发育期大鼠视皮层突触功能活动及脉冲时间依赖的突触可塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     本文通过建立可视法脑片膜片钳技术,研究发育期大鼠视皮层突触功能活动以及发育期大鼠视皮层脉冲时间依赖的突触可塑性(spike timing-dependentplasticity,STDP),了解视皮层经验依赖的突触可塑性,进一步探索视觉经验在视皮层神经元突触发育成熟过程中的作用,以及在异常视觉经验状态下视皮层突触功能状态的改变,从功能的角度来探索弱视发生机制,为寻求合理有效的预防与治疗弱视的方法建立基础。
     方法
     1.应用红外微分干涉相差显微镜(IR-DIC)结合电耦合式摄像机(CCD-Camera)可视法膜片钳全细胞记录生后2~7 d、8~14 d、15~21 d、22~28d各组自发兴奋性突触后电流(spontaneous excitatory postsynaptic currents,sEPSCs)变化,同时于电极内液中加入0.3%荧光黄(luciferyellow)对所记录细胞进行染色观察形态学改变,分别记录17 d(正常饲养组及双眼剥夺组)大鼠脑片的sEPSCs并行统计学分析。
     2.在较低频率细胞内刺激下应用双膜片钳全细胞记录技术,观察在不同的配对刺激方案下,大鼠脑片视皮质2/3层内两锥体神经元突触传递效能的长时程变化情况。同时通过电极内液加入荧光染料观察细胞与突触形态。
     3.采用STDP模式,应用双膜片钳技术,对双眼剥夺组和对照组的兴奋性突触后电位基线值(control EPSP)进行测量,统计平均EPSP幅值,观察突触传递效能变化。在精确控制突触前和突触后神经元刺激时间下,采用不同的突触前后配对刺激方案对EPSP变化进行测量,观察双眼剥夺组和对照组的区别。同时采用传统的长时程增强(LTP)诱导方式(仅给予突触前脉冲刺激),采取频率由低到高,并逐渐接近近似θ波刺激频率(theta-burst stimulation,TBS),逐一观察不同频率下EPSP变化。
     结果
     1.可视法脑片膜片钳技术可对神经元直接进行准确定位及健康细胞的筛选。视皮层神经元sEPSCs幅值与频率均随发育逐渐升高,(单因素方差分析,频率F=87.46,幅值F=20.69,P<0.01详见第一部分结果)。但2~7 d组与8~14 d组差异无统计学意义(P>0.05)。视皮层2/3层神经元胞体及突起以及生物电学特性随发育逐渐成熟。双眼剥夺组和健康对照组的sEPSCs比较,幅值下降明显P<0.05,频率比较差异无显著意义P>0.05。
     2.精确控制突触前和突触后神经元刺激时间下,突触前后配对刺激后测试突触后动作电位(test EPSP)平均增幅在120%以上,LTP诱导成功。而只有突触前或只有突触后刺激,test EPSP平均增幅在110%以下,LTP未诱导成功。
     3.双眼剥夺组视皮层2/3层内两相邻锥体神经元之间的突触传递效能下降。剥夺组与对照组平均EPSP幅值(基线值)比较差异具有显著统计学意义(P<0.01)。配对诱导刺激50分后,双眼剥夺组EPSP幅值上升幅度较对照组高,两组差异具有统计学意义P<0.05,两组均可诱导成功LTP。而采用传统的LTP诱导方法低频刺激,24例均未诱导出LTP。逐渐增加频率,EPSP增幅也随之略增加,但即使频率增加到100Hz左右近似TBS刺激频率时,EPSP平均增幅也不能达到110%以上。
     结论
     1.可视法脑片膜片钳技术操作更直观方便,对神经元的分辨率及封接细胞的成功率都大大提高。生后早期视皮层2/3层神经元及突触发育处于相对不成熟状态,随着发育逐渐成熟,视觉经验在这一过程中起了关键性作用。研究显示发育早期突触并非完全处于静息状态,具有一定的早期自发的突触功能活动。
     2.突触传递效能的变化依赖于突触前后的联合脉冲刺激,脉冲时间前与后的顺序设定决定了突触传递效能变化的方向。突触前后脉冲刺激对突触传递效能的变化存在一个时间窗关系,STDP突触修饰法则可以解释经验活动改变皮层神经元功能的一些现象。
     3.外界视觉经验异常或受到干扰时,影响了视皮质神经元信息呈递,下降的信息传递可能间接影响了高级中枢的信息整合。但发育期双眼剥夺的视皮层神经元突触可塑性并不比健康组降低反而提高。
Objectives
     Introduce the visual patch clamp whole-cell recording technique and investigatefunctional synaptic activities and spike-timing dependent plasticity of rats visualcortex during development stage.So as to account for aspects of experience-dependentvisual-cortical plasticity.To explore the role of visual experience when aging.And tounderstand the mechanism of amplyopia from functional aspects,through studyingthe changes of synaptic function status.Thus to find a reasonable and effectiveprevention methods and treatment of amblyopia.
     Methods
     1.By combining infrared differential interference contrast(IR-DIC)technique andCCD-Camera system with visual patch clamp whole-cell recording technique,spontaneous EPSCs of P2~7,P8~14,P15~21,P22~28 groups were oberved andanalyzed,simultaneously the neurons were stained by adding 0.3% luciferyellow tothe pipette solultion.Including the sEPSCs of P17 coronal slices of normal andabnormal visual experience group.
     2.Dual whole-cell voltage recording technique was used to stimulate in the cell atlow-frquency.To observe the long-lasting changed efficency of transmission betweentwo neurons in layer 2/3 of visual cortex under deferent stimulating protocols.At thesame time to observe the morphology of neurons and dendrites through addingluciferyellow to the pipette solution.
