碳氮比调节在对虾养殖中的作用及优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前随着我国对虾养殖产业现代化、工场化和集约化程度的发展,高密度的养殖模式使得养殖环境生态系统结构单一,抵抗能力薄弱,长期使用的药物也改变了对虾肠道菌群的正常组成,导致了肠道内微生态环境的失调,同时使药物在养殖生物体内形成残留。近年来应用范围越来越广泛的碳氮比调节(C/N)和有益菌添加等技术已在对虾养殖业中发挥着越来越重要的作用,不仅从根本上完善和优化了养殖微生态系统,改善了水质状况,还可以降低饵料成本,提高对虾养殖产量。但是C/N调节技术对养殖环境中特定细菌种群和浮游动物的影响还有待研究,同时有益菌添加技术也面临着有益菌不能长时间维持,很难形成优势菌种等诸多问题。因此本文主要针对以上问题设计了如下实验内容。
     本文主要研究了以下几个方面内容:1.C/N调节在凡纳滨对虾(Litopenaeus vannamei)养殖中的作用,具体包括对水质因子、对虾产量、浮游动物、异养细菌和氮循环菌的影响;2.对虾养殖环境中多种不同种类的细菌对环境C/N的响应,以及有益菌对有害菌的抑制作用,3.如何利用产纤维素酶细菌对植物纤维素的分解作用来优化C/N调节技术,降低技术成本。作者期望通过本实验将C/N调节与有益菌添加两种手段有效的结合在一起,通过向养殖水体中添加碳源来促进养殖环境中有益菌的生长,从而降低有毒无机氮化合物的水平,抑制有害细菌的繁殖,并可以形成大量生物絮团,为对虾的生长提供良好的环境。本实验的主要研究结果如下:
     1.碳源添加在对虾养殖中的作用
     本实验研究了在凡纳滨对虾零换水养殖系统中通过添加碳源对水质指标、对虾生长、浮游动物密度、环境C/N、水体和底质中的总菌和氮循环菌密度等的影响。将蔗糖作为碳源向养殖环境中进行添加,共分5个水平:理论碳源添加量((?)CH=0.465×feed×(42%/30%))的0%、25%、50%、75%和100%。我们的实验结果表明通过添加碳源,特别是75%和100%的理论碳源添加量可以在养殖后期有效的抑制氨氮(TAN)和亚硝氮(N02-N)在水体中的积累(P<0.05)。碳源添加对养殖水体中硝氮(N03-N)、叶绿素a、COD和BOD的浓度水平没有显著的影响。此外碳源添加可以明显提高水体中的C/N和总菌的密度水平(P<0.05),但对于底质中的C/N和总菌密度水平的影响不明显。我们还发现通过添加碳源可以明显影响水体和底质中氮循环菌(亚硝酸细菌、硝酸细菌和反硝化细菌)的密度。碳源添加还可以明显促进浮游动物的生长(P<0.05)。根据本次实验结果我们可以得出结论:75%的理论碳源添加量最适于对虾的生长,包括提高产量、成活率和降低饵料系数。因此,向凡纳滨对虾零换水养殖系统中添加碳源可以有效的改善水质,促进细菌和浮游动物生长,进而为对虾生长提供有利的条件。
     2.对虾养殖环境中细菌在C/N限制条件下的筛选和鉴定
     本实验从我国北部沿海地下水养殖环境,中部沿海和南部沿海的多种凡纳滨对虾养殖环境的水体和底质中富集分离出多种细菌,并利用化学方法进行了初步鉴定,共筛选出芽孢杆菌37株,乳酸菌42株,弧菌50株,亚硝酸细菌50株,硝酸细菌60株,反硝化细菌10株。我们进一步利用碳限制和氮限制两种环境进行细菌培养,筛选出对限定C/N条件响应较明显的菌株,并通过16S rDNA序列分析技术对其进行了分析和鉴定,最终共得到每种细菌各4株,鉴定芽孢杆菌、乳酸菌、弧菌、亚硝酸细菌、硝酸细菌和反硝化细菌分别属于芽孢杆菌属、肠球菌属、弧菌属、亚硝化单胞菌属、硝化杆菌属和交替假单胞菌属。本实验所筛选的多种菌株为下一步研究其对培养环境C/N的响应和今后进一步的工作奠定了基础。
     3.水体C/N对细菌生长及拮抗作用的影响
     本实验将从凡纳滨对虾养殖池塘中采集分离出的多株芽孢杆菌、乳酸菌、弧菌、亚硝酸细菌、硝酸细菌和反硝化细菌在不同水体C/N(2、5、10、15、20)的环境下进行培养,研究养殖环境营养水平下六种细菌的生长,以及芽孢杆菌、乳酸菌和弧菌的竞争水平及细菌菌体C/N的变化。研究发现,芽孢杆菌在水体C/N=15时生长水平最好(密度最高为6.7×107cells/ml),乳酸菌适宜在较高的水体C/N下生长(水体C/N=10、15、20;密度最高为2.6×107cells/ml),弧菌适宜在较低的水体C/N下生长(水体C/N=5、10;密度最高为5.1×107cells/ml),亚硝酸细菌和硝酸细菌对C/N的响应不明显,反硝化细菌在水体C/N=10的环境中生长较好(密度最高为2.6×107cells/ml).在芽孢杆菌与弧菌混合培养的实验中,当水体C/N=10、15与20时,培养24h时芽孢杆菌密度>2.5×107cells/ml,明显高于弧菌密度(P<0.05),且在培养基环境和模拟养殖环境中实验结果相似。在乳酸菌对弧菌的抑制实验中,当水体C/N=10与15时乳酸菌培养上清液对弧菌生长的抑制作用达到较高水平,抑菌圈直径分别为3.2与3.1cm,明显高于其它处理组(P<0.05)。芽孢杆菌、乳酸菌与弧菌的菌体C/N均与水体C/N的变化成正相关,最低分别为5.41、3.92与5.44;最高分别为7.27、5.07与15.35。以上结果表明,较高的水体C/N适合芽孢杆菌(水体C/N=15)和乳酸菌(水体C/N=10)的生长,较低的水体C/N适合弧菌(水体C/N=5或10)的生长,并且当水体C/N较高时芽孢杆菌和乳酸菌可以明显抑制弧菌的生长,并且在模拟养殖环境中芽孢杆菌对弧菌的抑制作用与培养基环境相似。因此向养殖水体中添加碳源,将水体的C/N提高至超过10的水平不仅可以促进芽孢杆菌、乳酸菌和反硝化细菌的快速生长,同时还可以起到有效抑制弧菌繁殖的作用。
     4.产纤维素酶细菌的筛选及其分解碳源能力的研究
     本实验从凡纳滨对虾的多种养殖环境(高密度高位池养殖池塘、添加甘蔗渣的高密度温棚养殖池塘、粗放式养殖池塘)、生态净水池以及排污池中富集分离出多株产纤维素酶细菌,并筛选出一株具有较全酶系和对纤维素具有较高分解能力的菌株GS-2。所筛选产纤维素酶细菌的刚果红染色透明圈直径及其与菌落直径的比值范围分别为12.3-41.7mm和2.8-15.6,FPA、CMCase和B-葡萄糖苷酶的酶活力范围分别为2.30-8.03、2.34-7.43和2.03-34.98U/ml;菌株GS-2的刚果红染色透明圈直径及其与菌落直径的比值分别为41.7mm和15.6,其FPA、CMCase和B-葡萄糖苷酶的酶活力分别为8.03,7.43和3.92U/ml,通过16S rDNA序列同源性比较确定其为短小芽孢杆菌(Bacillus pumilus)。菌株GS-2产酶最适的发酵液起始pH为8,最适温度为30℃,最适培养时间为30h,且适合在有氧条件下进行产酶代谢,在厌氧条件下产酶效率较低。菌株GS-2对微晶纤维素(Avicel)的分解效率最高,在培养基环境下可达到21.24%,其次为稻草和稻壳,同时该菌的分解Avicel的产物可以显著提高环境的溶解态碳含量和水体C/N(217.33mg/1;59.27),并且能够明显促进芽孢杆菌菌株Z5的生长。因此通过向养殖环境中投放产纤维素酶细菌与适合的天然纤维素底物,不仅可以实现其对底物的不断分解,为养殖环境提供碳源,提高水体C/N,还可以促进芽孢杆菌的生长,改善养殖微生态环境。
This experiment was conduct to study the issues as follows:1. The effect of adjusting C/N ratio on the culture of Litopenaeus vannamei, i.e. heterotrophic bacteria, nitrogen cycle bacteria, zooplankton, water quality and shrimp growth performance;2. The response of the bacterial growth to the C/N ratio and the inhibition of probiotic bacteria on the harmful bacteria.3. How to improve the technology of adjusting C/N ratio according to the cellulose decomposing of cellulose-degrading bacterium. The primary results were listed below.
     1. Effects of carbohydrate addition on shrimp culture system
     The present study investigated the effects of carbohydrate addition on the water quality, carbon/nitrogen ratios, densities of total bacteria, nitrogen cycle bacteria and zooplankton, and shrimp growth performance in a zero-water exchange system for Litopenaeus vannamei intensive culture. Sucrose was added as the carbohydrate into the water at five levels, i.e.,0,25%,50%,75%and100%of the theoretical adding quantity. Our results demonstrated that carbohydrate addition, especially75%and100%of the theoretical quantity significantly reduced the concentrations of total ammonia nitrogen and nitrite nitrogen during the late culture period in the water (P<0.05). Carbohydrate addition did not significantly affect the concentration of nitrate nitrogen, chlorophyll-a, COD and BOD. In addition, carbohydrate addition significantly increased carbon/nitrogen ratios and total bacterial densities of the water (P<0.05), whereas did not affect those of the sediment on the whole. We also found that the densities of nitrogen cycle bacteria (ammonia-oxidizing, nitrite-oxidizing and denitrifying bacteria) in both the water and the sediment of the carbohydrate-added treatments were obviously affected compared to those of the control treatments. Zooplankton densities in the water were determined to be significantly increased by carbohydrate addition (P<0.05). The parameters for shrimp growth performance including the yield, survival and feed conversion ratio demonstrated that75%of the theoretical quantity was more suitable for L. vannamei culture. Conclusively, carbohydrate addition into zero-water exchange systems for L. vannamei intensive culture can effectively improve the water quality, bacterial activities and zooplankton growth, consequently resulting in the better growth performance.
