Al_2O_3改性Pd/Fe/PVDF催化还原剂制备及去除水中氯乙酸研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯化消毒水中检出的氯乙酸是一类难挥发的氯代有机物。零价铁能够促进氯代有机物还原脱氯,而在零价铁表面加入催化剂钯可以极大地促进氯代有机物的脱氯速率。由于纳米Pd/Fe催化还原剂具有较高的比表面积和表面反应活性,比普通金属铁脱氯速率快。为了有利于Pd/Fe催化还原剂的回收和提高脱氯效率,需要将纳米Pd/Fe催化还原剂固定在载体上。本研究主要对PVDF载体进行表面改性和基体改性,制备负载型的纳米Pd/Fe催化还原剂用于脱除水中氯乙酸。
     PVDF载体表面改性,采用对PVDF载体亲水化改性、原位聚合改性和直接涂覆法,制备不同改性法负载的纳米Pd/Fe/PVDF催化还原剂,分析不同表面改性方法在载铁量和脱氯率上的差异,发现亲水化改性和原位聚合改性在载铁量和脱氯率上没有明显的区别,但是都远大于直接涂覆法。
     研究PVDF基体改性,利用相转化法制备了纳米PVDF·Al_2O_3载体,添加不同量(0%~4%)的Al_2O_3于PVDF溶液中,制备PVDF·Al_2O_3有机-无机改性载体。通过对PVDF·Al_2O_3载体的机械强度、接触角、和比面积的筛选,确定Al_2O_3添加量为2%时,PVDF·Al_2O_3作为载体效果最佳。将2%的PVDF·Al_2O_3改性载体浸泡在不同浓度的交联液中,交联液的主要组分是聚丙烯酸、乙二醇和FeSO_4·7H_2O,通过对改性载体上载铁量分析和对一氯乙酸脱氯率的实验,确定交联时间15分钟,交联液中FeSO_4·7H_2O的浓度为2.9%时,改性载体上纳米Pd/Fe催化还原剂的负载量最大,颗粒分散效果最好,计算单位面积的载铁量为0.52 mg/cm2。
     对基体改性的PVDF载体、PVDF·Al_2O_3改性载体、纳米Pd/Fe/PVDF·Al_2O_3催化还原剂进行扫描电镜(SEM)、能谱分析(EDS)、透射电镜(TEM)、原子力显微镜(AFM)、X射线衍射光谱(XRD)表征和分析载体的表面形态、内部形态和结构,纳米Pd/Fe/PVDF·Al_2O_3催化还原剂的形状和粒径、晶体结构、钯化率和Pd/Fe负载均匀度。结果表明,制备的纳米Pd/Fe催化还原剂负载在PVDF·Al_2O_3载体上时,颗粒不易团聚,分散效果好,粒径较均匀,载体表面的Pd/Fe催化还原剂直径在50~150nm之间。负载的纳米铁主要以? -Fe0形式存在,进一步证明了PVDF·Al_2O_3具有良好的负载性能。
     考察了钯化率、Pd/Fe催化还原剂投加量、初始浓度、Pd/Fe颗粒保存时间、PVDF·Al_2O_3载体的使用寿命等因素对氯乙酸(一氯乙酸、二氯乙酸、三氯乙酸)脱氯率的影响。研究发现,当钯化率小于0.511%时,随着钯化率的增高,纳米Pd/Fe/PVDF催化还原剂对一氯乙酸的脱氯率会增大,钯化率大于0.511%时,随着钯化率的增高,纳米Pd/Fe/PVDF催化还原剂对一氯乙酸脱氯率会减小。增加Pd/Fe颗粒投加量可以促进脱氯反应的进行,不同初始浓度下,Pd/Fe催化还原脱氯效果会随初始浓度增加而下降。研究中将纳米Pd/Fe/PVDF·Al_2O_3催化还原剂长期保存于无水乙醇中,其载铁量和脱氯率都没有明显变化,纳米Pd/Fe/PVDF·Al_2O_3催化还原剂具有较好的稳定性和使用效果。
     分析了PVDF·Al_2O_3基体改性机制,研究纳米Pd/Fe/PVDF·Al_2O_3催化还原剂对不同浓度目标污染物氯乙酸(一氯乙酸、二氯乙酸、三氯乙酸)脱氯反应机理。研究表明纳米Pd/Fe/PVDF·Al_2O_3催化还原剂对氯乙酸脱氯满足假一级反应动力学。一氯乙酸、二氯乙酸、三氯乙酸的表观反应速率常数分别为0.0969min~(-1), 0.1254 min~(-1),0.2859 min~(-1)。
Chloroacetic acid detected in chlorinated wate is a kind of less volatile halogenated organics. Zero-valent iron(ZVI) can catalytic dechlorinate chlorinated organic compounds (COCs), the dechlorination reaction rate can be increased with palladium coated on ZVI surface. Because of high surface area and reaction activity, Pd/Fe bimetallic system has higher dechlorination efficiency than iron. Pd/Fe bimetallic system was immobilized in carrier to retrieve Pd/Fe bimetallic nanoparticles and improve the dechlorination efficiency. The PVDF carrier surface modification and the self-made PVDF matrix modification was aim to immobilize Pd/Fe nanoparticles system for the dechlorination of chloroacetic acid in this study.