     3.Using dual whole-cell recording technique with STDP mode,control EPSP wasobtained from binocular deprived and control group respectively Then theeffectiveness of changes in synaptic transmission was compared.Observe the changeof test EPSP in the two groups after different pairing of individual postsynaptic APswith EPSPs precisely.And with the conventional LTP evoking protocol that onlyconsists of presynaptic stimulation,enhancing the frequency from lower to higher tilla theta-burst like stimulation,test EPSP was measured in sequence.
     Results
     1.Visual patch clamp technique can be used to make direct localization and healthscreening exactly.The amplitude and frequency of sEPSCs were all enhanced whenaging (One way ANOV,P<0.01).But there was no significant difference betweenP2~7 group and P8~14 group(P>0.05).The electrophysiology and dendrite of neuronbecame mature whilst development.The amplitude of sEPSCs in binocular deprivedgroup was significantly lower than that of the controled group(P<0.05).Yet thediference of frequency between the two groups was not significant(P>0.05)
     2.Depending on the precise control of timing of spike evoked in the pre/post neuron,after paring stimulating average test EPSP increased beyond 120%,LTP was evokedsucessfully.Yet when stimulation only applied to the pre-or postsynaptic neuron,testEPSP increased below 110%,LTP was not evoked sucessfully.
     3.The effectiveness of synaptic transmission decreased in binocular deprived group.The difference between binocular deprived and control groups was significant atP<0.01 50 minutes after paring stimulation,it produced stable LTP in slices frombinocular deprived anmimals,but little potentiation in controls.Yet with theconventional LTP evoking protocol at lower frequency,no LTP was producedsuccessfully in 24 slices.Potentiation did not arrive at 110% even when the frequencywas near 100 Hz a theta-burst like stimulation.
     Conclusions
     1.Visual patch clamp technique,better than blind patch clamp technique,can improvethe success of sealing process.During the early postnatal days neurons wererelatively immature,and became mature during development.Visual experienceplayed an important role in this process.The results suggested that early AMPAreceptor-mediated functional activities existed in layer 2/3 pyramidal neurons,andsynapses were not completely silent,but had early spontaneous activities.
     2.The varing transmissional efficency of synapse was determined by paring pre-andpostsynaptic spike and the pre/post spike orders.There was an STDP timing windowin the layer 2/3.Spike-timing dependent plasticity may explain some experience-dependentmodifications in cortex.
     3.Abnormal visual experience during early postnatal days can decrease theeffectiveness of synaptic transmission,thus affecting the visual cortex neurons in presenting information.During developmental stages,visual-cortical plasticity inbinocular deprived group was not lower than the control group.
引文
[1] LeVay S, Wiesel TN, Hubel DH. The development of ocular dominance columns in normal and visually deprived monkeys[J]. J Comp Neurol,1980,191(1):1-51
    [2] Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex[J]. Philos Trans R Soc Lond B Biol Sci,1977,278(961):377-409.
    [3] Mitchell DE, MacKinnon S. The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia[J]. Clin Exp Optom, 2002,85(1):5-18.
    [4] Liao DS, Krahe TE, Prusky GT, et al. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity[J].J Neurophysiol, 2004,92(4):2113-21.
    [5] Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular matrix degradation[J]. Neuron,2004,44(6): 1021-30.
    [6] Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator[J]. Neuron,2004,44(6): 1031-41.
    [7] Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation[J]. Vision Res, 1994,34(6):709-20.
    [8] Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens[J]. J Physiol, 1970,206(2):419-36.
    [9] Hubel DH, Wiesel TN. Sequence regularity and geometry of orientation columns in the monkey striate cortex[J]. J Comp Neurol, 1974,158(3):267-93.
    [10] HUBEL DH, WIESEL TN. Shape and arrangement of columns in cat's striate cortex[J]. J Physiol, 1963,165:559-68.
    [11] El Mallah MK, Chakravarthy U, Hart PM. Amblyopia: is visual loss permanent? [J]. Br J Ophthalmol, 2000,84(9):952-6.
    [12] Simmers AJ, Gray LS. Improvement of visual function in an adult amblyope[J].Optom Vis Sci, 1999,76(2):82-7.
    [13] Mower GD. The effect of dark rearing on the time course of the critical period in cat visual cortex[J]. Brain Res Dev Brain Res, 1991,58(2): 151-8.
    [14] Tongiorgi E, Ferrero F, Cattaneo A, et al. Dark-rearing decreases NR2A N-methyl-D-aspartate receptor subunit in all visual cortical layers[J].Neuroscience, 2003,119(4): 1013-22.
    [15]] Chen L, Cooper NG, Mower GD. Developmental changes in the expression of NMDA receptor subunits (NR1, NR2A, NR2B) in the cat visual cortex and the effects of dark rearing[J]. Brain Res Mol Brain Res, 2000,78(1-2): 196-200.
    [16] Quinlan EM, Olstein DH, Bear MF. Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development[J]. Proc Natl Acad Sci U S A,1999,96(22): 12876-80.
    [17] Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex[J]. Science, 2002,298(5596): 1248-51.
    [18] Levi DM. Perceptual learning in adults with amblyopia: a reevaluation of critical periods in human vision[J]. Dev Psychobiol, 2005,46(3):222-32.
    [19] Fronius M, Cirina L, Cordey A, et al. Visual improvement during psychophysical training in an adult amblyopic eye following visual loss in the contralateral eye[J]. Graefes Arch Clin Exp Ophthalmol, 2005,243(3):278-80.
    [20] Hubel DH, Wiesel TN. Brain mechanisms of vision[J]. Sci Am,1979,241 (3): 150-62.
    [21] Bienenstock EL, Cooper LN, Munro PW. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex[J]. J Neurosci, 1982,2(1):32-48.
    [22] Fregnac Y, Burke JP, Smith D, ef al. Temporal covariance of pre- and postsynaptic activity regulates functional connectivity in the visual cortex[J]. J Neurophysiol, 1994,71(4): 1403-21.
    [23] Kimura F, Tsumoto T, Nishigori A, et al. Long-term depression but not potentiation is induced in Ca(2+)-chelated visual cortex neurons[J].Neuroreport,1990,1(1):65-8.