     2. Isolation and identification of several bacteria in the culture system of Litopenaeus vannamet
     In this study, we isolated several bacteria from different shrimp culture system, i.e. the north coast ground-water culture system, the mid coast seawater culture system and the south coast seawater culture system, respectively. We identified these bacteria using chemical method preliminarily, and further isolated the strain which has more significant response to the C/N ratio. Six types of bacteria were isolated, i.e. Bacillus, lactic acid bacteria, Vibrio, ammonia-oxidizing, nitrite-oxidizing and denitrifying bacteria, respectively. According to the16S rDNA sequence analysis, they were indentified as Bacillus sp., Enterococcus sp., Vibrio sp., Nitrosomonas sp., Nitrobacter sp. and Pseudoalteromonas sp., respectively. The bacteria isolated in this part were prepared for the study of the response of bacteria growth to the C/N ratio and the futher work.
     3. The effect of C:N ratio of the water on the growth and competition of bacteria
     From the Litopenaeus vannamei culture ponds, the12strains of Bacillus, lactic acid bacteria and Vibrio were isolated which performed better growth in the conditions of carbon-limited (C:N=2) or nitrogen-limited (C:N=20). The levels of C:N ratio of the water (C:NW=2,5,10,15,20) were set to determine its effects on the growth, competition and the cell C:N ratio of the bacteria. It was found that the appropriate C:NW for the growth of Bacillus, lactic acid bacteria, Vibrio and denitrifying bacteria were C:Nw=15, C:Nw=10, C:Nw=5or10and C:Nw=10, respectively; and the highest values were determined as6.7×107,2.6×107,5.1×107and2.6×107cells/ml, respectively. The C:NW did not significantly effect the growth of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria. After24h culturing of Bacillus and Vibrio together in the treatments with C:Nw=10,15and20, the densities of Bacillus reached2.5×10'cells/ml, significantly higher than those of Vibrio (<2.0×107cells/ml;<0.05), and the experiment under the imitated culture environment had the same result with the media environment. The inhibition of lactic acid bacteria extracellular products on the growth of Vibrio were significantly higher in the treatments with C:Nw=10and15than that in the other treatments (P<0.05). The C:N ratios of the body composition of Bacillus, lactic acid bacteria and Vibrio were increased with the C:NW, in range of5.41-7.27,3.92-5.07and5.44-15.35, respectively. Conclusively, adjusting the C:N ratio in the water above10with carbohydrate addition not only improved the growth of Bacillus and lactic acid bacteria, but also inhibited the Vibrio growth.
     4. Isolation and carbohydrate-hydrolyzing-capacity study of cellulose-degrading bacterium
     In this study, through isolation from the Litopenaeus vannamei culture environment and selective enrichment culture, a cellulose-degrading bacterium, strain GS-2was isolated. Clear zones which showed cellulose hydrolysis were41.7mm in diameter, and the ratio to bacteria growth diameter was15.6. The enzyme activity of exoglucanase, endoglucanase and B-Glucosidases were8.03,7.43and3.92U/ml, respectively. According to the16S rDNA sequence analysis, it was indentified as Bacillus pumilus. The optimum pH of the initial culture substrate for the enzyme production was8, an optimum temperature30℃and an optimum culture time30h. The decomposed efficiency of strain GS-2was highest with the substrate of Avicel, which was21.24%in the culture medium. Futhermore, the production of decomposing Avicel could significantly increase the dissolved carbon concentration and C/N ratio (217.33mg/1;59.27) of the environment, and improve the growth of Bacillus. Conclusively, adding the cellulose-degrading bacterium and nature cellulose into the culture system can keep the cellulose decomposing continuous, provide more carbon source and increase the C/N ratio, and improve the growth of Bacillus and the water quality.
引文
[1]艾红,黄巧珠,徐泽智,卢传曼,麦丽芳.我国对虾产品贸易结构与出口竞争力分析.广东农业科学,2008,11:127-131
    [2]程波.对虾封闭循环水养殖系统中Cu2+的生态效应:[博士学位论文].青岛:中国科学院海洋研究所,2010
    [3]FAO (Food and Agriculture Organization of the United Nations),2011. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
    [4]游奎.对虾工程化养殖系统重要元素及能量收支:[博士学位论文].青岛:中国科学院海洋研究所,2005
    [5]王清印,杨丛海.中国对虾健康养殖的发展现状及展望.中国水产,2005,1:21-24
    [6]Vanden, B.A.E, Stobberingh, E.E. Epidemiology of resistance to antibiotics:links between animals and humans. International journal of antimicrobial agents,2000,14:327-335
    [7]Witte, W. Selective pressure by antibiotic use in livestock. International journal of antimicrobial agents,2000,16:19-24
    [8]Hopkins, J.S., Villalon, J. Synopsis of industrial panel input on shrimp pond management, in: Wyban, J.A. (ed.), Proceedings of the special session on shrimp farming. May 22-25,1992. World Aquaculture Society, Batson Ridge, Louisiana, USA, pp.138-143
    [9]Boyd, C.E., Yoo, K.H. Hydrology and Water Supply for Pond Aquaculture. Chapman and Hall, New York,1994, pp.439-449
    [10]Samocha, T.M., Lawrence, A.L., Collins, C.A., Castille, F.L., Bray, W.A., Davies, C.J., Lee, P.G.,Wood, G.F. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J. Appl. Aquacult.,2004,15 (3/4),1-19
    [11]Horowitz, A., Horowitz, S. Disease control in shrimp aquaculture from a microbial ecology perspective. In:Browdy, C.L., Jory, D. (Eds.), Proceedings of the special session on sustainable shrimp farming May 22-25,2001. World Aquaculture Society, Batson Ridge, Louisiana, USA, pp.199-218
    [12]Esiobu, N., Arnenta, L., Ike, J. Antibiotic resistance in soil and water enviroments. Int J Environ Health Res,2002,12:133-144
    [13]Akinbowale, O. L., Peng, H., Barton, M.D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of applied microbiology,2006,100:1103-1113
    [14]Schwarz, S., Kehrenberg, C, Walsh, T.R. Use of antimicrobial agents in veterinary medicine and food animal production. International journal of antimicrobial agents,2001,17:431-437
    [15]Samocha, T.M., Lawrence, A.L., Collins, C.R., et al. Development of integrated, environmentally sound, inland shrimp production technologies for litopenaeus vannamei. New wave proceedings of the special session on sustainable shrimp farming,2001,3:64-75
    [16]Gatesoupe, F.J. The use of probiotics in aquaculture. Aquaculture,1999,180:147-165
    [17]Parker, R.B. Probiotics, the other half of the antibiotics story. Anim nutr health,1974,29:4-8
    [18]Fuller. R. Probiotic in man and animals. J Appl Bacteriol,1989,66:365-378
    [19]Tannock, G.W. Modification of the normal microbiota by diet, stress, antimicrobial agents, and probiotics. Gastrointestinal Microbiology, Vol.2, Gastrointestinal microbes and host interactions. New York:International Thomson publishing,1997:434-464
    [20]Kozasa, M. Toyocerin (Bacillus toyoi) as growth promoter for animal feeding. Microbiol aliment nutr,1986,4:121-135
    [21]Bomba, A., Nemcova, R., Mudrona, D., et al. The possibilities of potentiating the efficacy of probiotics. Trends in food science and technology,2002,13:121-126
    [22]Verschuere, L., Rombaut, G., Sorgeloos, P., et al. Probiotic bacteria as biological control agents in aquaculture. Microbiology and molecular biology review,2000,64:655-671
    [23]Bruhn, J.B., Nielsen, K.F., Hjelm, M., et al. Ecology, irrhibitory activity, and morphogenesis of a marine antagonistic bacterium belonging to the Roseobacter clade. Applied and Environmental Microbiology,2005,71:7263-7270
    [24]Moriarty, D.J.W. Control of luminous Vibrio species in penaeid aquaculture ponds. Aquaculture,1998,164:351-358
    [25]郭凯,赵文.微生态制剂在水产养殖上的应用现状及发展方向.中国水产,2008,1:72-74
    [26]Porubcan, R.S. Reduction in chemical oxygen demand and improvement in Penaeus mondon yield in ponds inoculated with aerobic Bacillus bacteria/World aquaculture society. Program and Abstracts of the 22nd annual conference and exposition, San Juan, Puerto Rico,1991
    [27]Ziaei-Nejad, S., Rezaei, M.H., Takami, G.A., et al. The effect of Bacillus spp. Bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture,2005,252:516-524
    [28]Wang, Y.B. Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture,2007,269:259-264
    [29]Wang, Y., He, Z. Effect of probiotics on alkaline phosphatase activity and nutrient level in sediment of shrimp, Penaeus vannamei, ponds. Aquaculture,2009,287:94-97
    [30]王怡平,赵乃刚.固定化光合细菌在中华绒螯蟹人工育苗中的应用.水产学报,1999,23(2):156-161
    [31]Shan, H., Obbard, J.P. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Appl Microbiol Biotechnol,2001,57:791-798
    [32]Castex, M., Chim, L., Pham, D., et al. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture,2008, 275:182-193
    [33]Kim, D.H., Austin, B. Innate immune responses in rainbow trout(Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & Shellfish immunology,2006,2 (1):513-524
    [34]Smith, V.J., Brown, J.H., Hauton, C. Immunostimulation Journal of fish diseases. Aquaculture, 2002,25:633-642
    [35]刘忠颖,刘洋,鲍相渤,苏浩,刘卫东.水产养殖有益菌的研究进展.水产科学,2010,29(8):500-504
    [36]程跃国.有益菌在水产养殖上的应用.水产养殖顾问,2010,10:191
    [37]梅志平,施正峰.池塘生态系基质C/N比对游离细菌群落生长和有机N矿化作用的影响.上海水产大学学报,1994,3(1-2),40-46
    [38]Avnimelech, Y. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture,1999,176:227-235
    [39]Ebeling, J.M., Timmons, M.B., Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture,2006,257:346-358
    [40]宋协法,马真,万荣.纳米生态基在凡纳滨对虾养殖中的应用研究.中国海洋大学学报,2010,40(10):24-28
    [41]蒋展鹏.环境工程学.北京:高等教育出版社,2001:128-170
    [42]Bratvold, D., Browdy, C.L. Effect of sand sediment and vertical surfaces (Aqua Mats) on production, water quality and microbial ecology in an intensive Litopenaeus vannamei culture system. Aquaculture,2000,195:81-94
    [43]Arndt, R.E., Rutledge, M.D., Wagner, E.J., et al. The use of Aquamats to enhance growth and improve fin condition among raceway cultured rainbow trout Oncorhynchus mykiss. Aquaculture Research,2002,33:359-367
    [44]丰民义,方涛,吴娟.不同载体的藻-菌生物膜应用于水体净化.水处理技术,2007,33(3):59-61
    [45]Burford, M.A., William, K.C. The fate of nitrogenous waste from shrimp feeding. Aquaculture,2001,198(1-2):79-83
    [46]Nathan, T.S., Gregory, D.B., Louis, A.H. Treatment of rainbow trout(Oncorhynchus mykiss) racewqy effluent using baffled sedimentation and artificial substrates. Aquaculture Engineering,2006,35:166-178
    [47]林乐峰,冉炜,冯宪章.养殖水体增氧机理与微孔管器水下曝气增氧技术.渔业致富指南,2008,18:29-31
    [48]Briggs, M.R.P., Funge-Smith, S.J. A nutrient budget of some intensive marine ponds in Thailand. Aquacult. Fish. Manage.,1994,24:789-811
    [49]Jackson, C., Peterson, N., Thompson, P.J., Burford, M. Nitrogen budget and effluent nitrogen components at an intensive shrimp farm. Aquaculture,2003,218:397-411
    [50]Thakur, D.P., Lin, C.K. Water quality and nutrient budget in closed shrimp (Penaeus monodon) culture systems. Aquacult. Eng.,2003,27:159-176
    [51]Fast, A.W., Boyd, C.E. Water circulation, aeration and other management practices. In:Fast, A.W., Lester, L.J. (Eds.), Marine Shrimp Culture:Principles and Practices. Elsevier Sciences Publishers, The Hague, Netherlands,1992, pp.457-495
    [52]Hopkins, J.S., Sandifer, P.A., Browdy, C.L. Sludge management in intensive pond culture of shrimp:effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquacult. Eng.,1994,13:11-30.