     Three kinds of surface modified PVDF carrier-immobilized Pd/Fe nanoparticles by hydrophilization method, in situ method and direct dip-coating method were studied. The result showed that: hydrophilization method and in situ method have no obvious difference in Fe loading and dechlorination efficiency, but was higher than direct dip-coating method.
     Adding different quantity (0%~4%) nano Al_2O_3 particles into PVDF solution to prepare PVDF·Al_2O_3 organic-inorganic modified carrier. The best effect of PVDF·Al_2O_3 carrier is 2% Al_2O_3 adding, which studied by mechanical strength, contact angle and specific surface area. 2% PVDF·Al_2O_3 carrier dipped into different concentration cross-linking solution constituted with PAA, EG and FeSO_4·7H_2O to confirm the FeSO_4·7H_2O quantity in cross-linking solution. When cross-linking time is 15 minutes and FeSO_4·7H_2O content is 2.9%, Pd/Fe catalytic reductant in the PVDF·Al_2O_3 carrier have maximum loading and better disperse and Fe loading is 0.52 mg/cm2 by analyzing Fe loading and MCAA dechlorination efficiency.
     PVDF carrier, PVDF·Al_2O_3 modified carrier and Pd/Fe/PVDF·Al_2O_3 catalytic reductant were extensively characterized according to SEM, EDS, TEM, AFM and XRD to explicit the morphology and construct of modified PVDF matrix and identify the Pd/Fe particle shape and diameter, crystal structure, Pd content, and Pd/Fe loading evenness. The characterization showed that Pd/Fe/PVDF·Al_2O_3 catalytic reductant had smaller aggregation with good scattered tendency and were more evenly sized with a diameter in the range of 50~(-1)50 nm, the crystal structure of iron was a regular -Fe0. The results show that PVDF·Al_2O_3 carrier has benign properties.
     Discussion the factor of chloroacetic acid dechlorination including Pd loading, Pd/Fe catalytic reductant quantity, initial concentration, Pd/Fe in different conservervation time, PVDF·Al_2O_3 using time. The results indicated that the dechlorination rate of chloroacetic acid by Pd/Fe/PVDF·Al_2O_3 increased with Pd loading increasing when Pd loading less than 0.511% and dechlorination rate decreased with Pd loading increasing when Pd loading more than 0.511%. Increasing Pd/Fe nanoparticles addition resulted in the increase of dechlorination efficiency. The dechlorination rate of chloroacetic acid decreased with high initial concentration. Fe loading and dechlorination rate of chloroacetic acid have no obvious change when Pd/Fe/PVDF·Al_2O_3 catalytic reductant long-term conserved in alcohol solution, which showed Pd/Fe/PVDF·Al_2O_3 catalytic reductant has good stabilization.
     Analysed the mechanism of PVDF·Al_2O_3 matrix modification and research the dechlorination kinetics of Pd/Fe/PVDF·Al_2O_3 catalytic dechloriantion of MCAA, DCAA, and TCAA. The results indicated that the chloroacetic acid dechlorination accorded with pseudo-first-order kinetics. Reaction rate constants of MCAA, DCAA, and TCAA were 0.0969min~(-1), 0.1254 min~(-1), 0.2859 min~(-1), respectively.
引文
[1]程荣,王建龙,张伟贤.纳米金属铁降解有机卤化物的研究进展.化学进展. 2006, 18(1):93~99.
    [2]陈芳艳,陆敏,唐玉斌.纳米铁在水污染控制中的应用研究进展.工业安全与环保. 2007, 33(2):18~20.
    [3]陈颖敏,左俊利.饮用水中消毒副产物的污染与控制.工业安全与环保. 2007, 33(3):17~18.
    [4]沈小星,方士,王薇.饮用水消毒副产物的危害及控制工艺.水资源保护. 2005, 21(4):30~33.
    [5]魏建荣,王振纲.水中消毒副产物研究进展.卫生研究. 2004, 33(1):115~118.