    [24]Artola A,Brocher S,Singer W.Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex[J].Nature,1990,347(6288):69-72.
    [25]Mayford M,Wang J,Kandel ER,et al.CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP[J].Cell,1995,81 (6):891-904.
    [26]Kirkwood A,Bear MF.Homosynaptic long-term depression in the visual cortex[J].J Neurosci,1994,14(5 Pt 2):3404-12.
    [27]Dudek SM,Bear MF.Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade[J].Proc Natl Acad Sci U S A,1992,89(10):4363-7.
    [28]范惠民,阴正勤,高朋芬.双眼形觉剥夺对大鼠视皮层神经元电生理特性的影响[J].第三军医大学学报2003;25(21):1915-1919.
    [29]Dan Y,Poo MM.Spike timing-dependent plasticity of neural circuits[J].Neuron,2004,44(1 ):23-30.
    [30]Song S,Miller KD,Abbott LF.Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J].Nat Neurosci,2000,3(9):919-26.
    [31]Bohte S,Mozer MC.Reducing spike train variability:A computational theory of spike-timing dependent plasticity.In L.K.Saul,Y.Weiss,and L.Bottou (Eds.),Advances in Neural Information Processing Systems,2005;17:201-208.Cambridge,MA:MIT Press.
    [32]Bi GQ,Rubin J.Timing in synaptic plasticity:from detection to integration[J].Trends Neurosci,2005,28(5):222-8.
    [33]Legenstein R,Naeger C,Maass W.What can a neuron learn with spike-timing-dependent plasticity?[J].Neural Comput,2005,17(11):2337-82.
    [34]Gorchetchnikov A,Versace M,Hasselmo ME.A model of STDP based on spatially and temporally local information:derivation and combination with gated decay[J].Neural Netw,2005,18(5-6):458-66.
    [35]Dan Y,Poo MM.Spike timing-dependent plasticity:from synapse to perception[J].Physiol Rev,2006,86(3):1033-48.
    [36]Mu Y,Poo MM.Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system[J].Neuron,2006,50(1):115-25.
    [37]Fu YX,Djupsund K,Gao H,et al.Temporal specificity in the cortical plasticity of visual space representation[J].Science,2002,296(5575):1999-2003.
    [38]Meliza CD,Dan Y.Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking[J].Neuron,2006,49(2):183-9.
    [39]邵立功,章应华,张东杲.弱视猫视觉系统三级神经元及其突触的超微结构研究[J].中华眼科杂志,1994,30:53-56.
    [40]Smart GJ,Dodt HU,Sakmann B.Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy[J].Pflugers Arch,1993,423(5-6):511-8.
    [41]Wang HX,Gerkin RC,Nauen DW,et al.Coactivation and timing-dependent integration of synaptic potentiation and depression[J].Nat Neurosci,2005,8(2):187-93.
    [42]Li CY,Lu JT,Wu CP,et al.Bidirectional modification of presynaptic neuronal excitability accompanying spike timing-dependent synaptic plasticity[J].Neuron,2004,41 (2):257-68.
    [43]Froemke RC,Poo MM,Dan Y.Spike-timing-dependent synaptic plasticity depends on dendritic location[J].Nature,2005,434(7030):221-5.
    [44]赵堪兴,史学锋.新世纪我国斜视弱视研究进展[J].中华眼科杂志,2005,41:729-735.
    [45]Paxinos G,Watson C.The rat brain atlas in stereotaxic co-ordinates[J].Orlando,FL:Academic,1986.
    [46]Feldman DE.Timing-based LTP and LTD at vertical inputs to layer Ⅱ/Ⅲ pyramidal cells in rat barrel cortex[J].Neuron,2000,27(1):45-56.
    [47]Froemke RC,Dan Y.Spike-timing-dependent synaptic modification induced by natural spike trains[J].Nature,2002,416(6879):433-8.
    [48]Myme CI,Sugino K,Turrigiano GG,et al.The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices[J].J Neurophysiol,2003,90(2):771-9.
    [49]Groc L,Gustafsson B,Hanse E.Spontaneous unitary synaptic activity in CA1 pyramidal neurons during early postnatal development:constant contribution of AMPA and NMDA receptors[J].J Neurosci,2002,22(13):5552-62.
    [50]Rumpel S,Kattenstroth G,Gottmann K.Silent synapses in the immature visual cortex:layer-specific developmental regulation[J].J Neurophysiol,2004,91(2):1097-101.
    [51]Hsia AY,Malenka RC,Nicoll RA.Development of excitatory circuitry in the hippocampus[J].J Neurophysiol,1998,79(4):2013-24.
    [52]Desai NS,Cudmore RH,Nelson SB,et al.Critical periods for experience-dependent synaptic scaling in visual cortex[J].Nat Neurosci,2002,5(8):783-9.
    [53]WIESEL TN,HUBEL DH.SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE[J].J Neurophysiol,1963,26:1003-17.
    [54]Kiorpes L,Kiper DC,O'Keefe LP,et al.Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia[J].J Neuro sci,1998,18(16):6411-24.
    [55]Bartoletti A,Medini P,Berardi N,et al.Environmental enrichment prevents effects of dark-rearing in the rat visual cortex[J].Nat Neurosci,2004,7(3):215-6.
    [56]Andersen P,Soleng AF.Long-term potentiation and spatial training are both associated with the generation of new excitatory synapses[J].Brain Res Brain Res Rev,1998,26(2-3):353-9.
    [57]阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察[J].中华眼科杂志,2002,38:472-475.
    [58]王宗青,刘向玲,穆雅林,等.代谢性谷氨酸受体1在单眼形觉剥夺弱视大鼠视皮质17区的表达及超微结构观察[J].中华眼科杂志,2008,44:67-71.
    [59]Sakurada K,Masu M,Nakanishi S.Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blockers by a single amino acid substitution in the N-methyl-D-aspartate receptor[J].J Biol Chem,1993,268(1):410-5.