    [53]Naylor, R.L., Goldburg, R.J., Mooney, H., Beveridge, M., Clay, L., Folke, C., Kautsky, N., Lubchenco, J., Primavera, J., Williams, M. Nature's subsidies to shrimp and salmon farming. Science,1998,282:883-884
    [54]Avnimelech, Y., Ritvo, G. Shrimp and fishpond soils:processes and management. Aquaculture,2003,220:549-567
    [55]Folke, C., Kautsky, N. Aquaculture with its environment:prospects for sustainability. Ocean Coast. Manag.,1992,17:5-24
    [56]Shang, Y.C., Leung, P., Ling, B.H. Comparative economics of shrimp farming in Asia. Aquaculture,1998,164:183-200
    [57]Hargreaves, J.A. Photosynthetic suspended-growth system in aquaculture. Aquac. Eng.,2006, 34:344-363
    [58]Van Dam, A.A., Beveridge, M.C.M., Azim, M.E., Verdegem, M.C.J. The potential of fish production based on periphyton. Rev. Fish Biol. Fish.,2002,12:1-31
    [59]Alexander, M. Introduction to Soil Microbiology. John Wiley and Sons, New York,1961, pp: 472
    [60]Azim, M.E., Little, D.C. Intensifying aquaculture production through new approaches to manipulating natural food. CAB reviews. Agriculture, Veterinary Science, Nutrition and Natural Resources,2006,62:23
    [61]Salman, F.M., El-Kadi, R.I., Abdel-Rahman, H., Ahmed, S.M., Mohamed, M.I., Shoukry, M.M. Biologically treated sugar beet pulp as a supplement in goat rations. Int. J. Agric. Biol., 2008,10:412-416
    [62]Boyd, C.E. Water quality in ponds for aquaculture. Shrimp Mart (Thai), Songkhla, Thailand, 1996,pp:482
    [63]Avnimelech, Y., Mokady, S., Schoroder, G.L. Circulated ponds as efficient bioreactors for single cell protein production. Isr. J. Aquac.-Bamidgeh,1989,41:58-66
    [64]Browdy, C.L., Bratvold, D., Stockes, A.D., Mcintosh, R.P. Perspectives on the application of closed shrimp culture systems. In:Browdy, C.L., Jory, D.E. (Eds.), The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. The World Aquaculture Society, Baton Rouge, USA,2001, pp:20-34
    [65]Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture,2007,264:140-147
    [66]Lancelot, C., Billen, G. Carbon-nitrogen relationships in nutrient metabolism of costal marine ecosystems. In:Jannasch, H.W., Williams, J.J.L. (eds.), Advances in Aquatic Microbiology, vol.3. Academic Press, New York, USA,1985, pp:263-321
    [67]Rahmatullah, S.M., Beveridge, M.C.M. Ingestion of bacteria in suspension by Indian major carps (Catla catla, Labeo rohita) and Chinese carps (Hypophthalmichthys molotrix, Aristichthys nobilis). Hydrobiologia,1993,264:79-84
    [68]Schroeder, G.L. Carbon and Nitrogen budget in manured fishponds on Israel's coastal plain. Aquaculture,1987,62:259-279
    [69]Beveridge, M.C.M., Begum, M., Frerichs, G.N., Millar, S. The ingestion of bacteria in suspension by the tilapia Oreochromis niloticus. Aquaculture,1989,81:373-378
    [70]Burford, M.A., Thompson, P.J., McIntosh, Bauman, R.H., Pearson, D.C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture,2004,232:525-537
    [71]Crab, R., Avnimelech, Y., Defoirdl, T., Bossier, P., Verstraete, W. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture,2007,270:1-14
    [72]McIntosh, P.R. Changing paradigms in shrimp farming:Ⅳ. Low protein feeds and feeding strategies. Global Aquaculture Advocate,2000,3:44-50
    [73]Boyd, C.E., Clay, J.W. Evaluation of Belize Aquaculture, Ltd:A Super-intensive Shrimp Aquaculture System. In Review report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment,2002, pp:1-17
    [74]Moss, S.A., Pruder, G.D., Samocha, T.M. Environmental management and control:controlled ecosystem and biosecure shrimp grow-out systems. In:Bullis, R.A., Pruder, G.D. (Eds.), Controlled and Biosecure Production Systems, Preliminary Proceedings of a Special Integration of Shrimp and Chicken Models. World Aquaculture Society, April 27-30, Sydney, Australia,1999, pp:87-91
    [75]Avnimelech, Y., Troeger, W.W., Reed, L.W. Mutual flocculation of algae and clay:evidence and implications. Science,1982,216:63-65
    [76]Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Ayub, Z., Harisanto, M., Horowitz, A., Brock, D.L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacult. Eng.,2007,36: 184-191
    [77]Cam, D., Rollet, P.E., Mariotti, A., Guillaume, J. The relative contribution of natural productivity and formulated food in the nutrition of Penaeus japonicus reared in semi-intensive conditions. Aquat. Living Resour.,1991,4:175-180
    [78]Parker, P.L., Anderson, R.K., Lawrence, A.L. Stable isotope methodology for evaluation of nutritional requirements of shrimp. In:De Loach, P.F., Dougherty, W.J., Davidson, M.A. (Eds.), Frontiers of Shrimp Research. Elsevier, Amsterdam,1991, pp:157-171
    [79]Burford, M.A., Preston, N.P., Glibert, P.M., Dennison, W.C. Tracing the fate of 15N-enriched feed in an intensive shrimp system. Aquaculture,2002,206:199-216
    [80]Teichert-Coddington, D.R., Rodriguez, R. Semi-intensive commercial grow-out of Penaeus vannamei fed diets containing differing levels of crude protein during wet and dry seasons in Honduras. J. World Aquacult. Soc.,1995,26 (1):72-79
    [81]Hopkins, J.S., Sandifer, P.A., Browdy, C. L. A review of water management regimes which abate the environmental impact of shrimp farming. In:C.L., Browdy, J.S., Hopkins (Eds.), Swimming through troubled water. World Aquaculture Society, Baton Rouge, Louisiana, USA,1995, pp:13-22
    [82]Horowitz, S., Horowitz, A. Microbial intervention in aquaculture. In:Lee, C.-S., O'Bryen, P. (Eds.), Proceedings of Microbial Approaches to Aquatic Nutrition within Environmentally Sound Aquaculture Production Systems. The World Aquaculture Society, Baton Rouge, Louisiana, USA,2002, pp:119-131
    [83]Horowitz, A., Horowitz, S. Biosecurity, biofiltration and microbiological community role in sustainable shrimp farming, in:Jory, D.E. (ed.), Proceedings of a Special Session on Shrimp Farming. Responsible Aquaculture for a Secure Future. The World Aquaculture Society, Baton Rouge, Louisiana, USA,2003, pp:157-165
    [84]Cowey, C.B., Cho, C.Y. Nutritional strategies and aquaculture waste. In:Cho, C.Y., Cowey, C.B. (Eds.), Proceedings of the 1st International Symposium on Nutritional Strategies in Management of Aquaculture Wastes using biological approaches. University of Guelph, Guelph, Ontario, Canada,1991, pp:275-276
    [85]Burford, M.A., Lorenzen, K. Modeling nitrogen dynamics in intensive shrimp ponds:the role of sediments remineralization. Aquaculture,2004,229 (1-4):129-145
    [86]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture,2004, 241:179-194
    [87]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture,2006,252:248-263
    [88]Aquacop. A new approach in intensive nursery rearing of penaeids. In:Taki, Y., Primavera, J.H., Llobrera, J.A. (Eds.), Proceedings of the First International Conference on the Culture of Penaeid Prawns/Shrimp, Iloilo City, Philippines,4-7 December 1984. SEAFDEC, Iloilo, Philippines,1985, pp:169
    [89]Wyban, J.A., Sweeney, J.N. A systems approach to developing intensive shrimp growout technology. In:Hirano, R., Hanyu, I. (Eds.), Proceedings of the Second Asian Fisheries Forum, Tokyo, Japan,17-22 April 1989. Asian Fisheries Society, Manila, Philippines,1990, pp:91-94
    [90]Hopkins, J.S., Hamilton, R.D., Sandifer, P.A., Browdy, C.L., Stokes, A.D. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J. World Aquac. Soc.,1993,24:304-320
    [91]Sandifer, P.A., Hopkins, J.S. Conceptual design of a sustainable pond-based shrimp culture system. Aquac. Eng.,1996,15:41-52
    [92]Browdy, C.L., Bratvold, D., Stokes, A.D., McIntosh, R.P. Perspectives on the application of closed shrimp culture systems. In:Browdy, C.L., Jory, D.E. (Eds.), The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. The World Aquaculture Society, Baton Rouge, USA,2001, pp:20-34