    [6] J. Y. Hu, Z. S. Wang, W. J. Ng, et al. Disinfection By-Products in Water Produced by Ozonation and Chlorination. Environ. Monitor. Assess, 1999, 59: 81~93.
    [7] Environmental Protection Agency, Stage1 Disinfectants and Disinfection By-Products Rule, EPA Document no. 815-F98-010, GPO, Washington, DC, 1998.
    [8] WHO, Revision of the WHO Guidelines for Drinking Water Quality, WHO, Geneva, 1991.
    [9] B. F. Scott, D. Mactavish, C. Spencer, et al. Haloacetic Acids in Canadian Lake Waters and Precipitation. Environ. Sci. Technol. 2000, 34: 4266~4272.
    [10]张晓健,李爽.消毒副产物总致癌风险的首要指标参数-卤乙酸.给水排水.2000, 26(8)1~6.
    [11] R. Muftikian, Q. Fernando, N. Korte. A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water. Water Research. 1995, 29(10):2434~2439.
    [12] B. L. Dvorak, D. F. Lawler. Selecting Among Physical/Chemical Processes for Removing Synthetic Organics from Water. Water Environment Research. 1993, (65):827~838.
    [13] K. Verschueren. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold, 1983.
    [14]刘毅慧.水中氯代有机物催化还原脱氯的研究.大连理工大学博士论文. 1999:13~21.
    [15] D. L. Bedard. Extensive degradation of arkclors and environmentally transformed polychlorinated biphenyls by alcaligeneseutrophus H850[J]. Applied and Environmental Microbiology. 1987, 53:1094~1102.
    [16] T. Macek, M. Mackova, J. Kas. Exploitation of plants for the removal of organics in environmental rexnexliation[J]. Biotexhnolony Advances. 2000, 18(1):23~24.
    [17] B. R. Meagher. Phytoremediation of toxic elemental and organic pollutants [J]. Current Opinion in Plant Biolony. 2000, 3(2):153~162.
    [18] Y. Zheng, D. G. Allen. Biological Dechlorination of Model Organochlorie Compounds in Bleached Kraft Mill Effluents. Environmental Science and Technology. 1996, 30:1890~1895.
    [19] A. Sch?llhorn, C. Savary, G. Stucki, et al. Comparison of Different Susbstrates for the Fast Reductive Echlorination of Trichloroethene under Groundwater Conditions. Water Research. 1997, 31:1275~1282.
    [20] M. A. Oturan, N. L. Oturan, et al. Production of hydroyl radicals by electrochemically assisted Fenton's reagent: Application to the mineralization of an organic micropollutant,pentachlorophenol. Journal of Electroanalytical Chemistry. 2001, 507:96~102.
    [21] N. E. Korte, J. L. Zutman, R. M. Schlosser. Field Application of Palladized Iron for the Dechlorination of Trichloroethene. Waste Management. 2000, 20(8):687~694.
    [22]薛向东,金奇庭. TaO2光降解水中污染物的研究进展.中国给水排水. 2001, 17(6):26~29.
    [23]李学德,岳永德,花日茂等.二氯苯酚的光催化降解研究[[J].农业环境保护. 2002, 21(2):156~158.
    [24]赵毅.多氯联苯催化转移氢化脱氯的研究.环境化学. 1994, 13(4):328~330.
    [25] G. Guy, A. Werner, et al. Corrinoid-mediated reduction of tetrachloroethylene, trichloroethylene, and trichlorofluoroethylene in homogeneous aqueous solution: reaction kinetics and mechanisms. Environ. Sci. Technol. 1997, 31:253~260.
    [26] D. P. Sinatar, C. G. Schreier, C. S. Chou, et al. Treatment of 1, 2-Dibromo-3-Chloropropane and Nitrate-Contaminated Water with Zero-Valent Iron or Hydrogen/Palladium Catalysts. Water Research. 1996, 30(10):2315~2322.
    [27] J. M. Wu, H. S. Huang, C. D. Liveng. Ultrasonic destruction of chlorinated compounds in aqueous solution. Environmental Progress. 1992, 11(3):195~201.
    [28] I. Hua, M. R. Hoffmann. Kinetics and mechanism of the sonolytic degradation of CC14: intermediates and byproducts. Environ. Sci. Technol.1996, 30:864~871.
    [29] H. M. Cheung, A. Bhatnagar, G. Jansen. Sonochemical destruction of chlorinate hydrocarbons in dilute aqueous solution. Environ. Sci. Technol. 1991, 25:1510~1512.
    [30] P. Kruus, R. C. Burk, M. H. Entezari, et al. Sonication of aqueous solutions of chlorobenzene. Ultrasonics Sonochemistry. 1997, 4(3):229~233.
