酒精对大鼠胰岛素敏感性的影响及相关机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2型糖尿病人数在全球范围内不断快速地增长,这使其成为21世纪危害人体健康的主要疾病之一。胰岛素抵抗是2型糖尿病的发病基础,其发生与生活方式有很大的关系,如吸烟、肥胖、运动、妊娠等等。近年来,流行病学的调查结果显示:酒精与胰岛素抵抗和2型糖尿病发病之间存在着U或J型的相关关系。长期规律性适量饮酒升高胰岛素的敏感性而降低患糖尿病的危险性,而长期过量饮酒却降低胰岛素的敏感性而增加患糖尿病尤其是患2型糖尿病的危险性。有关的实验研究结果也表明,酒精可以造成外周组织对葡萄糖的利用障碍和胰岛素抵抗。但是目前相应的实验研究还很少,有关研究结论存在明显的分歧,酒精引起外周组织胰岛素抵抗的分子机制尚不清楚。我国是酒的生产、消费大国,有着丰富的酒文化。对酒精致胰岛素抵抗相关机制的研究将有助于糖尿病的预防以及为调整饮酒习惯提供科学依据。胰岛素抵抗发生的机制十分复杂,与胰岛素信号能否正常传导有关。胰岛素信号转导途径中关键分子的数量和/或功能异常将导致机体对葡萄糖的利用降低。而胰岛素介导的葡萄糖摄取,80%以上由骨骼肌细胞负责。骨骼肌是胰岛素的重要靶器官之一,也是机体摄取血糖、调节血糖水平和参与能量代谢的主要器官之一,在胰岛素抵抗的发病中起重要作用。
     因此,本研究拟从动物实验和体外原代培养骨骼肌细胞两个方面,研究酒精对胰岛素敏感性及骨骼肌中胰岛素信号转导过程中关键分子表达或活性的影响,以期揭示酒精致胰岛素抵抗的分子机制。本研究主要包括二部分,现将结果报告如下:
     第一部分长期酒精摄入对大鼠胰岛素敏感性及骨骼肌组织胰岛素信号转导分子表达的影响
     目的:建立了长期饮酒的动物模型,研究不同浓度酒精对大鼠机体胰岛素敏感性的影响;选择骨骼肌组织为靶组织,研究酒精对其胰岛素信号转导过程中关键分子的影响,以确定酒精的作用位点和探讨相关作用机制。
     方法:清洁级Wistar大鼠80只(雌雄各半),按体重随机分为对照组和低、中、高剂量组,酒精剂量分别为0、0.8、1.6、2.6 g·(kg·bw)~(-1)·day~(-1),每日一次通过灌胃方式给予。19周末,处死大鼠,收集血液,分离血清,测定空腹血糖和血胰岛素,并在此基础上计算HOMA(Homeostasis Model Assessment)胰岛素抵抗指数(HOMA-IR=[FPG(mmol/L)×FIN(mIU/L)]/22.5 )和HOMA-βcell ( HOMA-βcell =20×FINS/(FPG-3.5)作为反映胰岛素敏感性、胰岛β细胞功能的指标。分离骨骼肌,通过RT-PCR和Western blot方法测定胰岛素受体(insulin receptor ,IR)、胰岛素受体底物-1(insulin receptor substrate-1,IRS-1)、胰岛素受体底物-2(insulin receptor substrate-2,IRS-2)、磷脂酰肌醇3激酶(phosphatidylinositol 3-kinase,PI-3K )调节亚基p85α、葡萄糖转运体4(glucosetransporter 4, GLUT-4)mRNA或蛋白表达水平。
     结果:1.雄性大鼠:低、中剂量组空腹胰岛素水平升高(p<0.05),而血糖升高不明显(p>0.05)。高剂量组空腹血糖水平升高(p<0.05),胰岛素水平轻微降低。各酒精组Ln(HOMA-IR)均较对照组升高(p<0.05),提示大鼠了发生胰岛素抵抗。各实验组之间HOMA-βcell无明显差异;雌性大鼠:随着酒精剂量的增加,大鼠空腹血糖水平逐渐升高而胰岛素水平则逐渐降低,高剂量组空腹血糖的升高和胰岛素分泌的减少与对照组比较有显著性(p<0.05)。HOMA-βcell在中、高剂量组降低(p<0.05),提示大鼠胰岛β细胞分泌功能降低。Ln(HOMA-IR)在各实验组之间无明显差异(p>0.05)。
     2.中、高剂量组雌、雄大鼠骨骼肌组织IR、IRS-1mRNA表达下降(p<0.05)。低剂量组IRS-1mRNA表达在雄性大鼠中升高(p<0.05),雌性大鼠中无明显变化。随着酒精剂量的增加,雌、雄大鼠骨骼肌IRS-2mRNA表达均出现降低的趋势,但与对照组比较无显著性差异(p>0.05)。
     3.雌、雄大鼠PI-3K(p85α)、GLUT-4mRNA和蛋白表达在中、高剂量组降低(p<0.05)。低剂量组雄性大鼠PI-3K(p85α)mRNA和蛋白表达升高(p<0.05),在雌性大鼠中PI-3K(p85α)表达降低,但与对照组比较差异无显著性(p>0.05)。
     结论:酒精剂量>=0.8g?(kg?bw)-1?day-1时,长期酒精摄入降低大鼠胰岛素敏感性。酒精对胰岛素敏感性的影响存在着性别差异,雌性动物比雄性动物更敏感;大鼠骨骼肌组织中IR、IRS-1,PI-3K(p85α)、GLUT-4mRNA和(或)蛋白表达水平的降低可能是酒精影响胰岛素敏感性的分子机制之一。酒精对骨骼肌组织胰岛素信号通路具有多位点的影响作用。
     第二部分酒精对原代培养的大鼠骨骼肌细胞葡萄糖摄取及胰岛素信号转导分子的影响
     目的:以原代培养的大鼠骨骼肌细胞为对象,研究酒精直接作用对骨骼肌细胞葡萄糖摄取能力及相关信号分子表达和活性的影响,从而进一步探讨和验证酒精与胰岛素抵抗的关系和相关机制。
     方法:体外原代培养大鼠骨骼肌细胞,用不同浓度酒精(0、25、50、100、200、400mmol/L)作用24小时及200mmol/L酒精作用不同时间(6、12、24h),通过3H-2-脱氧葡萄糖摄取实验检测酒精对大鼠骨骼肌细胞胰岛素敏感性的影响。通过RT-PCR和Western blot方法测定PI-3K(p85α)、Akt-2、GLUT-4 mRNA或蛋白表达水平,同时测定胰岛素刺激下PI-3K,AKT磷酸化的水平。