    [93]Parker, P.L., Anderson, R.K. A δ13C and δ15N tracer study of nutrition in aquaculture: Penaeus vannamei in a pond growout system. In:Rundel, P.W., Ehleringer, J.R., Nagy, K.A. (Eds.), Stable Isotopes in Ecological Research. Springer, New York,1989, pp:288-303
    [94]Panjaitan, P. Field and laboratory study of Penaeus monodon culture with zero water exchange and limited water exchange model using molasses as a carbon source. Ph.D. Thesis, Charles Darwin Univ., Darwin, NT, Australia,2004
    [95]Avnimelech, Y., Kochva, M., Diab, S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted carbon to nitrogen ratio. Israeli Journal of Aquaculture-Bamidgeh,1994,46 (3):119-131
    [96]Velasco, M., Lawrence, A.L., Neill, W.H. Development of a static-water ecoassay with microcosm tanks for postlarval Penaeus vannamei. Aquaculture,1998,161:79-87
    [97]Parker, P.L., Anderson, R.K., Lawrence, A.L. Stable isotope methodology for evaluation of nutritional requirements of shrimp. In:De Loach, P.F., Dougherty, W.J., Davidson, M.A. (Eds.), Frontiers of Shrimp Research. Elsevier, Amsterdam,1991, pp:157-171
    [98]Cam, D., Rollet, P.-E., Mariotti, A., Guillaume, J. The relative contribution of natural productivity and formulated food in the nutrition of Penaeus japonicus reared in semi-intensive conditions. Aquat. Living Resour.,1991,4:175-180
    [99]Taw, N. Shrimp farming in Indonesia. Evolving industry responds to varied issues. GAA Advocate,2005,8:65-67
    [100]Crab, R., Kochva, M., Verstraete, W., Avnimelech, Y. Bio-flocs technology application in over-wintering of tilapia. Aquacult. Eng.,2009,40:105-112
    [101]Dube, M.A., Tremblay, A.Y., Liu, J. Biodiesel production using a membrane reactor. Bioresource Technology,2007,98:639-647
    [102]De Schryver, P., Crab, R., Defoirdt, T., Boon, N., Verstraete, W. The basics of bioflocs technology:the added value for aquaculture. Aquaculture,2008,277:125-137
    [103]Siddiqui, A.Q., Al-Harbi, A.H. Evaluation of three species of tilapia, red tilapia and a hybrid tilapia as culture species in Saudi Arabia. Aquaculture,1995,138:145-157
    [104]Fish, B.A. Technical Handbook 2003, Fish Breeding Association, Israel,2003, pp:106
    [105]Burford, M.A., Thompson, P.J., Mcintosh, R.P., Bauman, R.H., Pearson, D.C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture,2004,232:525-537
    [106]Burford, M.A. Fate and transformation of dietary N in penaeid prawn aquaculture ponds. PhD Thesis. The University of Queensland, Brisbane, Australia,2000.
    [107]Epp, M.A., Ziemann, D.A., Schell, D.M. Carbon and nitrogen dynamics in zero-water exchange shrimp culture as indicated by stable isotope tracers. Aquac. Res.,2002,33: 839-846
    [108]Cam, D., Rollet, P.E., Mariotti, A., Guillaume, J. The relative contribution of natural productivity and formulated food in the nutrition of Penaeus japonicus reared in semi-intensive conditions. Aquat. Living Resour.,1991,4:175-180
    [109]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008,280: 117-123
    [110]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Benerjee, S., Akter, T., Hasan, M.M., Azim. M.E. Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/N-controlled freshwater prawn Macrobrachium rosenbergii farming systems. Aquaculture,2009,287:371-380
    [111]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Mondal, M.N., Azim, M.E. Effects of stocking density of freshwater prawn Macrobrachium rosenbergii and addition of different levels of tilapia Oreochromis niloticus on production in C/N. Aquaculture,2009,286:12-19
    [112]Wahab, M.A., Kunda, M., Azim, M.E., Dewan, S., Thilsted, S.H. Evaluation of freshwater prawn-small fish culture concurrently with rice in Bangladesh. Aquac. Res.,2008,1-9
    [113]Kunda, M., Azim, M.E.,Wahab, M.A., Dewan, S., Roos, N., Thilsted, S.H. Potential of mixed culture of freshwater prawn(Macrobrachium rosenbergii) and self-recruiting small species mola (Amblypharyngodon mold) in rotational rice-fish/prawn culture systems in Bangladesh. Aquac. Res.,2008,39:506-517
    [114]Uddin, M.S., Azim, M.E., Wahab, M.A., Verdegem, M.C.J. The potential of mixed culture of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton-based systems. Aquac. Res.,2006,37:241-247
    [115]Olvera-Olvera, C.A., Olvera-Gonzalez, J.E., Mendoza-Jasso, J., Peniche, V.R., Castaneda-Miranda, R., Herrera-Ruiz, G. Feed dosage and ammonium control device based on C/N ratio for a zero discharge system. Int. J. Agric. Biol.,2009,11:173-177
    [116]Grommen, R., Hauteghem, I.V., Wambeke, M.V., Verstraete, W. An improved nitrifying enrichment to remove ammonium and nitrite from freshwater aquaria systems. Aquaculture, 2002,211:115-124
    [117]Dugdale, R.C., Goering, J.J. Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr,1967,12:196-206
    [118]Pomeroy, L.R. The ocean's food web, a changing paradigm. Bio Science,1974,24: 499-504
    [119]Kirchman, D.L., Richard, G.K. Carbon limitation of ammonium uptake by heterotrophic bacteria in the subarctic Pacific. Limnol Oceanogr,1990,35 (6):1258-1266
    [120]Luis, T., Isao, K. Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater. Limnol Oceanogr,1990,35 (5):1145-1155
    [121]王秋璐,周燕遐,王江涛,袁泽轶.海洋异养细菌对无机氮吸收的研究.海洋通报,2010,29(2):231-240
    [122]Eppley, R.W., Sharp, J.H., Renger, E.H., et al. Nitrogen assimilation by phytoplankton and other microorganisms in the surface waters of the central North Pacific ocean. Mar. Biol, 1977,39:111-120
    [123]Jorgensen, N.O.G., Kroer, N., Coffin, R.B., Hoch, M.P. Relations between bacterial nitrogen metabolism and growth efficiency in an estuarine and an open-water ecosystem. Aquatic microbial ecology,1999,18:247-261
    [124]Allen, A.E., Howard-Jones, M.H., Booth, M.G., et al. Importance of heterotrophic bacterial assimilation of ammonium and nitrate in the Barents Sea during summer. Journal of Marine Systems,2002,38:93-108
    [125]Wheeler, P.A., Kirchman, D.L., Landry, M.R., et al. Diel periodicity in ammonium uptake and regeneration in the oceanic subarctic Pacific:Implications for interactions in microbial food webs. Limnol Oceanogr,1989,34 (6):1025-1033
    [126]Jorgensen, N.O.G., Kroer, N., Coffin, R.B. Utilization of dissolved nitrogen by heterotrophic bacterioplankton:effect of substrate C/N ratio. Applied and Environmental Microbiology, 1994,60 (11):4124-4133
    [127]Kroer, N., Jorgensen, N.O.G., Coffin, R.B. Utilization of dissolved nitrogen by heterotrophic bacterioplankton:a comparison of three ecosystems. Applied and Environmental Microbiology,1994,60 (11):4116-4123
    [128]Kirchman, D.L., Keil, R.G.Carbon limitation of ammonium uptake by heterotrophic bacteria in subarctic Pacific. Limnol. Oceanogr.,1990,36 (6):1258-1266
    [129]Tupas, L., Koike, I. Amino acid and ammonium utilization by heterotrophic marine bacteria grown in enriched seawater. Limnol. Oceanogr.,1990,35 (5):1145-1155
    [130]Kirchman, D.L., Ducklow, H.W., MacCathy, J.J., et al. Biomass and nitrogen uptake by heterotrophic bacteria during the spring phytoplankton bloom in the North Atlantic Ocean. Deep-Sea Res.-Part Ⅰ,1994,41 (5/6):879-895
    [131]Tezuka, Y. Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen:phosphorus ratio of organic substrates. Microb Ecol,1990,19:227-238
    [132]Fukuda, R., Ogawa, H., Nagata, T., Koike, I. Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Applied and Environmental Microbiology,1998,64 (9):3352-3358
    [133]Goldman, J.C., Caron, D.A., Dennett, M.R. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limmol. Oceanogr.,1987,32 (6): 1239-1252
    [134]Goldman, J.C., Dennett, M.R. Ammonium regeneration and carbon utilization by marine grown on mixed substrates. Marine Biology,1991,109:369-378