    [31] Y. Jiang, C. Petrier, T. D. Waite. Kinetics and mechanisms of ultrasonic degradation of volatile chlorinated aromatics in aqueous solutions. Ultrasonics Sonochemistry. 2002, 9(6):317~323.
    [32] R. W. Gillham, S. F. O'Hannesin. Enhanced Degradation of Halogenated Aliphatics by Zero-Valent Iron. Ground Water, 1994, 32(6):958~967.
    [33] B. R. Helland, P. J. J. Alvarez, J. L. Schnoor. Reductive Dechlorination of Carbon Tetrachloride with Elemental Iron. Journal of Hazardous Materterials. 1995, 41:205~216.
    [34] E. K. Lipczynska, S. Harms, R. Milburn. Degradation of carbon tetrachloride in the presence of iron and sulphur containing compounds[J].Chemosphere. 1994, 29(7):1477~1489.
    [35] W. A. Arnold, A. L. Roberts. Parthways and kinetics of chlorinated ethylene and chlorinated acethlene reaction with Fe(0) particles[J]. Environ Sci Techno1. 2000, 34 (9):1794~1805.
    [36] R. Lookman, L. Bastiaens, B. Borremans, et al. Batch-Test Study on the Dechlorination of 1,1,1-Trichloroethane in Contaminated Aquifer Material by Zero-Valent Iron. Journal of Contaminant Hydrology. 2004, 74:133~144.
    [37] Y. Q. Liu, G. V. Lowry. Effect of Particle Ag (Fe0 Content)and Solution pHon NZVI Reactivity: H2 Evolution and TCE Dechlorination. Environmental Science and Technology. 2006, 40:6085~6090.
    [38] A. Parbs, M. Ebert, A. Dahmke. Long-Term Effects of Dissolved Carbonate Species on the Degradation of Trichloroethylene by Zero-valent Iron. Environmental Science and Technology. 2007, 41:291~296.
    [39] H. K. Yak, Q. Y. Lang, C. M. Wai. Relative resistance of positional isomers of polychlorinated biphenyls toward reductive dechlorination by zerovalent iron in subcritical water[J]. Environ Sci Technol. 2000, 34(13):2792~2798.
    [40] G. D. Sayles, G. R. You, M. X. Wang, et al. DDT, DDD and DDE dechlorination by zero-valent iron. Environ Sci Technol. 1997, 31(12): 3448~3454.
    [41] S. J. Monson, L. Ma, D. A. Cassada, et al. Confirmation and method development for dechlorinated atrazine from reductive dehalogenation of atrazine with Fe0 [J]. Analytica Chimica Acta. 1998, 373:153~160.
    [42] T. Dombek, E. Dolan, J. Schultz, et al. Rapid reductive dechlorintion of atrazine by zero-valent iron under acidic conditions[J]. Environmental Pollution. 2001, 111:21~27.
    [43] C. Clark II, P. S. C. Rao, M. D. Annable. Degradation of Perchloroethylene in Cosolvent Solutions by Zero-Valent Iron. Journal of Hazardous Materials. 2003, B 96:65~78.
    [44] R. Miehr, P. G. Tratnyek, J. Z. Bandstra, et al. Diversity of Contaminant Reduction Reactions by Zerovalent Iron: Role of the Reductate. Environmental Science and Technology. 2004, 38:139~147.
    [45] R. M. Hozalski, L. Zhang, W. A. Arnold. Reduction of Haloacetic Acids by Fe0: Implications for Treatment and Fate.Environmental Science and Technology. 2001, 35(11):2258~2263.
    [46]刘菲,黄园英,何小娟.与铁相关的几种渗透反应格栅材料性能的比较.地学前缘. 2005, 12:170~175.
    [47]翟辉,张斌辉,李义连.有机氯农药的零价铁脱氯降解研究进展.地质灾害与环境保护. 2008, 19(2):109~112.
    [48] J. L. Chen, S. R. A. Abed, J. A. Ryan, et al. Effects of pH on dechlorination of trichloroethylene by zero-valent iron[J]. Tournal of Hazardous Materials.2001, B 83:243-254.
    [49]王志远.零价铁、锌以及双金属铁/钯、铁/银脱氯降解林丹、1,2,3,4一四氯代二苯并对二恶英的研究.中国科学院博士学位论文. 2006.
    [50]白少元,王明玉.零价纳米铁在水污染修复中的研究现状及讨论.净水技术. 2008, 27(1):35~40, 53.
    [51]邹萍,隋贤栋,黄肖容,等.纳米材料在水处理中的应用.环境科学与技术. 2007, 30(4):87~90.