    [60]Dunah AW,Yasuda RP,Luo J,et al.Biochemical studies of the structure and function of the N-methyl-D-aspartate subtype of glutamate receptors[J].Mol Neurobiol,1999,19(2):151-79.
    [61]Lu Y,Allen M,Halt AR,et al.Age-dependent requirement of AKAP150-anchored PKA and GluR2-1acking AMPA receptors in LTP[J].EMBO J,2007,26(23):4879-90.
    [62]Plant K,Pelkey KA,Bortolotto ZA,et al.Transient incorporation of native GluR2-1acking AMPA receptors during hippocampal long-term potentiation[J].Nat Neurosci,2006,9(5):602-4.
    [63]Shi SH,Hayashi Y,Petralia RS,et al.Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation[J].Science,1999,284(5421):1811-6.
    [64]Takahashi T,Svoboda K,Malinow R.Experience strengthening transmission by driving AMPA receptors into synapses[J].Science,2003,299(5612):1585-8.
    [65]许娜,李平华.斜视性弱视发病机制的研究进展[J].国际眼科杂志,2006,6(5):1139-1142.
    [66]刘虎,赵堪兴,史学锋等.斜视性弱视猫视皮层17区神经元眼优势及空间特性的改变[J].眼科新进展,2004,24(6):429-431.
    [67]史学锋,赵堪兴,刘虎.斜视性弱视猫视皮层21a区神经元眼优势改变[J].眼科新进展.2005,25(1):17-20.
    [68]Busetto G,Higley M J,Sabatini BL.Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons[J].J Physiol,2008,586(6):1519-27.
    [69]Liao D,HesslerNA,Malinow R.Activation ofpostsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice[J].Nature,1995,375(6530):400-4.
    [70]Ehrlich I,Malinow R.Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity[J].J Neurosci,2004,24(4):916-27.
    [71]Hall BJ,Ghosh A.Regulation of AMPA receptor recruitment at developing synapses[J].Trends Neurosci,2008,31 (2):82-9.
    [72] Malinow R, Mainen ZF, Hayashi Y. LTP mechanisms: from silence to four-lane traffic[J]. Curr Opin Neurobiol, 2000,10(3):352-7.
    [73] Takumi Y, Ramirez-Leon V, Laake P, et al. Different modes of expression of AMPA and NMDA receptors in hippocampal synapses[J]. Nat Neurosci,1999,2(7):618-24.
    [74] Petralia RS, Esteban JA, Wang YX, et al. Selective acquisition of AMPA receptors over postnatal development suggests a molecular basis for silent synapses[J]. Nat Neurosci, 1999,2(1):31-6.
    [75] Friedman HV, Bresler T, Garner CC, et al. Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment[J]. Neuron, 2000,27(1):57-69.
    [76] Cottrell JR, Dube GR, Egles C, et al. Distribution, density, and clustering of functional glutamate receptors before and after synaptogenesis in hippocampal neurons[J]. J Neurophysiol, 2000,84(3):1573-87.
    [77] Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP[J]. Nat Rev Neurosci, 2008,9(11):813-25.
    [78] Heynen AJ, Yoon BJ, Liu CH, et al. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation[J]. Nat Neurosci,2003,6(8):854-62.
    [79] Garaschuk O, Linn J, Eilers J, et al. Large-scale oscillatory calcium waves in the immature cortex[J]. Nat Neurosci, 2000,3(5):452-9.
    [80] Bi G, Poo M. Synaptic modification by correlated activity: Hebb's postulate revisited[J]. Annu Rev Neurosci, 2001,24:139-66.
    [81] Abbott LF, Nelson SB. Synaptic plasticity: taming the beast[J]. Nat Neurosci,2000,3 Suppl: 1178-83.
    [82] Bury SD, Jones TA. Unilateral sensorimotor cortex lesions in adult rats facilitate motor skill learning with the "unaffected" forelimb and training-induced dendritic structural plasticity in the motor cortex[J]. J Neurosci, 2002,22(19):8597-606.
    [83] Leggio MG, Mandolesi L, Federico F, et al. Environmental enrichment promotes improved spatial abilities and enhanced dendritic growth in the rat[J]. Behav Brain Res, 2005,163(1):78-90.
    [84] O'Malley A, O'Connell C, Murphy KJ, et al. Transient spine density increases in the mid-molecular layer of hippocampal dentate gyrus accompany consolidation of a spatial learning task in the rodent[J]. Neuroscience,2000,99(2):229-32.
    [85] Knafo S, Ariav G, Barkai E, et al. Olfactory learning-induced increase in spine density along the apical dendrites of CA1 hippocampal neurons[J].Hippocampus, 2004,14(7):819-25.
    [86] Leuner B, Falduto J, Shors TJ. Associative memory formation increases the observation of dendritic spines in the hippocampus[J]. J Neurosci,2003,23(2):659-65.
    [87] Kourtzi Z, DiCarlo JJ. Learning and neural plasticity in visual object recognition[J]. Curr Opin Neurobiol, 2006,16(2): 152-8.
    [88] Debanne D, Gahwiler BH, Thompson SM. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures[J]. J Physiol, 1998,507 (Pt 1):237-47.
    [89] Yao H, Dan Y. Stimulus timing-dependent plasticity in cortical processing of orientation[J]. Neuron, 2001,32(2):315-23.
    [90] Sjostrom PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron, 2001,32(6):1149-64.
    [91] Nishiyama M, Hong K, Mikoshiba K, et al. Calcium stores regulate the polarity and input specificity of synaptic modification[J]. Nature,2000,408(6812):584-8.
    [92] Zhang LI, Tao HW, Holt CE, et al. A critical window for cooperation and competition among developing retinotectal synapses[J]. Nature,1998,395(6697):37-44.
    [93] Malenka RC, Nicoll RA. Long-term potentiation-a decade of progress? [J].Science, 1999,285(5435): 1870-4.