    [135]Goldman, J.C. Growth of marine bacteria in batch and continuous culture under carbon and nitrogen limitation. Limmol. Oceanogr.,2000,45 (4):789-800
    [136]Wang, J.T., Yin, X.N. Growth of marine bacteria and ammonium regeneration from substrates in different C:N ratios. Acta Oceanologica Sinica.,2009,28 (3):12-19
    [137]Wawrik, B., Kerkhof, L., Kukor, J., Zylstra, G. Effect of different carbon sources on community composition of bacterial enrichments from soil. Applied and Environmental Microbiology,2005,71 (11):6776-6783
    [138]Eiler, A., Langenheder, S., Bertilsson, S., Tranvik, L.J. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Applied and Environmental Microbiology,2003,69 (7):3701-3709
    [139]Touratier, F., Legendre, L., Vezina, A. Model of bacterial growth influenced by substrate C:N ratio and concentration. Aquatic microbial ecology,1999,19:105-118
    [140]Cooney, M.J., Marison, I.W., Gulik, W.M., Stockar, U. Calorimetric and stoichiometric analysis of growth of Kluyveromices fragilis in continuous culture:nitrogen limitation imposed upon carbon-limited growth. Appl Microbiol Biotechnol,1996,44:643-653
    [141]Larsson, C., Stockar, U., Marison, I., Gustafsson, L. Growth and metabolism of Saccharomyces cerevisiae in chemostat cultures under carbon-, nitrogen-, or carbon-and nitrogen-limiting conditions. Journal of bacteriology,1993,175 (15):4809-4816
    [142]Lendenmann, U., Egli, T. Kinetic models for the growth of Escherichia coli with mixtures of sugars under carbon-limited conditions. Biotechnology and bioengineering,1998,59 (1): 99-107
    [143]Chen, G., Strevett, K.A. Impact of carbon and nitrogen conditions on E. coli surface thermodynamics. Colloids and surfaces B:Biointerfaces,2003,28:135-146
    [144]Egli, T., Quayle, J.R. Influence of the carbon:nitrogen ratio of the growth medium on the cellular composition and the ability of the methylotrophic yeast hansenula polymorpha to utilize mixed carbon sources. Journal of general microbiology,1986,132:1779-1788
    [145]Letisse, F., Chevallereau, P., Simon, J.L. Kinetic analysis of growth and xanthan gum production with Xanthomonas campestris on sucrose, using sequentially consumed nitrogen sources. Appl Microbiol Biotechnol,2001,55:417-422
    [146]Mills, J., Greenwood, J.A., Jones, C.W. The effect of growth in continuous culture at various input C:N ratios on the expression of proteins involved in the transport and metabolism of methanol and short-chain amides by Methylophilus methylotrophus. FEMS Microbiology Letters,1998,161:173-178
    [147]Duchars, M.G., Attwood, M.M. The influence of C:N ratio in the growth medium on the cellular composition and regulation of enzyme activity in hyphomicrobium X. Journal of general microbiology,1989,135:787-793
    [148]Zhu, S.M., Chen, S.L. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacultural Engineering,2001,25:1-11
    [149]Satoh, H., Okabe, S., Norimatsu, N., Watanabe, Y. Significance of substrate C:N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water science and technology,2000,41:317-321
    [150]Pinar, G., Kovarova, K., Egli, T., Ramos, J. Influence of carbon source on nitrate removal by nitrate-tolerant Klebsiella oxytoca CECT 4460 in batch and chemostat cultures. Applied and environmental microbiology,1998,64 (8):2970-2976
    [151]徐雅飞.利用甘蔗渣、甘蔗糖蜜生产发酵饵料的研究:[硕士学位论文].广西:广西大学,2007
    [152]Ramesh, M.R., Shankar, K.M., Mohan, C.V., Varghese, T.J. Comparison of three plant substrates for enhancing carp growth through bacterial biofilm. Aquacultural Engineering, 1999,19:119-131
    [153]Ng, C., Losso, J.N., Marshall, W.E., Rao, R.M. Physical and chemical properties of selected agricultural byproduct-based activated carbons and their ability to adsorb geosmin. Bioresource Technology,2002,84:177-185
    [154]李瑞波.甘蔗渣配制水产水质改良剂.技术与市场,2005,6:17
    [155]熊佰炼.甘蔗渣吸附废水中Cd2+和Cr3+的研究:[硕士学位论文].重庆:西南大学,2009
    [156]张洋,肖克宇.微生物处理秸杆在水产饵料中的应用前景.内陆水产,2008,3:40--42
    [157]张平远.用甘蔗渣配制低成本虾饵料.农业科技通讯,2003,7:45
    [158]孙永泰.秸杆肥水养鲶新技术.渔业致富指南,2006,20:31-32
    [159]杨家晃,秦黎梅.处理方法对甘蔗渣干物质和粗纤维消化率的影响.广西农业科学,1998,3:144-147
    [160]Frantisek, Z., Anil, K.P. Studies on the particle size on solid-state fermentation of sugarcane bagasse into animal feed using White-rot Fjngi. Bioresource Technology,1995,54:85-87
    [161]严明奕,莫炳荣.甘蔗渣的综合利用-赴巴西考察报告.广西轻工业,2001,1:4-9
    [162]毛华明,邓卫东,冯仰廉.化学处理提高甘蔗渣营养价值的研究.动物营养学报,2000,12(2):62-64
    [163]减金灿,攀国燕.作物秸秆物理,化学和生物处理方法研究进展.郑州牧业高等专科学校学报,2003,23(2):92-93
    [164]Iritani, S.S., Mitsuhashi, M., Chaen, H., et al. Alkali-treated bagasses, and its preparation and uses. US:5545418,1996-08-13
    [165]吴星,杨树林,陆晓.不同预处理及发酵方式对提高蔗渣发酵产物蛋白含量的研究.工业微生物,2003,33(4):5-8
    [166]陈庆森,刘剑虹,蔡红远.多菌种共发酵生物转化天然纤维素材料的研究.天津商学院学报,2000,20(3):1-6
    [167]Marcel, G.C., Leticia, P., Patricia, M., et al. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugarcane bagasse. Bioresource Technology, 1999,68:173-178
    [168]王成华,丁云桥,肖朝峰.利用纤维质原料生产高酶活单细胞蛋白.工业微生物,2001,31(1):30-33
    [169]魏桃员,张素琴,邵林广,游映玖.一株纤维素降解细菌的分享及特性研究.环境科学与技术,2004,27(5):1-3
    [170]王淑军,扬从发,陈静.用于降解秸杆的纤维素酶产生菌的筛选研究.粮食与饵料工业,2001,12:21-23
    [171]刘占英,侯先志,刘玉承,杨帆,刘小刚,赵子夫.高效厌氧纤维素降解细菌的分离 及酶特性研究.工业微生物,2008,38(6):1-6
    [172]马中良,李莉,张阳奕,宋任涛,许政.含纤维素酶细菌的筛选及其纤维素酶生物学性质的研究.药物生物技术,2009,16(1):43-45
    [173]Dogaris, I. Hydrothermal processing and enzymatic hydrolysis of bagasse for ferm-entable carbohydrates production. Bioresource technology,2009,100 (24):6543-6549
    [1]FAO (Food and Agriculture Organization of the United Nations),2011. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
    [2]Cowey, C.B., Cho, C.Y. Nutritional strategies and aquaculture waste. Proceedings of the 1st international symposium on nutritional strategies in management of aquaculture wastes. University of Guelph, Guelph Ontario, Canada,1991, pp:275-276
    [3]Hopkins, J.S., Villalon, J. Synopsis of industrial panel input on shrimp pond management, in: Wyban, J.A. (ed.), Proceedings of the special session on shrimp farming. World Aquaculture Society, Batson Ridge, Louisiana, USA,1992, pp:138-143
    [4]Beveridge, M.C.M., Phillips, M.J., Macintosh, D.J. Aquaculture and the environment:the supply of and demand for environmental goods and services by Asian aquaculture and the implications for sustainability. Aquacult. Res.,1997,28:797-807
    [5]Boyd, C.E., Yoo, K.H. Hydrology and Water Supply for Pond Aquaculture. Chapman and Hall, New York,1994, pp:439-449
    [6]Avnimelech, Y, Kochva, M., Diab, S. Development of controlled intensive aquaculture systems with a limited water exchange and adjusted C to N ratio. Isr. J. Aquacult.,1994,46: 119-131
    [7]Samocha, T.M., Lawrence, A.L., Collins, C.R., et al. Development of integrated, environmentally sound, inland shrimp production technologies for litopenaeus vannamei. New wave proceedings of the special session on sustainable shrimp farming,2001,3:64-75
    [8]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture,2004, 241:179-194
    [9]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture,2006,252:248-263
    [10]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008,280: 117-123
    [11]Burford, M.A., Thompson, P.J., Mcintosh, R.P., Bauman, R.H., Pearson, D.C. The contribution of flocculated material to shrimp (Litopenaeus vannamei) nutrition in a high-intensity, zero-exchange system. Aquaculture,2004,232:525-537
    [12]Goldman, J.C., Caron, D.A., Dennett, M.R. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limmol. Oceanogr.,1987,32 (6): 1239-1252
    [13]Avnimelech, Y. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture,1999,176:227-235