    [52] G. V. Lowry, K. M. Johnson. Congener-Specific Dechlorination of Dissolved PCBs by Microscale and Nanoscale Zerovalent Iron in a Water/Methanol Solution. Environmental Science and Technology. 2004, 38:5208~5216.
    [53]刘菲,汤鸣皋,何小娟,等.零价铁降解水中氯代烃的实验室研究.中国地质大学学报. 2002, 27:186~188.
    [54]梁震,王焰新.纳米级零价铁的制备及其用于污水处理的机理研究.工程与技术. 2002, 4:14~16.
    [55] H. L. Lien, W. X. Zhang. Nanoscale Iron Particles for Complete Reduction of Chlorinated Ethenes. Colloid Surface A. 2001, 191:97~106.
    [56] B. Deng, D. R. Burris, T. J. Campbell. Reductive of Vinyl Chloride in Metallic Iron-Water Systems. Environmental Science and Technology. 1999, 33(15):2651~2656.
    [57] J. Feng, T. T. Lim. Pathways and Kinetics of Carbon Tetrachloride and Chloroform Reductions by Nano-Scale Fe and Fe/Ni Particles: Comparison with Commercial Micro-Scale Fe and Zn. Chemosphere.2005, 59 :1267~1277.
    [58] X. H. Xu, H. Y. Zhou, P. He, t al. Catalytic Dechlorination Kinetics of p-Dichlorobenzene Over Pd/Fe Catalysts. Chemosphere. 2005, 58 :1135~1140.
    [59] H. L. Lien, W. X. Zhang. Hydrodechlorination of Chlorinated Ethanes by Nanoscale Pd/Fe Bimetallic Particles. Journal of Environmental Engineering. 2005, 9:4~10.
    [60] D. M. Cwiertny, S. J. Bransfield, K. J. T. Livi, et al. Exploring the Influence of Granular Iron Additives on 1,1,1-Trichloroethane Reduction. Environmental Science and Technology. 2006, 40:6837~6843.
    [61] X. Q. Li, W. X. Zhang. Iron Nanoparticles: the Core-Shell Structure andUnique Properties for Ni (II) Sequestration. Langmuir. 2006, 22 :4638~4642.
    [62]黄园英,刘菲,汤鸣臬,等.纳米镍/铁和铜/铁双金属对四氯乙烯脱氯研究.环境科学学报. 2007, 27:80~85.
    [63] Z. Zhang, N. Cissokoa, J. J. Woa, X. H. Xua,. Factors influencing the dechlorination of 2,4-dichlorophenol by Ni/Fe nanoparticles in the presence of humic acid. Journal of Hazardous Materials. 2009, 165:78~86.
    [64] Y. Han, W. Li, M. H. Zhang, K. Tao. Catalytic dechlorination of monochlorobenzene with a new type of nanoscale Ni(B)/Fe(B) bimetallic catalytic reductant. Chemosphere. 2008, 72:53~58.
    [65] Z. H. Zheng, S. H. Yuan, Y. Liu, X. H. Lu, et al. Reductive dechlorination of hexachlorobenzene by Cu/Fe bimetal in the presence of nonionic surfactant. Journal of Hazardous Materials. 2009, 170:895~901.
    [66] W. Y. Xu, T. Y Gao. Dechlorination of carbon tetrachloride by the catalyzed Fe-Cu process. Journal of Environmental Sciences. 2007, 19:792~799.
    [67] N. He, P. J. Li, Y. Ch. Zhou, et al. Catalytic dechlorination of polychlorinated biphenyls in soil by palladium-iron bimetallic catalyst. Journal of Hazardous Materials. 2009, 164:126~132.
    [68] Y. X. Fang, S. R. A. Abed. Dechlorination kinetics of monochlorobiphenyls by Fe/Pd: Effects of solvent, temperature, and PCB concentration. Applied Catalysis B: Environmental. 2008, 78:371~380.
    [69] Z. Y. Wang, W. L. Huang, P. Peng, et al. Fennell Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010, 78:147~151 .
    [70] Y. Xu, W. X. Zhang. Subcolloidal Fe/Ag Particles for Reductive Dehalogenation of Chlorinated Benzenes. Ind. Eng. Chem. Res., 2000, 39(7):2238~2244.
    [71] C. J. Lin, Y. H.Liou, S. L. Lo.Supported Pd/Sn bimetallic nanoparticles for reductive dechlorination of aqueous trichloroethylene. Chemosphere. 2009, 74:314~319.
    [72] R. Muftikian, Q. Fernando, N. Korte. A Method for the Rapid Dechlorination of Low Molecular Weight Chlorinated Hydrocarbons in Water. Water Research 1995, 29(10):2434~2439.