    [94] Yao H, Shen Y, Dan Y. Intracortical mechanism of stimulus-timing-dependent plasticity in visual cortical orientation tuning[J]. Proc Natl Acad Sci U S A,2004,101(14):5081-6.
    [95] Wolters A, Schmidt A, Schramm A, et al. Timing-dependent plasticity in human primary somatosensory cortex[J]. J Physiol, 2005,565(Pt 3): 1039-52.
    [96] Carmignoto G, Canella R, Candeo P, et al. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex[J]. J Physiol, 1993,464:343-60.
    [97] Berardi N, Domenici L, Parisi V, et al. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF) [J]. I. Visual cortex. Proc Biol Sci, 1993,251(1330):17-23.
    [98] Berardi N, Lodovichi C, Caleo M, et al. Role of neurotrophins in neural plasticity: what we learn from the visual cortex[J]. Restor Neurol Neurosci,1999,15(2-3):125-36.
    [99] Bear MF. Bidirectional synaptic plasticity: from theory to reality[J]. Philos Trans R Soc Lond B Biol Sci, 2003,358(1432):649-55.
    [100] Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones[J]. Nature,1984,309(5965):261-3.
    [101] Nevian T, Sakmann B. Single spine Ca2+ signals evoked by coincident EPSPs and backpropagating action potentials in spiny stellate cells of layer 4 in the juvenile rat somatosensory barrel cortex[J]. J Neurosci,2004,24(7):1689-99.
    [102] Xia Z, Storm DR. The role of calmodulin as a signal integrator for synaptic plasticity[J]. Nat Rev Neurosci, 2005,6(4):267-76.
    [103] Lisman J. Long-term potentiation: outstanding questions and attempted synthesis[J]. Philos Trans R Soc Lond B Biol Sci, 2003,358(1432):829-42.
    [104] Goebel DJ, Poosch MS. NMDA receptor subunit gene expression in the rat brain: a quantitative analysis of endogenous mRNA levels of NR1Com, NR2A,NR2B, NR2C, NR2D and NR3A[J]. Brain Res Mol Brain Res,1999,69(2): 164-70.
    [105] Luo J, Wang Y, Yasuda RP, et al. The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B) [J]. Mol Pharmacol, 1997,51(1):79-86.
    [106] Mower GD, Chen L. Laminar distribution of NMDA receptor subunit (NR1, NR2A, NR2B) expression during the critical period in cat visual cortex[J]. Brain Res Mol Brain Res, 2003,119(1):19-27.
    [107] Kirkwood A, Rioult MC, Bear MF. Experience-dependent modification of synaptic plasticity in visual cortex[J]. Nature, 1996,381(6582):526-8.
    [108] Bear MF, Malenka RC. Synaptic plasticity: LTP and LTD[J]. Curr Opin Neurobiol, 1994,4(3):389-99.
    [109] Sejnowski TJ. Statistical constraints on synaptic plasticity[J]. J Theor Biol, 1977,69(2):385-9.
    [110] Bear MF, Cooper LN, Ebner FF. A physiological basis for a theory of synapse modification[J]. Science, 1987,237(4810):42-8.
    [111] Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex[J]. Science,1992,258(5084):1007-11.
    [112] Fox K, Daw N, Sato H, et al. Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex[J]. Nature, 1991,350(6316):342-4.
    [113] Clothiaux EE, Bear MF, Cooper LN. Synaptic plasticity in visual cortex:comparison of theory with experiment[J]. J Neurophysiol,1991,66(5):1785-804.
    [114] Buisseret P, Imbert M. Visual cortical cells: their developmental properties in normal and dark reared kittens[J]. J Physiol, 1976,255(2):511-25.
    [115] Buisseret P, Gary-Bobo E, Imbert M. Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens[J].Nature, 1978,272(5656):816-7.
    [116] Jo J, Ball SM, Seok H, et al. Experience-dependent modification of mechanisms of long-term depression[J]. Nat Neurosci, 2006,9(2): 170-2.
    [117] Engel JE, Hoy RR. Experience-dependent modification of ultrasound auditory processing in a cricket escape response[J]. J Exp Biol, 1999,202(Pt 20):2797-806.
    [118] Benuskova L, Diamond ME, Ebner FF. Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex[J]. Proc Natl Acad Sci USA, 1994,91(11):4791-5.
    [119] Tyler WJ, Petzold GC, Pal SK, et al. Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb[J]. J Neurosci,2007,27(35):9427-38.
    [120] Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity[J].Trends Neurosci, 1996,19(4):126-30.
    [121] Chen WS, Bear MF. Activity-dependent regulation of NR2B translation contributes to metaplasticity in mouse visual cortex[J]. Neuropharmacology,2007,52(1):200-14.
    [122] saac JT, Nicoll RA, Malenka RC. Evidence for silent synapses: implications for the expression of LTP[J]. Neuron, 1995,15(2):427-34.
    [123] Rumpel S, Hatt H, Gottmann K. Silent synapses in the developing rat visual cortex: evidence for postsynaptic expression of synaptic plasticity[J]. J Neurosci, 1998,18(21):8863-74.
    [1] LeVay S, Wiesel TN, Hubel DH. The development of ocular dominance columns in normal and visually deprived monkeys[J]. J Comp Neurol,1980,191(1):1-51.
    [2] Hubel DH, Wiesel TN, LeVay S. Plasticity of ocular dominance columns in monkey striate cortex[J]. Philos Trans R Soc Lond B Biol Sci,1977,278(961):377-409.
    [3] Mitchell DE, MacKinnon S. The present and potential impact of research on animal models for clinical treatment of stimulus deprivation amblyopia[J]. Clin Exp Optom, 2002,85(1):5-18.
    [4] Liao DS, Krahe TE, Prusky GT, et al. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity[J].J Neurophysiol, 2004,92(4):2113-21.
    [5] Oray S, Majewska A, Sur M. Dendritic spine dynamics are regulated by monocular deprivation and extracellular, matrix degradation[J]. Neuron,2004,44(6): 1021-30.