    [14]Naylor, R.L., Goldburg, R.J., Mooney, H., Beveridge, M., Clay, L., Folke, C., Kautsky, N., Lubchenco, J., Primavera, J., Williams, M. Nature's subsidies to shrimp and salmon farming. Science,1998,282:883-884
    [15]Hopkins, J.S., Sandifer, P.A., Browdy, C.L. Sludge management in intensive pond culture of shrimp:effect of management regime on water quality, sludge characteristics, nitrogen extinction, and shrimp production. Aquacult. Eng.,1994,13:11-30
    [16]Samocha, T.M., Patnaik, S., Speed, M., Ali, A.M., Burger, J.M., Almeida, R.V., Ayub, Z., Harisanto, M., Horowitz, A., Brock, D.L. Use of molasses as carbon source in limited discharge nursery and grow-out systems for Litopenaeus vannamei. Aquacult. Eng.,2007,36: 184-191
    [17]SOA of China. Specification for Marine Monitoring. GB 17378.4-2007,2007
    [18]SOA of China. Specification for Oceanographic Survey. GB 12763.6-2007,2007
    [19]Ross, R.M., Quetin, L.B., Martinson, D.G., Iannuzzi, R.A., Stammerjohn, S.E., Smith, R.C. Palmer LTER:Patterns of distribution of five dominant zooplankton species in the epipelagic zone west of the Antarctic Peninsula,1993-2004. Deep-Sea Res. II,2008,55:2086-2105
    [20]刘兴旺,程成荣.南美白对虾高位池养殖技术.水产科技,2010,4:27-28
    [21]Zhang, C.X., Li, Y.J. A new method of ecological culture for shrimp Litopenaeus vannamei. Marine Sciences (In Chinese, abstract in English),2005,29 (9):5-8
    [22]Horowitz, A., Horowitz, S. Disease control in shrimp aquaculture from a microbial ecology perspective. In:Browdy, C.L., Jory, D. (Eds.), Proceedings of the special session on sustainable shrimp farming May 22-25,2001. World Aquaculture Society, Batson Ridge, Louisiana, USA, pp.199-218
    [23]Samocha, T.M., Lawrence, A.L., Collins, C.A., Castille, F.L., Bray, W.A., Davies, C.J., Lee, P.G.,Wood, G.F. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J. Appl. Aquacult.,2004,15 (3/4),1-19
    [24]Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture,2007,264:140-147
    [25]Emerenciano, M., Ballester, E.L.C., Cavalli, R.O., Wasielesky, W. Biofloc technology application as a food source in a limited water exchange nursery system for pink shrimp Farfantepenaeus brasiliensis (Latreille,1817). Aquac. Res.,2011,1-11
    [26]Anderson, R.K., Parker, P.L., Lawrence, A. A 13C/12C tracer study of the utilization of presented feed by a commercially important shrimp Penaeus vannamei in a pond grow-out system. J. World Aquacult. Soc.,1987,18 (3):148-155
    [27]Chen, Y.L., Chen, H. Juvenile Penaeus monodon as effective zooplankton predators. Aquaculture,1992,103:35-44
    [28]Tacon, A.G.J., Cody, J., Conquest, L., Divakaran, S., Forster, I.P., Decamp,O. Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannami (Boone) fed different diets. Aquacult. Nutr.,2002,8:121-137
    [29]Burford, M.A., Lorenzen, K. Modeling nitrogen dynamics in intensive shrimp ponds:the role of sediments remineralization. Aquaculture,2004,229 (1-4):129-145
    [30]Avnimelech, Y., Verdegem, M.C.J., Kurup, M., Keshavanath, P. Sustainable land-based aquaculture:rational utilization of water, land and feed resources. Mediterranean Aquaculture Journal,2008,1(1):45-55
    [1]Samocha, T.M., Lawrence, A.L., Collins, C.A., Castille, F.L., Bray, W.A., Davies, C.J., Lee, P.G.,Wood, G.F. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J. Appl. Aquacult.,2004,15 (3/4), 1-19
    [2]Horowitz, A., Horowitz, S. Disease control in shrimp aquaculture from a microbial ecology perspective. In:Browdy, C.L., Jory, D. (Eds.), Proceedings of the special session on sustainable shrimp farming May 22-25,2001. World Aquaculture Society, Batson Ridge, Louisiana, USA, pp. 199-218
    [3]Hopkins, J.S., Villalon, J. Synopsis of industrial panel input on shrimp pond management, in:Wyban, J.A. (ed.), Proceedings of the special session on shrimp farming. May 22-25,1992. World Aquaculture Society, Batson Ridge, Louisiana, USA, pp.138-143
    [4]Goldman, J.C., Caron, D.A., Dennett, M.R. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limmol. Oceanogr.,1987,32 (6):1239-1252
    [5]Goldman, J.C., Dennett, M.R. Ammonium regeneration and carbon utilization by marine grown on mixed substrates. Marine Biology,1991,109:369-378
    [6]Goldman, J.C. Growth of marine bacteria in batch and continuous culture under carbon and nitrogen limitation. Limmol. Oceanogr.,2000,45 (4):789-800
    [7]Avnimelech, Y. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture,1999, 176:227-235
    [8]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008,280:117-123
    [9]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Benerjee, S., Akter, T., Hasan, M.M., Azim. M.E. Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/N-controlled freshwater prawn Macrobrachium rosenbergii fanning systems. Aquaculture,2009,287:371-380
    [10]Asaduzzaman. M., Wahab, M.A., Verdegem, M.C.J., Mondal, M.N., Azim, M.E. Effects of stocking density of freshwater prawn Macrobrachium rosenbergii and addition of different levels of tilapia Oreochromis niloticus on production in C/N. Aquaculture,2009,286:72-79
    [11]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture,2004,241:179-194
    [12]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture, 2006,252:248-263
    [13]Stramski, D., Reynolds, R.A., Babin, M., Kaczmarek, S., Lewis, M.R., Rottgers, M., Sciandra, A., Stramska, M., Twardowski, M.S., Franz, B.A., Claustre, H. Relationships between the surface concentration of particulateorganic carbon and optical properties in the eastern South Pacific and eastern Atlantic Oceans. Biogeosciences,2008,5:171-201
    [14]Hobbie, J.E., Daley, R.J., Jasper, S. Use of nuclepore filters for counting bacteria by fluorescence microscopy. Appl. Environ. Microbiol.,1997,33:1225-1228
    [15]Pernthaler, J., GIockner, F., Schonhuber, W., Amann, R. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. Meth. Microbiol.,2001,30:207-226
    [16]Moter, A., Gobel, U.B. Fluorescence in situ hybridization (FISH) for direct visualization of microorganisms. J. Microbiol. Methods,2000,41:85-112
    [17]Schramm, A., Larsen, L.H., Revsbech, N.P., Ramsing, N.B., Amann, R., Schleifer, K.H. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol.,1996,62 (12):4641-4647
    [18]Ginige, M.P., Hugenholtz, P., Daims, H., Wagner, M., Keller, J., Blackall, L.L. Use of stable-isotope probing, full-cycle rRNA analysis, and fluorescence in situ hybridization-microautoradiography to study a methanol-fed denitrifying microbial community. Appl. Environ. Microbiol.,2004,70 (1): 588-596
    [19]Kindaichi, T., Ito, T., Okabe, S. Ecophysiological interaction between nitrifying bacteria and heterotrophic bacteria in autotrophic nitrifying biofilms as determined by microautoradiography-fluorescence in situ hybridization. Appl. Environ. Microbiol.,2004,70 (3): 1641-1650
    [20]Pernthaler, A., Pernthaler, J., Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol.,2002,68: 3094-3101
    [21]Buchanan-Mappin, J.M., Wallis, P.M., Buchanan, A.G. Enumeration and identification of heterotrophic bacteria in groundwater and in a mountain stream. Can. J. Microbiol.,1986,32: 93-98
    [22]Sieracki, M.E., Haugen, E.M., Cucci, T.L. Overestimation of heterotrophic bacteria in the Sargasso Sea:direct evidence by flow and imaging cytometry. Deep-Sea Res.,1995,42 (8):1399-1409
    [23]Kirchman, D.L., Keil, R.G Carbon limitation of ammonium uptake by heterotrophic bacteria in the subarctic pacific. Limmol. Oceanogr.,1990,35 (6):1258-1266
    [24]Touratier, F., Legendre, L., Vezina, A. Model of bacterial growth influenced by substrate C:N ratio and concentration. Aquat. Microb.,1999, Ecol.19:105-118
    [25]Wang, J., Yin, X. Growth of marine bacteria and ammonium regeneration from substrates in different C:N ratios. Acta Oceanologica Sinica,2009,28:59-64