     结果:1.200、400mmol/L酒精作用24小时抑制骨骼肌细胞基础状态和胰岛素刺激的葡萄糖摄取(p<0.05)。50、100mmol/L酒精作用24小时,在基础状态下没有明显影响作用,但是可以提高胰岛素刺激下骨骼肌细胞摄取葡萄糖的能力(p<0.05)。骨骼肌细胞在200mmol/L作用下,随着作用时间的变化表现出6小时提高胰岛素刺激下的葡萄糖摄取(p<0.05),而作用24小时具有抑制作用(p<0.05)。
     2.作用24小时:400mmol/L酒精降低PI-3K(p85α)mRNA和蛋白表达(p<0.05)。200、400mmol/L酒精抑制Akt-2蛋白和GLUT-4mRNA和蛋白表达(p<0.05),而100mmol/L酒精组Akt-2蛋白表达水平升高(p<0.05),50、100mmol/L酒精作用GLUT-4mRNA和蛋白表达均升高(p<0.05)。胰岛素刺激下,50、100mmol/L酒精组PI-3K及Akt的磷酸化水平升高明显,而200、400mmol/L酒精作用对PI-3K及Akt的磷酸化具有抑制作用(p<0.05);200mmol/L酒精作用6小时,Akt-2蛋白和GLUT-4mRNA和蛋白表达升高(p<0.05),随着作用时间的延长,上述信号分子的表达逐渐降低。
     结论:酒精的直接作用可以影响大鼠骨骼肌细胞的胰岛素敏感性,与酒精作用剂量和时间有关。长期高剂量酒精作用(200、400mmol/L酒精作用24小时)造成骨骼肌细胞胰岛素抵抗;酒精的直接作用可以影响骨骼肌细胞PI-3K(p85α)、Akt2、GLUT-4的表达以及PI-3K,AKT磷酸化水平,与酒精作用剂量和时间有关。上述信号分子表达和活性的降低可能是酒精致骨骼肌细胞胰岛素抵抗的分子机制之一。
Changes in human behaviour and lifestyle over the last century have resulted in a dramatic increase in the incidence of type 2 diabetes mellitus worldwide. Now, type 2 diabetes is taking its place as one of the main threats to human health in the 21st century. Insulin resistance is a key pathophysiologic feature of type 2 diabetes and is brought on by environmental and behavioural factors such as smoking, pregnancy, overly rich nutrition, obesity and so on. In recent years, many epidemiological studies suggested there exists a U-shape relationship between alcohol consumption and the risk of diabetes. Chronic regular mild to moderate alcohol consumption among healthy people may be associated with increased insulin sensitivity and a reduced risk of type 2 diabetes, while excessive consumption can impair glycaemic control and increased the risk of type 2 diabetes. To date, several studies have shown the effects of ethanol intake on glucose intolerance in muscle, adipocytes, and the liver. However, a few studies have conducted on the mechanisms underlying alcohol impairment of insulin signaling with some inconsistencies in reported results apparent. Thus, the direct actions of alcohol on specific components of the pathways which mediates glucose disposal and the mechanisms underlying alcohol-induced insulin resistance remain to be clarified. Although the mechanisms underlying insulin resistance are complicated, it is uniformly agreed that insulin signal transduction molecules play a central role. Abnormality in the number and/or functions of insulin signal transduction molecules would impair glucose disposal into peripheral tissues. Skeletal muscle is one of the most important target organs of insulin, and also important for serum glucose balance and energy metabolism. Insulin resistance in skeletal muscle can influence the whole body insulin sensitivity and partly attributes to the cause of type 2 diabetes.