    [6] Mataga N, Mizuguchi Y, Hensch TK. Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator[J]. Neuron,2004,44(6): 1031-41.
    [7] Fagiolini M, Pizzorusso T, Berardi N, et al. Functional postnatal development of the rat primary visual cortex and the role of visual experience: dark rearing and monocular deprivation[J]. Vision Res, 1994,34(6):709-20.
    [8] Hubel DH, Wiesel TN. The period of susceptibility to the physiological effects of unilateral eye closure in kittens[J]. J Physiol, 1970,206(2):419-36.
    [9] WIESEL TN, HUBEL DH. SINGLE-CELL RESPONSES IN STRIATE CORTEX OF KITTENS DEPRIVED OF VISION IN ONE EYE[J]. J Neurophysiol, 1963,26:1003-17.
    [10] Kiorpes L, Kiper DC, O'Keefe LP, et al. Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia[J].J Neurosci,1998,18(16):6411-24.
    [11]Bartoletti A,Medini P,Berardi N,et al.Environmental enrichment prevents effects of dark-rearing in the rat visual cortex[J].Nat Neurosci,2004,7(3):215-6.
    [12]Andersen P,Soleng AF.Long-term potentiation and spatial training are both associated with the generation of new excitatory synapses[J].Brain Res Brain Res Rev,1998,26(2-3):353-9.
    [13]阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDA-R1表达的免疫组织化学电镜观察[J].中华眼科杂志,2002,38:472-475.
    [14]王宗青,刘向玲,穆雅林,等.代谢性谷氨酸受体1在单眼形觉剥夺弱视大鼠视皮质17区的表达及超微结构观察[J].中华眼科杂志,2008,44:67-71.
    [15]Goebel D J,Poosch MS.NMDA receptor subunit gene expression in the rat brain:a quantitative analysis of endogenous mRNA levels ofNR1Com,NR2A,NR2B,NR2C,NR2D and NR3A[J].Brain Res Mol Brain Res,1999,69(2):i64-70.
    [16]Luo J,Wang Y,Yasuda RP,et al.The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR 1/NR2A/NR2B)[J].Mol Pharmacol,1997,51 (1):79-86.
    [17]Catalano SM,Chang CK,Shatz CJ.Activity-dependent regulation of NMDAR1 immunoreactivity in the developing visual cortex[J].J Neurosci,1997,17(21):8376-90.
    [18]Roberts EB,Ramoa AS.Enhanced NR2A subunit expression and decreased NMDA receptor decay time at the onset of ocular dominance plasticity in the ferret[J].J Neurophysiol,1999,81 (5):2587-91.
    [19]Quinlan EM,Olstein DH,Bear MF.Bidirectional,experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development[J].Proc Natl Acad Sci U S A,1999,96(22):12876-80.
    [20]Quinlan EM,Philpot BD,Huganir RL,et al.Rapid,experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo[J].Nat Neurosci,1999,2(4):352-7.
    [21] Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path[J]. J Physiol, 1973,232(2):331-56.
    [22] Komatsu Y. GABAB receptors, monoamine receptors, and postsynaptic inositol trisphosphate-induced Ca2+ release are involved in the induction of long-term potentiation at visual cortical inhibitory synapses[J]. J Neurosci,1996,16(20):6342-52.
    [23] Lu Y, Allen M, Halt AR, et al. Age-dependent requirement of AKAP150-anchored PKA and GluR2-lacking AMPA receptors in LTP[J].EMBO J, 2007,26(23):4879-90.
    [24] Plant K, Pelkey KA, Bortolotto ZA, et al. Transient incorporation of native GluR2-lacking AMPA receptors during hippocampal long-term potentiation[J].Nat Neurosci, 2006,9(5):602-4.
    [25] Shi SH, Hayashi Y, Petralia RS, et al. Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation[J]. Science,1999,284(5421): 1811-6.
    [26] Takahashi T, Svoboda K, Malinow R. Experience strengthening transmission by driving AMPA receptors into synapses[J]. Science, 2003,299(5612): 1585-8.
    [27] Busetto G, Higley MJ, Sabatini BL. Developmental presence and disappearance of postsynaptically silent synapses on dendritic spines of rat layer 2/3 pyramidal neurons[J]. J Physiol, 2008,586(6): 1519-27.
    [28] Kerchner GA, Nicoll RA. Silent synapses and the emergence of a postsynaptic mechanism for LTP[J]. Nat Rev Neurosci, 2008,9(11):813-25.
    [29] Tu YL, Liu YB, Zhang L, et al. [Changes in electrophysiological and morphological properties of neurons during the development of the visual cortex in the rat] [J]. Sheng Li Xue Bao, 2003,55(2):206-12.
    [30] Rumpel S, Kattenstroth G, Gottmann K. Silent synapses in the immature visual cortex: layer-specific developmental regulation[J]. J Neurophysiol,2004,91(2):1097-101.
    [31] Sakurada K, Masu M, Nakanishi S. Alteration of Ca2+ permeability and sensitivity to Mg2+ and channel blockers by a single amino acid substitution in the N-methyl-D-aspartatereceptor[J]. J Biol Chem, 1993,268(1):410-5.
    [32] Myme CI, Sugino K, Turrigiano GG, et al. The NMDA-to-AMPA ratio at synapses onto layer 2/3 pyramidal neurons is conserved across prefrontal and visual cortices[J]. J Neurophysiol, 2003,90(2):771-9.
    [33] Liao D, Hessler NA, Malinow R. Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice[J]. Nature,1995,375(6530):400-4.
    [34] Ehrlich I, Malinow R. Postsynaptic density 95 controls AMPA receptor incorporation during long-term potentiation and experience-driven synaptic plasticity[J]. J Neurosci, 2004,24(4):916-27.
    [35] Carmignoto G, Maffei L, Candeo P, et al. Effect of NGF on the survival of rat retinal ganglion cells following optic nerve section[J]. J Neurosci,1989,9(4): 1263-72.