    [26]Satoh, H., Okabe, S., Watanabe, Y. Significance of substrate C/N ratio on structure and activity of nitrifying biofilms determined by in situ hybridization and the use of microelectrodes. Water Sci. Technol.,2000,41:317-321
    [27]Zhu, S., Chen, S. Effects of organic carbon on nitrification rate in fixed film biofilters. Aquacult. Eng.,2001,25:1-11
    [28]Ebeling, J.M., Timmons, M.B., Bisogni, J.J. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture,2006,257:346-358
    [29]Azim, M.E., Little, D.C. The biofloc technology (BFT) in indoor tanks:Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture,2008, 283:29-35
    [30]Crab, R., Kochva, M., Verstraete, W., Avnimelech, Y. Bio-flocs technology application in over-wintering of tilapia. Aquacult. Eng.,2009,40:105-112
    [31]Moriarty, D.J.W. Bacterial productivity in ponds used for culture of Penaeid Prawn. Microbiol. Ecol.,1986,12:259-269
    [1]程波.对虾封闭循环水养殖系统中Cu2+的生态效应:[博士学位论文].青岛:中国科学院海洋研究所,2010
    [2]FAO (Food and Agriculture Organization of the United Nations),2011. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
    [3]Hopkins, J.S., Villalon, J. Synopsis of industrial panel input on shrimp pond management, in: Wyban, J.A. (ed.), Proceedings of the special session on shrimp farming. May 22-25. World Aquaculture Society, Batson Ridge, Louisiana, USA,1992, pp:138-143
    [4]Boyd, C.E., Yoo, K.H. Hydrology and Water Supply for Pond Aquaculture. Chapman and Hall, New York,1994, pp:439-449
    [5]Samocha, T.M., Lawrence, A.L., Collins, C.A., Castille, F.L., Bray, W.A., Davies, C J., Lee, P.G., Wood, G.F. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J. Appl. Aquacult.,2004,15 (3/4):1-19
    [6]Horowitz, A., Horowitz, S. Disease control in shrimp aquaculture from a microbial ecology perspective. In:Browdy, C.L., Jory, D. (Eds.), Proceedings of the special session on sustainable shrimp farming May 22-25. World Aquaculture Society, Batson Ridge, Louisiana, USA,2001, pp:199-218
    [7]Schwarz, S., Kehrenberg, C., Walsh, T.R. Use of antimicrobial agents in veterinary medicine and food animal production. International journal of antimicrobial agents,2001,17:431-437
    [8]Samocha, T.M., Lawrence, A.L., Collins, C.R., et al. Development of integrated, environmentally sound, inland shrimp production technologies for Litopenaeus vannamei. New wave proceedings of the special session on sustainable shrimp farming,2001,3:64-75
    [9]唐家毅,刘婕,于铁妹,杨博,王永华,张毅.一株水产芽孢杆菌的鉴定及其培养基优化的研究.淡水渔业,2008,38(6):26-30
    [10]王玉堂.芽孢杆菌及在水产养殖业的利用.中国水产,2009,7:53-57
    [11]陈营,王福强,蒲红宇,杜强.牙鲆肠道乳酸菌的分离和鉴定.中国微生态学杂志,2002,14(2):70-72
    [12]王玉堂.乳酸菌及其在水产养殖业的应用.中国水产,2009,10:56-58
    [13]张玲华,邝哲师,张宝玲.高效硝化细菌的富集培养与分离.浙江农业学报,2002,14(6):348-350
    [14]郭爱莲,李振海,黄淑菊.硝化细菌的分离研究.西北大学学报(自然科学版),1996,26(1):83-86
    [15]马悦,张元兴,孙修勤.海洋鱼类弧菌病疫苗的制备---新型简易鳗弧菌(Vibrio anguillarum)培养基优化.高技术通讯,2001,7:1-5
    [16]闫茂仓,陈少波,单乐州,谢起浪.海水养殖动物致病菌的研究进展.水产科学,2009,28(8):475-481
    [17]胡德朋,唐家毅,曹昱,王永华,杨博.枯草芽孢杆菌的分离鉴定及酶系分布的研究.水产科学,2008,27(2):86-88
    [18]凌代文.乳酸细菌分类鉴定及实验方法.北京:中国轻工业出版社,1999
    [19]葛红莲,郭翠红,张军令.两株乳酸菌的分离鉴定及产酸性能的研究.周口师范学院学报,2009,26(2):89-91
    [20]纪惠玲,黄春文,江建真.3种弧菌选择性培养基对零乱弧菌鉴定结果的影响.海峡预防医学杂志,2002,8(6):54-55
    [21]陈捷音.水中亚硝酸细菌和硝化细菌检测方法的探讨.环境研究与监测,2007,20(2):21-23
    [22]黄珏.硝化细菌的分离和鉴定.水产科技情报,2004,31(3):130-134
    [23]胡朝松,李春强,刘志听,于晓玲,孙建波,彭明.海洋沉积物中反硝化细菌的分离鉴定及反硝化性能研究.环境科学研究,2009,22(1):114-118
    [24]张玉芹,刘开启,王革,陈静,潘好芹.反硝化细菌的筛选及培养条件的研究.农业环境科学学报,2005,24(1):165-168
    [25]郝向举,李义,孙汉,张红英,王玥.蟹源益生芽孢杆菌的筛选.中国饵料,2009,22:11-14
    [26]钟志宏,李启星,唐小异,邱月.甘油保存菌种方法的改良.实用预防医学,2005,12(3):670-671
    [27]马学斌,马骢,郭建巍,蒋学兵,陈昌国,郝秀红,刘敏,王海东.海洋细菌长期保存方法研究.海军总医院学报,2009,22(3):132-134
    [28]刑美孜.利用德氏保加利亚乳杆菌发酵脱脂乳生产生物活性肽及其体外生理功能初步研究:[硕士学位论文].上海:上海交通大学,2010
    [29]李妍,赵琳娜,何宗均,吴迪,李玉华,高贤彪.反硝化细菌的筛选及应用研究.天津农业科学,2008,14(5):43-44
    [30]刘芳,王敏,杨慧,孙军德,高俊莲.1株紫色非硫光合细菌的分离鉴定.安徽农业科学,2008,36(18):7538-7539
    [31]王永忠,廖强,朱恂,田鑫,王中康,张攀,张宝鹏.产氢光合细菌的分离鉴定及高产氢菌株的筛选.应用与环境生物学报,2008,14(5):673-677
    [32]宋增福.丁酸梭菌C_2菌株对娩鱼肠道微生态调控作用与机理研究:[博士学位论文]. 浙江:浙江大学,2006
    [33]张帆.饲用嗜酸乳杆菌制剂研制及乳酸菌检测研究:[硕士学位论文].北京:中国农业科学院,2009
    [34]曾庆武,梁运祥,葛向阳.反硝化细菌的分离筛选及其反硝化特性的初步研究.华中农业大学学报,2008,27(5):616-620
    [35]马放,周丹丹,王宏宇,董双石.一株好氧反硝化细菌生理生态特征的研究.哈尔滨工业大学学报,2006,38(4):575-577
    [1]FAO (Food and Agriculture Organization of the United Nations),2011. http://www.fao.org/fishery/statistics/global-aquaculture-production/query/en
    [2]Vanden, B.A.E, Stobberingh, E.E. Epidemiology of resistance to antibiotics:links between animals and humans. International journal of antimicrobial agents,2000,14:327-335
    [3]Witte, W. Selective pressure by antibiotic use in livestock. International journal of antimicrobial agents,2000,16:19-24
    [4]Hopkins, J.S., Villalon, J. Synopsis of industrial panel input on shrimp pond management, in: Wyban, J.A. (ed.), Proceedings of the special session on shrimp farming. May 22-25. World Aquaculture Society, Batson Ridge, Louisiana, USA,1992, pp:138-143
    [5]Boyd, C.E., Yoo, K.H. Hydrology and Water Supply for Pond Aquaculture. Chapman and Hall, New York,1994, pp:439-449
    [6]Samocha, T.M., Lawrence, A.L., Collins, C.A., Castille, F.L., Bray, W.A., Davies, C.J., Lee, P.G., Wood, G.F. Production of the Pacific white shrimp, Litopenaeus vannamei, in high-density greenhouse-enclosed raceways using low salinity groundwater. J. Appl. Aquacult.,2004,15 (3/4):1-19
    [7]Esiobu, N., Arnenta, L., Ike, J. Antibiotic resistance in soil and water enviroments. Int J Environ Health Res,2002,12:133-144
    [8]Akinbowale, O.L., Peng, H., Barton, M.D. Antimicrobial resistance in bacteria isolated from aquaculture sources in Australia. Journal of applied microbiology,2006,100:1103-1113
    [9]Horowitz, A., Horowitz, S. Disease control in shrimp aquaculture from a microbial ecology perspective. In:Browdy, C.L., Jory, D. (Eds.), Proceedings of the special session on sustainable shrimp farming May 22-25. World Aquaculture Society, Batson Ridge, Louisiana, USA,2001, pp:199-218
    [10]郭凯,赵文.微生态制剂在水产养殖上的应用现状及发展方向.中国水产,2008,1:72-74
    [11]Ziaei-Nejad, S., Rezaei, M.H., Takami, G.A., et al. The effect of Bacillus spp. Bacteria used as probiotics on digestive enzyme activity, survival and growth in the Indian white shrimp Fenneropenaeus indicus. Aquaculture,2005,252:516-524
    [12]Wang, Y.B. Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture,2007,269:259-264
    [13]Kim, D.H., Austin, B. Innate immune responses in rainbow trout (Oncorhynchus mykiss, Walbaum) induced by probiotics. Fish & Shellfish immunology,2006,2 (1):513-524
    [14]Castex, M., Chim, L., Pham, D., et al. Probiotic P. acidilactici application in shrimp Litopenaeus stylirostris culture subject to vibriosis in New Caledonia. Aquaculture,2008, 275:182-193
    [15]刘忠颖,刘洋,鲍相渤,苏浩,刘卫东.水产养殖有益菌的研究进展.水产科学,2010,29(8):500-504
    [16]孟立霞,张子华,王子甲.有益菌在水产养殖中的应用探讨.凯里学院学报,2009,27(6):51-53
    [17]周国勤,陈树桥,茆建强,杜宣.有益菌在水产养殖方面的研究进展.安徽农业科学,2006,34(11):2421-2425
    [18]Boyd, C.E., Clay, J.W. Evaluation of Belize Aquaculture, Ltd:A Super-intensive Shrimp Aquaculture System. In Review report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment,2002, pp:1-17
    [19]Moss, S.A., Pruder, G.D., Samocha, T.M. Environmental management and control:controlled ecosystem and biosecure shrimp grow-out systems. In:Bullis, R.A., Pruder, G.D. (Eds.), Controlled and Biosecure Production Systems, Preliminary Proceedings of a Special Integration of Shrimp and Chicken Models. World Aquaculture Society, April 27-30, Sydney, Australia,1999, pp:87-91
    [20]Avnimelech, Y., Troeger, W.W., Reed, L.W. Mutual flocculation of algae and clay:evidence and implications. Science,1982,216:63-65
    [21]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. The effect of carbohydrate addition on water quality and the nitrogen budget in extensive shrimp culture systems. Aquaculture,2006,252:248-263