     In the present study, we observed the effect of alcohol on insulin sensitivity both in vivo and in vitro. At the same time, we investigated the potential mechanism involving. From this study, we hope to elucidate some understanding about the mechanism between alcohol and insulin resistance and provide scientific advice for healthy drinking. The experiments were designed and the main results were summarized as follows:
     PartⅠEffects of chronic ethanol administration on insulin sensitivity and insulin signaling pathways in skeletal muscle of rats
     Objective To establish the rat model of chronic ethanol administration and examine the effects of ethanol on insulin signal transduction molecules expression in skeletal muscle. To explore the mechanism by which chronic ethanol administration influences the whole body insulin sensitivity.
     Methods After acclimatization for one week, 80 rats were randomly divided into four groups(n=20/group) on the basis of body weight: control(C) group, Low(L), moderate(M) and high(H) alcohol group and each group was comprised of 10 male and 10 female rats. Ethanol, at the dose of 0, 0.8, 1.6, 2.6 g?(kg?bw)-1?day-1, were given by means of intragastric gavage. 19 weeks later, rats were killed and serum was collected for testing of fasting glucose and insulin. Whole-body insulin sensitivity of rats was assessed from fasting glucose and insulin leves and by the previously validated homeostasis model assessment (HOMA) index as follows: HOMA-IR= fasting glucose (mmol/L)×fasting insulin (μU/ml)/22.5.The homeostatic indices of ?-cell secretory activity (HOMA ? cell) were calculated as: HOMA- ? cell = 20×fasting insulin (μU/ml)/ Fasting glucose (mmol/L)-3.5. Expression of IR, IRS-1, IRS-2, PI-3K (p85α) and total GLUT-4 in skeletal muscle were detected by RT-PCR and Western blot.
     Results
     1. In male rats, ethanol intake increased the levels of fasting serum glucose and insulin. Fasting serum glucose of H group, fasting serum insulin of L, M group and HOMA-IR index of all ethanol–fed groups were higher than those of C group(p<0.05) .There was no significant difference among the HOMA-βcell of the four groups. In female rats, the H group’s fasting serum glucose was higher but fasting serum insulin was lower than those of C group(p<0.05). There was no significant difference among the HOMA-IR of the four groups. HOMA-βcell in H and M group were significantly (p<0.05) decreased compared with the C group.