    [73]张卫华.纳米Ni/Fe及超声辅助纳米Ni/Fe对水中氯代有机物脱氯研究.东北师范大学博士学位论文. 2008:33, 94.
    [74] S. H. Joo, D. Y. Zhao. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions:Effects of catalyst and stabilizer. Chemosnhere. 2008, 70:418~425.
    [75] Z. Zhang, Q. H. Shena, N. Cissokoa, J.J. Wo, X. H. Xua. Catalytic dechlorination of 2, 4-dichlorophenol by Pd/Fe bimetallic nanoparticles in the presence of humic acid. Journal of Hazardous Materials. 2010, 182:252~258.
    [76]段志婕.水中有机氯类环境内分泌干扰物的Pd/Fe催化还原研究.同济大学硕士学位论文. 2008, 8.
    [77]焦永利,邱翠翠,吴德理,马鲁铭.共沉积制备Pd /Cu纳米金属粒子对四氯化碳的脱氯研究.四川环境. 2009, 28(2):16-19.
    [78]李智灵,杨琦,尚海涛等.负载型纳米Pd/Fe对氯代烃脱氯机理研究.环境科学. 2008, 29(4):978~984.
    [79] F. He, D. Y. Zhao. Preparation and Characterization of a New Class of Starch-Stabilized Bimetallic Nanoparticles for Degradation of Chlorinated Hydrocarbons in Water. Environmental Science and Technology. 2005, 39(9):3314~3320.
    [80] X. Xu, H. Zhou, D. Wang. Structure Relationship for Catalytic Dechlorination Rate of Dichlorobenzenes in Water. Chemosphere. 2005, 58:1497~1502.
    [81] B. W. Zhu, T. T. Lim, J. Feng. Reductive Dechlorination of 1,2,4-Trichlorobenzene with Palladized Nanoscale Fe0 Particles Supported on Chitosan and Silica. Chemosphere. 2006, 65:1137~1145.
    [82] J. Feng, T. T. Lim. Iron-Mediated Reduction Rates and Pathways of Halogenated Methanes with Nanoscale Pd/Fe: Analysis of Linear Free Energy Relationship. Chemosphere. 2007, 6:1765~1774.
    [83] X. H. Xu, H. Y. Zhou, M. Zhou. Catalytic Amination and Dechlorination of para-Nitrochlorobenzene(p-NCB)in Water Over Palladium-Iron Bimetallic Catalyst. Chemosphere. 2006, 62:847~852.
    [84] S. Kidambi, M. L. Bruening. Multilayered Polyelectrolyte Films Containing Palladium Nanoparticles: Synthesis, Characterization, and Application in Selective Hydrogenation. Chemistry of Materials. 2005, 17(2):301~307.
    [85] Z. L. Liu, X. Y. Ling, X. D. Su, et al. Carbon-Supported Pt and PtRu Nanoparticles as Catalysts for a Direct Methanol Fuel Cell. Journal of Physical Chemistry. B 2004, 108 (24):8234~8240.
    [86] L. Wu, M. Shamsuzzoha, S. M. C. Ritchie. Preparation of Cellulose Acetate Supported Zero-Valent Iron Nanoparticles for the Dechlorination of Trichloroethylene in Water. Journal of Nanoparticle Research. 2005, 7(4):469~476.
    [87] L. F. Wu, S. M. C. Ritchie. Removal of Trichloroethylene from Water by Cellulose Acetate Supported Bimetallic Ni/Fe Nanoparticles. Chemosphere. 2006, 63(2):285~292.
    [88] J. Xu, D. Bhattacharyya. Membrane-Based Bimetallic Nanoparticles for Environmental Remediation: Synthesis and Reactive Properties. Environmental Progress. 2005, 24(4):358~366.
    [89] T. C. Wang, M. F. Rubner, R. E. Cohen. Polyelectrolyte Multilayer Nanoreactors for Preparing Silver Nanoparticle Composites: Controlling Metal Concentration and Nanoparticle Size. Langmuir. 2002, 18(8) :3370~3375.
    [90] K. G. Parshetti, R. A. Doong. Dechlorination of trichloroethylene by Ni/Fe nanoparticles immobilized in PEG/PVDF and PEG/nylon 66 membranes. water research. 2009, 43:3086~3094.
    [91] J. Xu, D. Bhattacharyya. Fe/Pd Nanoparticle Immobilization in Microfiltration Membrane Pores: Synthesis, Characterization, nd Application in the Dechlorination of Polychlorinated Biphenyls. Industrial and Engineering Chemistry Research. 2007, 46(8):2348~2359.
