57.
    [136]Chen J, Wang C, Lu S, Wu J, Guo X, Duan C, et al. In vivo chondrogenesis of adult bone-marrow-derived autologous mesenchymal stem cells. Cell and tissue research.2005;319:429-38.
    [137]Hawkins ED, Hommel M, Turner ML, Battye FL, Markham JF, Hodgkin PD. Measuring lymphocyte proliferation, survival and differentiation using CFSE time-series data. Nature protocols.2007;2:2057-67.
    [138]Oostendorp RA, Audet J, Eaves CJ. High-resolution tracking of cell division suggests similar cell cycle kinetics of hematopoietic stem cells stimulated in vitro and in vivo. Blood.2000;95:855-62.
    [139]Li Y, Deng L, Huang R, Guo K. [In vitro tracing of rat bone marrow mesenchymal stem cells using the fluorescent dye CFSE]. Nan fang yi ke da xue xue bao= Journal of Southern Medical University. 2009;29:148-50.
    [140]De Wet JR, Wood K, DeLuca M, Helinski DR, Subramani S. Firefly luciferase gene:structure and expression in mammalian cells. Molecular and cellular biology.1987;7:725-37.
    [141]Brasier A, Tate J, Habener J. Optimized use of the firefly luciferase assay as a reporter gene in mammalian cell lines. BioTechniques.1988;7:1116-22.
    [142]Olivo C, Alblas J, Verweij V, Van Zonneveld AJ, Dhert WJ, Martens A. In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells. Journal of orthopaedic research.2008;26:901-9.
    [143]Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al. Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. Journal of neuroscience research.2003;73:778-86.
    [144]Song G, Habibovic P, Bao C, Hu J, van Blitterswijk CA, Yuan H, et al. The homing of bone marrow MSCs to non-osseous sites for ectopic bone formation induced by osteoinductive calcium phosphate. Biomaterials.2013;34:2167-76.
    [145]Grove JE, Lutzko C, Priller J, Henegariu O, Theise ND, Kohn DB, et al. Marrow-derived cells as vehicles for delivery of gene therapy to pulmonary epithelium. American journal of respiratory cell and molecular biology.2002;27:645-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700