     2. Compared with the control rats, the expression of IR,IRS-1mRNA were suppressed by 1.6, 2.6 g·(kg·bw)~(-1)·day~(-1) ethanol loading in both gender rats (p<0.05) . IRS-1mRNA expression in L group of male rats was up-regulated(p<0.05), while there was no significant difference in IRS-1mRNA expression between the control group and low ethanol dose group in female rats. With the ethanol doses increasing, IRS-2mRNA expression was decreased, but there was no significant difference among the four groups(p>0.05).
     3. In male rats, the L group p85αmRNA and protein expression was up-regulated (p <0.05), while the M and H group p85αexpression were significantly suppressed (p<0.05). There were no significant differences in GLUT-4 mRNA and protein expression between the control group and low alcohol dose group, whereas the expression of GLUT-4 was significantly (p<0.05) reduced in M group and H group. In female rats, p85αand GLUT-4 mRNA and protein expressions were significantly (p<0.05) diminished in M and H group, whereas their expression was similar in L group compared with C group.
     Conclusion The present results indicated that chronic ethanol administration(>=0.8g·(kg·bw)~(-1)·day~(-1)) could induce insulin resistance and down-regulated the expression of IR, IRS-1, PI-3K(p85α) and GLUT-4 in skeletal muscle may be the molecular mechanism. Effect of ethanol on insulin sensitivity showed a sexual difference. Female rats were more sensitive to ethanol’s influence than males.
     PartⅡInfluence of ethanol on glucose uptake and insulin signaling pathways in rat’s primary skeletal muscle cells
     Objective To examine the direct effect of ethanol on glucose uptake in rat’s primary skeletal muscle cells. To investigate expression and activity of insulin signal transduction molecules and explore the possible mechanism of ethanol affects insulin sensitivity.
     Methods Rat’s primary skeletal muscle cells were exposed to different doses of ethanol (0, 25, 50, 100, 200, 400mmol/L) for 24h and with 200mmol/L ethanol for different time (6h, 12h, 24h). The effect of ethanol on insulin sensitivity in skeletal muscle cells was tested by 2-deoxglucose uptake. The mRNA expression of PI-3K(p85α) and GLUT-4 were detected by RT-PCR. The protein content of PI-3K (p85α), Akt-2, GLUT-4 and the phosphorylation protein of PI-3K, Akt were detected by Western blot.
     Results
     1. After exposed to 200mmol/L, 400mmol/L ethanol for 24h, the basic and insulin-stimulated 2-deoxglucose uptake were inhibited in rat’s primary skeletal muscle cells(p<0.05), while insulin-stimulated 2-deoxglucose uptake of cells was significantly increased in 50mmol/L and 100mmol/L ethanol-treated groups (p<0.05). Insulin-stimulated 2-deoxglucose uptake were increased significantly after treated with 200mmol/L ethanol for 6h (p <0.05), and then decreased. The level of 2-deoxglucose uptake was even lower than that of control group after terased with ethanol for 24h (p <0.05).
     2. Exposed ethanol for 24h: the expression of PI-3K (p85α) was decreased in 400mmol/L ethanol-treated group (p<0.05). GLUT-4 mRNA , protein content of Akt-2, GLUT-4 and levels of insulin-stimulated phospho-PI-3K, phospho-Akt were all suppressed by treatment at 200, 400mmol/L (p<0.05). Cells treated with 50,100mmol/L ethanol, GLUT-4 expression and insulin-stimulated phospho-PI-3K and phospho-Akt were up-regulated (p<0.05); Exposed to 200mmol/L ethanol: at 6h, GLUT-4mRNA and protein content of Akt-2, GLUT-4 were increased, then decreased with prolong of exposure time. At 24h, the decrease was dramatically compared to control group (p<0.05).
     Conclusion Ethanol could directly influence insulin sensitivity in rat’s primary skeletal muscle cells. Chronic high dose ethanol (200,400mmol/L for 24h) induced insulin resistance; Ethanol also could directly affect PI-3K (p85α), Akt-2, GLUT-4 expression and PI-3K, Akt phosphorylation. Above all, the decreased of expression and activity of these signaling molecules may be the mechanism of ethanol impairs insulin sensitivity.