    [92]王向宇.纳米钯/铁双金属体系对氯代有机物催化还原脱氯研究.哈尔滨工业大学博士学位论文. 2009, 118-124.
    [93] C. H. Du, Y. Y. Xu, B. K. Zhu. Structure Formation and Characterization of PVDF Hollow Fiber Membranes by Melt-Spinning and Stretching Method. Applied Polymer Science, 2007, 106:1793~1799.
    [94]刘富. PVDF/PVC微孔膜亲水化改性的研究.浙江大学博士学位论文. 2007. 6.
    [95]肖玲.聚合物多孔膜的亲水化改性.硕士学位论文,浙江大学, 2007. 5.
    [96] X. Y. Wang, C. Chen, H. L. Liu, J. Ma. Preparation and characterization ofPAA/PVDF membrane-immobilized Pd/Fe nanoparticles for dechlorination of trichloroacetic acid. Water research. 2008, 42:4656~4664.
    [97] Y. Shen, X. P. Qiu, J. Shen, et al. PVDF-g-PSSA and Al_2O_3 composite proton exchange membranes. Journal of Power Sources 2006, 161:54~60.
    [98] R. Revanur, B. Mccloskey, K. Breitenkamp, et al. Reactive amphiphilic graft copolymer coatings applied to poly(vinylidene fluoride) ultrafiltration membranes[J]. Macromolecules. 2007, 40 (10):3624~3630.
    [99] F. Liu, Y. Y. Xu, B. K. Zhu, et al. Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. Journal of Membrane Science. 2009, 345:331~339.
    [100]周洁.聚偏氟乙烯膜的亲水改性及处理低浓度含油废水的研究.南京理工大学硕士学位论文. 2005:10~19.
    [101] M. Parna, L. J. Kimberly, O. A. Joshua. Surface Modification of Nanofiltration Membranes by Ion Implantation. Membrane science. 2005, 254:303~310.
    [102]白鹭.膜生物反应器中聚偏氟乙烯膜表面改性及污染的研究.硕士学位论文.东华大学, 2007. 1.
    [103] V. Smuleac, L. Bachas, D. Bhattacharyya. Aqueous-phase synthesis of PAA in PVDF membrane pores for nanoparticle synthesis and dichlorobiphenyl degradation. Journal of Membrane Science. 2010, 346:310~317.
    [104]王海芳.基于超分子化学作用的PVDF膜改性及其在处理低浓度含油废水中的应用研究.博士学位论文.南京理工大学, 2006. 6.
    [105]杨虎,许振良,周立志,等.聚偏氟乙烯膜表面丙烯酸接枝改性研究.膜科学与技术, 2006, 26(4):24~26.
    [106]宋来洲,张尊举,李晓博,等.改性聚偏氟乙烯微滤膜深度处理城市污水的研究.中国给水排水, 2006, 22(13):38~41.
    [107]韩珣,黎雁,吕晓龙.聚偏氟乙烯中空纤维膜化学接枝改性研究.膜科学与技术, 2007, 27(2):15~19.
    [108]李晓,陆晓峰,段伟.射线辐照接枝丙烯酸改性PVDF超滤膜.膜科学与技术. 2007, 27(2):49~51.
    [109]左丹英,刘富,朱宝库,等.聚偏氟乙烯微孔膜一步法亲水化改性研究.膜科学与技术, 2006, 26(3):41~45.
    [110]陈剑,李继定,王鼎,等.低温等离子体接枝改性PVDF膜.膜科学与技术, 2007, 27(1):23~26.
    [111]周翀,王湛,张阳,等. PVDF/CA共混微滤膜的研制[J].膜科学与技术. 2007, 27(5):31~35.
    [112] L. Z. Song, Q. Y. Zheng, Y. N. Wang, et al. Preparation and characterization of the polyvinylidene fluoride-sulfonated polystyrene proton exchange. Membrane[J]. 2009. 25(4):155~158.
    [113] D. Y. Zuo, Y. Y. Xu, W.L. Xu. et al. The influence of PEG molecular weight on morphologies and properties of PVDF asymmetric membranes [J]. Chinese Journal of Polymer Science. 2008, 26(4):405~414.
    [114] D. J. Lin, C. L. Chang, C. K. Lee, et al. Preparation and characterization of microporous PVDF/PMMA composite membranes by phase inversion in water/DMSO solutions[J]. European Polymer Journal. 2006, 42(10) :2407~2418.
    [115] J. M. Lee, H. Jung, Y. Hwa.et al. Improvement of electrochemical behavior of Sn2Fe/C nanocomposite anode with Al_2O_3 addition for lithium-ion batteries. Journal of Power Sources. 2010, 195:5044~5048.