    [36] Carmignoto G, Comelli MC, Candeo P, et al. Expression of NGF receptor and NGF receptor mRNA in the developing and adult rat retina[J]. Exp Neurol,1991,111(3):302-11.
    [37] Carmignoto G, Canella R, Candeo P, et al. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex[J]. J Physiol, 1993,464:343-60.
    [38] Berardi N, Lodovichi C, Caleo M, et al. Role of neurotrophins in neural plasticity: what we learn from the visual cortex[J]. Restor Neurol Neurosci,1999,15(2-3):125-36.
    [39] Berardi N, Cellerino A, Domenici L, et al. Monoclonal antibodies to nerve growth factor affect the postnatal development of the visual system[J]. Proc Natl Acad Sci U S A, 1994,91(2):684-8.
    [40] Carmignoto G, Pizzorusso T, Tia S, et al. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex[J]. J Physiol, 1997,498 (Pt 1):153-64.
    [41] Silver MA, Fagiolini M, Gillespie DC, et al. Infusion of nerve growth factor (NGF) into kitten visual cortex increases immunoreactivity for NGF, NGF receptors, and choline acetyltransferase in basal forebrain without affecting ocular dominance plasticity or column development[J]. Neuroscience, 2001,108(4):569-85.
    [42] Pizzorusso T, Medini P, Berardi N, et al. Reactivation of ocular dominance plasticity in the adult visual cortex. Science, 2002,298(5596):1248-51.
    [43] McGee AW, Yang Y, Fischer QS, et al. Experience-driven plasticity of visual cortex limited by myelin and Nogo receptor[J]. Science,2005,309(5744):2222-6.
    [44] HUBEL DH, WIESEL TN. Receptive fields of single neurones in the cat's striate cortex[J]. J Physiol, 1959,148:574-91.
    [45] HUBEL DH, WIESEL TN. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[J]. J Physiol, 1962,160:106-54.
    [46] LeVay S, Hubel DH, Wiesel TN. The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain[J]. J Comp Neurol,1975,159(4):559-76.
    [47] Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens[J]. J Neurophysiol,1965,28(6): 1029-40.
    [48] Huang ZJ, Kirkwood A, Pizzorusso T, et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex[J]. Cell,1999,98(6):739-55.
    [49] Mower GD. The effect of dark rearing on the time course of the critical period in cat visual cortex[J]. Brain Res Dev Brain Res, 1991,58(2):151-8.
    [50] Chen L, Yang C, Mower GD. Developmental changes in the expression of GABA(A) receptor subunits (alpha(1), alpha(2), alpha(3)) in the cat visual cortex and the effects of dark rearing[J]. Brain Res Mol Brain Res,2001,88(1-2):135-43.
    [51] Katz LC, Crowley JC. Development of cortical circuits: lessons from ocular dominance columns[J]. Nat Rev Neurosci, 2002,3(1):34-42.
    [52] Katz LC, Shatz CJ. Synaptic activity and the construction of cortical circuits[J].Science, 1996,274(5290): 1133-8.
    [53] Stryker MP, Harris WA. Binocular impulse blockade prevents the formation of ocular dominance columns in cat visual cortex[J]. J Neurosci, 1986,6(8):2117-33.
    [54]Kind PC,Mitchell DE,Ahmed B,et al.Correlated binocular activity guides recovery from monocular deprivation[J].Nature,2002,416(6879):430-3.
    [55]许娜,李平华.斜视性弱视发病机制的研究进展[J].国际眼科杂志,2006,6(5):1139-1142.
    [56]刘虎,赵堪兴,史学锋等.斜视性弱视猫视皮层17区神经元眼优势及空间特性的改变[J].眼科新进展,2004,24(6):429-431.
    [57]史学锋,赵堪兴,刘虎.斜视性弱视猫视皮层21a区神经元眼优势改变[J].眼科新进展.2005,25(1):17-20.
    [58]Bienenstock EL,Cooper LN,Munro PW.Theory for the development of neuron selectivity:orientation specificity and binocular interaction in visual cortex[J].J Neurosci,1982,2(1 ):32-48.
    [59]Fregnac Y,Burke JP,Smith D,et al.Temporal covariance of pre-and postsynaptic activity regulates functional connectivity in the visual cortex[J].J Neurophysiol,1994,71 (4):1403-21.
    [60]Kimura F,Tsumoto T,Nishigori A,et al.Long-term depression but not potentiation is induced in Ca(2+)-chelated visual cortex neurons[J].Neuroreport,1990,1(1):65-8.
    [61]Artola A,Brocher S,Singer W.Different voltage-dependent thresholds for inducing long-term depression and long-term potentiation in slices of rat visual cortex[J].Nature,1990,347(6288):69-72.
    [62]Mayford M,Wang J,Kandel ER,et al.CaMKII regulates the frequency-response function of hippocampal synapses for the production of both LTD and LTP[J].Cell,1995,81 (6):891-904.
    [63]Kirkwood A,Bear MF.Homosynaptic long-term depression in the visual cortex[J].J Neurosci,1994,14(5 Pt 2):3404-12.
    [64]Dudek SM,Bear MF.Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade[J].Proc Natl Acad Sci U S A,1992,89(10):4363-7.
    [65]Bear MF,Malenka RC.Synaptic plasticity:LTP and LTD[J].Curt Opin Neurobiol,1994,4(3):389-99.
    [66] Kirkwood A, Rioult MC, Bear MF. Experience-dependent modification of synaptic plasticity in visual cortex[J]. Nature, 1996,381(6582):526-8.
    [67] Sejnowski TJ. Statistical constraints on synaptic plasticity[J]. J Theor Biol,1977,69(2):385-9.
    [68] Bear MF, Cooper LN, Ebner FF. A physiological basis for a theory of synapse modification[J]. Science, 1987,237(4810):42-8.