    [22]Browdy, C.L., Bratvold, D., Stokes, A.D., McIntosh, R.P. Perspectives on the application of closed shrimp culture systems. In:Browdy, C.L., Jory, D.E. (Eds.), The New Wave, Proceedings of the Special Session on Sustainable Shrimp Culture, Aquaculture 2001. The World Aquaculture Society, Baton Rouge, USA,2001, pp:20-34
    [23]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture,2004, 241:179-194
    [24]游奎.对虾工程化养殖系统重要元素及能量收支:[博士学位论文].北京:中国科学院研究生院,2005
    [25]刘冬梅,李理,杨晓泉,梁世中.用牛津杯法测定有益菌的抑菌活力.食品研究与开发,2006,27(3):110-111
    [26]Hargreaves, J.A. Photosynthetic suspended-growth system in aquaculture. Aquac. Eng.,2006, 34:344-363
    [27]Van Dam, A.A., Beveridge, M.C.M., Azim, M.E., Verdegem, M.C.J. The potential of fish production based on periphyton. Rev. Fish Biol. Fish.,2002,12:1-31
    [28]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008,280: 117-123
    [29]Avnimelech, Y. Feeding with microbial flocs by tilapia in minimal discharge bioflocs technology ponds. Aquaculture,2007,264:140-147
    [30]Lancelot, C., Billen, G. Carbon-nitrogen relationships in nutrient metabolism of costal marine ecosystems. In:Jannasch, H.W., Williams, J.J.L. (eds.), Advances in Aquatic Microbiology, vol.3. Academic Press, New York, USA,1985, pp:263-321
    [31]Tezuka, Y.Bacterial regeneration of ammonium and phosphate as affected by the carbon: nitrogen:phosphorus ratio of organic substrates. Microb Ecol,1990,19:227-238
    [32]Kirchman, D.L., Keil, R.G. Carbon limitation of ammonium uptake by heterotrophic bacteria in subarctic Pacific. Limnol. Oceanogr.,1990,36 (6):1258-1266
    [33]Allen, A.E., Howard-Jones, M.H., Booth, M.G., et al. Importance of heterotrophic bacterial assimilation of ammonium and nitrate in the Barents Sea during summer. Journal of Marine Systems,2002,38:93-108
    [34]Wheeler, P.A., Kirchman, D.L. Utilization of inorganic and organic nitrogen by bacteria in marine systems. Limnol. Oceanogr.,1986,31 (5):998-1009
    [35]Goldman, J.C., Caron, D.A., Dennett, M.R.. Regulation of gross growth efficiency and ammonium regeneration in bacteria by substrate C:N ratio. Limmol. Oceanogr.,1987,32 (6): 1239-1252
    [36]Kozasa, M. Toyocerin (Bacillus toyoi) as growth promoter for animal feeding. Microbiol aliment nutr,1986,4:121-135
    [37]郭平,许美美.对虾养殖池水域环境细菌的动态变化.海洋与湖沼,1994,25(6):625-630
    [38]梅志平,施正峰.池塘生态系基质C/N比对游离细菌群落生长和有机N矿化作用的影响.上海水产大学学报,1994,3(1-2):40-46
    [39]Hu, J., Li, D., Tao, Y., Zhang, J., Zhong, Q., He, X., Wang, X. Microbial diversity of nitrite-oxidizing and heterotrophic bacterial communities under different C/N ratios. Chinese Journal of Applied & Environmental Biology,2009,15 (3):351-355
    [40]王玉堂.芽孢杆菌及在水产养殖业的利用.中国水产,2009,7:53-57
    [41]陈世化,夏延斌,聂乾忠.发酵蔬菜中乳酸菌抑菌性的研究.食品工程,2007,2:6-9
    [42]Goldman, J.C., Dennett, M.R. Ammonium regeneration and carbon utilization by marine grown on mixed substrates. Marine Biology,1991,109:369-378
    [43]Wang, J.T., Yin, X.N. Growth of marine bacteria and ammonium regeneration from substrates in different C:N ratios. Acta Oceanologica Sinica.,2009,28 (3):12-19
    [44]Goldman, J.C. Growth of marine bacteria in batch and continuous culture under carbon and nitrogen limitation. Limmol. Oceanogr.,2000,45 (4):789-800
    [45]Sutherl, I.W. Bacterial exopolysaccharides--their nature and production. Antibiotics and Chemotherapy,1989,42:50-55
    [46]Elisashvili, V.I., Kachlishvili, E.T., Wasser, S.P. Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production. Prikladnaia Biokhimiiai Mikrobiologiia,2009, 45 (5):592-596
    [1]艾红,黄巧珠,徐泽智,卢传曼,麦丽芳.我国对虾产品贸易结构与出口竞争力分析.广东农业科学,2008,11:127-131
    [2]徐雅飞.利用甘蔗渣、甘蔗糖蜜生产发酵饵料的研究:[硕士学位论文].广西:广西大学,2007
    [3]Boyd, C.E., Clay, J.W. Evaluation of Belize Aquaculture, Ltd:A Super-intensive Shrimp Aquaculture System. In Review report prepared under the World Bank, NACA, WWF and FAO Consortium Program on Shrimp Farming and the Environment,2002, pp:1-17
    [4]Moss, S.A., Pruder, G.D., Samocha, T.M. Environmental management and control:controlled ecosystem and biosecure shrimp grow-out systems. In:Bullis, R.A., Pruder, G.D. (Eds.), Controlled and Biosecure Production Systems, Preliminary Proceedings of a Special Integration of Shrimp and Chicken Models. World Aquaculture Society, April 27-30, Sydney, Australia,1999, pp:87-91
    [5]Hari, B., Kurup, B.M., Varghese, J.T., Schrama, J.W., Verdegem, M.C.J. Effects of carbohydrate addition on production in extensive shrimp culture systems. Aquaculture,2004, 241:179-194
    [6]Asaduzzaman, M., Wahab, M.A., Verdegem, M.C.J., Huque, S., Salam, M.A., Azim, M.E. C/N ratio control and substrate addition for periphyton development jointly enhance freshwater prawn Macrobrachium rosenbergii production in ponds. Aquaculture,2008,280:117-123
    [7]张洋,肖克宇.微生物处理秸杆在水产饵料中的应用前景.内陆水产,2008,3:40-42
    [8]张平远.用甘蔗渣配制低成本虾饵料.农业科技通讯,2003,7:45
    [9]王成华,丁云桥,肖朝峰.利用纤维质原料生产高酶活单细胞蛋白.工业微生物,2001,31(1):30-33
    [10]王淑军,扬从发,陈静.用于降解秸杆的纤维素酶产生菌的筛选研究.粮食与饵料工业,2001,12:21-23
    [11]贺芸.产胞外耐高温纤维素酶细菌的获得和酶的纯化及性质研究.常州工学院学报,2006,19(1):13-17
    [12]李安市,耿学磊,贾晶,张小葵,陈冠军.纤维素分解细菌的分离和鉴定.安徽农业科学,2009,37(9):3956-3959
    [13]刘果,张政,段承杰,冯家勋.一株降解结晶纤维素细菌的分离、筛选、鉴定及其产纤维素酶特性.广西农业科学,2008,39(4):419-424
    [14]Jeong, H., Yi, H., Sekiguchi, Y., et al. Clostridium jejuense sp nov, isolated from soil. Int J Syst EvolMicrobiol,2004,54 (5):1465-1468
    [15]Yang, J.C., Chynoweth, D.P., Williams, D.S., et al. Clostridium aldrichii sp nov, a cellulolytic mesophile inhabiting a wood-fermenting anaerobic digester. Int J Syst Bacteriol,1990,40 (3):268-272
    [16]Petitdemange, E., Caillet, F., Giallo, J., et al. Clostridium cellulolyticum sp nov, a cellulolytic, mesophilic species from decayed grass. Int J Syst Bacteriol,1984,34 (2):155-159
    [17]Varel, V.H., Tanner, R.S., Woese, C.R. Clostridium herbivorans sp nov, a cellulolytic anaerobe from the pig intestine. Int J Syst Bacteriol,1995,45 (3):490-494
    [18]Varel, V.H. Reisolation and characterization of Clostridium longisporum, a ruminal sporeforming cellulolytic anaerobe. Archives of Microbiology,1989,152 (3):209-214
    [19]曾青兰.纤维素降解细菌的分离鉴定和筛选方法的研究.安徽农业科学,2008,36(24):10309-10310
    [20]郝月,杨翔华,郝传德.秸秆纤维素分解菌的选育及发酵工艺研究.粮食与饵料工业,2006(3):32-33
    [21]罗辉,仇天雷,马诗淳,刘来雁,张辉,尹小波,邓宇.一株中温厌氧纤维素降解细菌的分离、鉴定及其系统发育分析.中国沼气,2008,26(3):3-14
    [22]张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版).北京:高等教育出版社,1997:1-3
    [23]Karita, S., Nakayama, K., Goto, M., et al. A novel cellulolytic, Anaerobic, and thermophilic bacterium, Moorella sp strain F21. Bioscience, Biotechnology and Biochemistry,2003,67 (1):182-185
    [24]刘芳,王敏,杨慧,孙军德,高俊莲.1株紫色非硫光合细菌的分离鉴定.安徽农业科学,2008,36(18):7538-7539
    [25]苏波,康建平,黄静,姚莉,方瑞,阳泰.16S rDNA序列分析鉴定一株芽孢杆菌.食品与发酵科技,2010,46(5):1-3
    [26]张丽青,吴海龙,姜红霞,张庆乐,唐心强.纤维素降解细菌的筛选及其产酶条件优化.环境科学与管理,2007,32(10):110-117
    [27]张壮志.高效纤维素分解菌的筛选、鉴定及其生长条件和产酶活性的研究:[硕士学位论文].泰安:山东农业大学,2009
    [28]刘占英,侯先志,刘玉承,杨帆,刘小刚,赵子夫.高效厌氧纤维素降解细菌的分离及酶特性研究.工业微生物,2008,38(6):1-6
    [29]Percival, Z.Y.H., Himmel, M.E., Mielenz, J.R. Outlook for cellulase improvement:screening and selection st rategies. Biotechnol Advan,2006,24:452-481
    [30]Teeri, T.T. Crystalline cellulose degradation:new insight into the function of cellobiohydrolase. Trends Biotechnol,1997,15 (5):160-167
    [31]陈春岚,庞浩,唐纪良,冯家勋.结晶纤维素降解细菌的筛选、分离与鉴定.广西农业生物科学,2008,27(4):360-364
    [32]马中良,李莉,张阳奕,宋任涛,许政.含纤维素酶细菌的筛选及其纤维素酶生物学性质的研究.药物生物技术,2009,16(1):43--45
    [33]潘建梅.产纤维素酶细菌的筛选及其产酶条件的研究.淮海工学院学报(自然科学版),2008,17(1):65-67
    [34]魏桃员,张素琴,邵林广,游映玖.一株纤维素降解细菌的分享及特性研究.环境科学与技术,2004,27(5):1-3
    [35]沈雪亮,夏黎明.产纤维素酶细菌的筛选及酶学特性研究.林产化学与工业,2002,22(1):47-51
    [36]宋桂经,王冬,孙彩云,高培基.芽孢杆菌074碱性纤维素酶的研究一菌种的分离、筛选及发酵条件.微生物学报,1993,35(1):38-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700