    [116] R. Baskaran, S. Selvasekarapandian, N. Kuwata, et al. ac impedance, DSC and FT-IR investigations on(x) PVAc-(1-x)PVdF blends with LiClO4[J]. Materials Chemistry & Physics. 2006, 98(1):55~61.
    [117] J. Yang, B. J. McCoy, G. A. Madras. distribution kinetics approach for crystallization of polymer blends[J]. J. Phys. Chem B. 2006, 110(31):15198~15204.
    [118]孙漓青,钱英,刘淑秀,等.聚偏氟乙烯/磺化聚砜共混相容性及超滤膜研究[J].膜科学与技术. 2001, 21(2):1~5.
    [119] Wu L, Sun J, Wang Q. Poly(vinylidene fluoride)/polyethersulfone blend membranes:Effects of solvent sort,polyethersulfone and polyvinylpyrrolidone concentration on their properties and morphology[J]. Journal of Membrane Science. 2006, 285(1-2):290~298.
    [120] Y. H. Zhao, Y. L. Qian, B. K. Zhu, et al. Modification of porous poly(vinylidene fluoride) membrane using amphiphilic polymers with different structures in phase inversion process[J]. Journal of Membrane Science. 2008, 310(1-2):567~576.
    [121] A. Bousquet, E. Ibarboure, C. Drummond, et al. Design ofStimuli-Responsive Surfaces Prepared by Surface Segregation of Polypeptide-b-polystyrene Diblock Copolymers. Macromolecules. 2008, 41(4):1053-1056.
    [122] A. P. Narrainen, L. R. Hutchings, A. Imtiyaz, et al. Multi-End-Functionalized Polymers: Additives to Modify Polymer Properties at Surfaces Interfaces. Macromolecules. 2007, 40(6):1969~1980.
    [123]方少明,王明花,张宏忠,等.两亲聚合物的合成及其在聚偏氟乙烯膜改性中的应用.膜科学与技术. 2007, 27(3):25~29.
    [124]周羽中,王湛,张阳,等. PVDF/CA共混微滤膜的研制.膜科学与技术. 2007, 27(5):31~35.
    [125]芦艳,于水利,孙先达,等.有机膜的无机改性及其性能研究.环境科学, 2007, 28(2):371-376.
    [126]王建宇.两亲性共聚物的分子设计、合成及其共混改性疏水聚合物多孔膜的研究.浙江大学.博士学位论文. 2008, 7.
    [127]朱利平.聚醚矾、聚醚矾酮多孔膜的结构可控制备及其表面改性.浙江大学博士学位论文. 2007. 3.
    [128] S. Kang, A. Asatekin, A. M. Mayes, Menachem Elimelech, Protein antifoulingmechanisms of PAN UF membranes incorporating PAN-g-PEO additive. Journal of Membrane Science. 2007, 296:42~50.
    [129]李香莉. PVDF/Al_2O_3杂化膜的制备及其性能研究.华南理工大学.博士学位论文. 2010, 4.
    [130] T. S. Srensen. Surface Chemistry and Electrochemistry of Membranes. New York: Dekker M. 1999:1~15.
    [131] Digital Instruments, Veeco Metrology Group. SPM Training Notebook (Version 3.0). US Veeco Metrology Group. 2000:8~11.
    [132] Z. Peng, L. X Kong, S. D. Li. Non-isothermal crystallisation kinetics of self-assembled polyvinylalcohol/silica nano-composite. Polymer 2005; 46:1949~1955.
    [133]朱永法.纳米材料的表征及测试技术.北京:化学工业出版社.2006:1~95.
    [134]许并社.纳米材料及应用技术.北京:化学工业出版社.2004:123~124.
    [135] C. Grittini, M. Malcomson, Q. Femando, et al. Rapid Dechlorination of Polychlorinated Biphenyls on the Surface of a Pd/Fe Bimetallic System. Environmental Science and Technology. 1995, 9(11):2898~2900.
    [136] G. N. Jovanovic, P. ?. Plazl, P. Sakrittichai, et al. Dechlorination of p-Chlorophenol in a Microreactor with Bimetallic Pd/Fe Catalyst. Industrial and Engineering Chemistry Research. 2005, 44:5099~5106.
    [137] T. L. Johnson, M. M. Scherer, P. G. Tratnyek. Kinetics of Halogenated Organic Compound Degradation by Iron Metal. Environmental Science and Technology. 1996, 30(8):2634~2640.
    [138] L. Zhang, W. A. Arnold, R. M. Hozalski. Kinetics of Haloacetic Acid Reactions with Fe(0). Environmental Science and Technology. 2004, 38(24):6881~6889.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700