    [69] Carmignoto G, Vicini S. Activity-dependent decrease in NMDA receptor responses during development of the visual cortex[J]. Science,1992,258(5084): 1007-11.
    [70] Fox K, Daw N, Sato H, et al. Dark-rearing delays the loss of NMD A-receptor function in kitten visual cortex[J]. Nature, 1991,350(6316):342-4.
    [71] Clothiaux EE, Bear MF, Cooper LN. Synaptic plasticity in visual cortex:comparison of theory with experiment[J]. J Neurophysiol,1991,66(5): 1785-804.
    [72] Buisseret P, Imbert M. Visual cortical cells: their developmental properties in normal and dark reared kittens[J]. J Physiol, 1976,255(2):511-25.
    [73] Buisseret P, Gary-Bobo E, Imbert M. Ocular motility and recovery of orientational properties of visual cortical neurones in dark-reared kittens[J].Nature, 1978,272(5656):816-7.
    [74] Jo J, Ball SM, Seok H, et al. Experience-dependent modification of mechanisms of long-term depression[J]. Nat Neurosci, 2006,9(2): 170-2.
    [75] Engel JE, Hoy RR. Experience-dependent modification of ultrasound auditory processing in a cricket escape response[J]. J Exp Biol, 1999,202(Pt 20):2797-806.
    [76] Benuskova L, Diamond ME, Ebner FF. Dynamic synaptic modification threshold: computational model of experience-dependent plasticity in adult rat barrel cortex[J]. Proc Natl Acad Sci U S A, 1994,91(11):4791-5.
    [77] Tyler WJ, Petzold GC, Pal SK, et al. Experience-dependent modification of primary sensory synapses in the mammalian olfactory bulb[J]. J Neurosci, 2007,27(35):9427-38.
    [78] Abraham WC, Bear MF. Metaplasticity: the plasticity of synaptic plasticity[J]. Trends Neurosci, 1996,19(4):126-30.
    [79] Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron,2004,44(l):23-30.
    [80] Song S, Miller KD, Abbott LF. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity[J]. Nat Neurosci, 2000,3(9):919-26.
    [81] Bohte S, Mozer MC. Reducing spike train variability: A computational theory of spike-timing dependent plasticity. In L. K. Saul, Y. Weiss, and L. Bottou(Eds.), Advances in Neural Information Processing Systems, 2005; 17: 201-208.Cambridge, MA: MIT Press.
    [82] Bi GQ, Rubin J. Timing in synaptic plasticity: from detection to integration[J].Trends Neurosci, 2005,28(5):222-8.
    [83] Legenstein R, Naeger C, Maass W. What can a neuron learn with spike-timing-dependent plasticity? [J]. Neural Comput, 2005,17(11):2337-82.
    [84] Gorchetchnikov A, Versace M, Hasselmo ME. A model of STDP based on spatially and temporally local information: derivation and combination with gated decay[J]. Neural Netw, 2005,18(5-6):458-66.
    [85] Dan Y, Poo MM. Spike timing-dependent plasticity: from synapse to perception[J]. Physiol Rev, 2006,86(3):1033-48.
    [86] Schuett S, Bonhoeffer T, Hubener M. Pairing-induced changes of orientation maps in cat visual cortex[J]. Neuron, 2001,32(2):325-37.
    [87] Zhang LI, Tao HW, Holt CE, et al. A critical window for cooperation and competition among developing retinotectal synapses[J]. Nature,1998,395(6697):37-44.
    [88] Mu Y, Poo MM. Spike timing-dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system[J]. Neuron,2006,50(1): 115-25.
    [89] Yao H, Dan Y. Stimulus timing-dependent plasticity in cortical processing of orientatipn[J]. Neuron, 2001,32(2):315-23.
    [90] Fu YX, Djupsund K, Gao H, et al. Temporal specificity in the cortical plasticity of visual space representation[J]. Science, 2002,296(5575): 1999-2003.
    [91] Meliza CD, Dan Y. Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking[J]. Neuron, 2006,49(2): 183-9.
    [92] Debanne D, Gahwiler BH, Thompson SM. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures[J]. J Physiol, 1998,507 ( Pt l):237-47.
    [93] Sjostrom PJ, Turrigiano GG, Nelson SB. Rate, timing, and cooperativity jointly determine cortical synaptic plasticity[J]. Neuron, 2001,32(6):1149-64.
    [94] Nishiyama M, Hong K, Mikoshiba K, et al. Calcium stores regulate the polarity and input specificity of synaptic modification[J]. Nature,2000,408(6812):584-8.
    [95] Feldman DE. Timing-based LTP and LTD at vertical inputs to layer Ⅱ/Ⅲ pyramidal cells in rat barrel cortex[J]. Neuron, 2000,27(l):45-56.
    [96] Bi G, Poo M. Synaptic modification by correlated activity: Hebb's postulate revisited[J]. Annu Rev Neurosci, 2001,24:139-66.
    [97] Abbott LF, Nelson SB. Synaptic plasticity: taming the beast[J]. Nat Neurosci,2000,3 Suppl:1178-83.
    [98] Malenka RC, Nicoll RA. Long-term potentiation~a decade of progress? [J].Science, 1999,285(5435): 1870-4.
    [99] Wang HX, Gerkin RC, Nauen DW, et al. Coactivation and timing-dependent integration of synaptic potentiation and depression[J]. Nat Neurosci,2005,8(2):187-93.
    [100] Froemke RC, Dan Y. Spike-timing-dependent synaptic modification induced by natural spike trains[J]. Nature, 2002,416(6879):433-8.
    [101] Yao H, Shen Y, Dan Y. Intracortical mechanism of stimulus-timing-dependent plasticity in visual cortical orientation tuning[J]. Proc Natl Acad Sci U S A,2004,101(14):5081-6.
    [102] Wolters A, Schmidt A, Schramm A, et al. Timing-dependent plasticity in human primary somatosensory cortex[J]. J Physiol, 2005,565(Pt 3): 1039-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700