引文
1. Balkau B, Randrianjohany A, Papoz L, et al. A prospective study of alcohol use and non-insulin dependent diabetes mellitus. Am J Epidemiol, 1991, 134:1469-70.
    2. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27: 1047–1053.
    3. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature, 2001, 414: 782–787.
    4. de Vegt F, Dekker JM, Groeneveld WJ, et al. Moderate alcohol consumption is associated with lower risk for incident diabetes and mortality: the Hoorn Study. Diabetes Res Clin Pract,2002, 57(1):53-60.
    5. Perry U, Wannamethee SG, Walker MK, et al. prospective study of risk factors for development of non-insulin dependent diabetes in middle aged British men. BMJ, 1995, 310:560-564.
    6. Wei M, Gibbons LW, Mitchell TL, et al. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care, 2000, 23(1):18-22.
    7. Ajani UA, Hennekens CH, Spelsberg A, et al. Alcohol consumption and risk of type 2 diabetes mellitus among US male physicians. Arch Intern Med, 2000, 160(7):1025-1030.
    8. Conigrave KM, Hu BF, Camargo CA Jr, et al. A prospective study of drinking patterns in relation to risk of type 2 diabetes among men. Diabetes, 2001, 50(10):2390-2395.
    9. Davies MJ, Baer DJ, Judd JT, et al. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA, 2002, 287(19):2559-2562.
    10. Konrat C, Mennen LI, Caces E, et al. Alcohol intake and fasting insulin in French men and women. The D.E.S.I.R. Study. Diabetes Metab, 2002, 28(2): 116-123.
    11. Kadowaki.T. Insights into insulin resistance and type 2 diabetes from knock-out mouse models. J Clin Invest,2000,106(4);459-465.
    12. Czech MP,Corvera S. Signaling mechanisms that regulate glucose trans-port. J Biol Chem,1999,274(4):1865-1868.
    13. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepocytes leads to sevear insulin resistance and progressive hepatic dysfunction. Mol cell, 2000, 6:87-97.
    14. Kim YB, Peroni OD, Franke TF, et al. Divergent regulation of Akt1 and Akt2 isoforms in insulin target tissues of obese Zucker rats. Diabetes, 2000,49:847-856.
    15. Kerouz NJ, Horsch D, Pons S, et al. Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obesediabetic (ob/ob) mouse. J Clin Invest, 1997, 100(12):3164-3172.
    16. Anai M, Funaki M, Ogihara T, et al. Enhanced insulin stimulated activation of phosphatidylinositol 3-kinase in the liver of high-fat fed rats. Diabetes,1999, 48:158-169.
    17. Andreelli F, Lsville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol 3-kinase gene expression in skeletal muscle and adpose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia, 1999, 42:358-364.
    18. Ryder JW, Yang J, Galuska D, et al. Use of a novel impermeable biotinylated photolabeling reagent to assess insulin and hypoxia stimulated cell surface GLUT4 content in skeletal muscle from type 2 diabetic patients. Diabetes, 2000, 49:647-654.
    19. Zisman A, Peroni OD, Abel ED, et al. Targeted disruption of the glucose transport 4 selectively in muscle causes insulin resistance and glucose intolerance. Nat Med, 2002, 6:924-928.
    20. Onishi Y, Honda M, Ogihara T, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun, 2003, 303:788-794.
    21. Wilkes JJ, DeForrest LL, hagy LE. Chronic ethanol feeding in a high-fat diet decreases insulin-stimulated glucose transport in rat adipocytes. Am J Physiol,1996,271:E477-E484.
    22. Patel BC, D'Arville C, Iwahashi M, et al. Impairment of hepatic insulin receptors during chronic ethanol administration. Am J Physiol, 1991, 261 (2Pt1):G199-205.
    23. Furuya, DT, Binsack, R, Machado, UF, et al. Low ethanol consumption increases insulin sensitivity in Wistar rats. Brazilian Journal of Medical and Biological Research, 2003,36: 125–130.
    24. Daniela TF, Ralf B, Mary EO, et al. Low ethanol consumption induces enhancement of insulin sensitivity in liver of normal rats. Life sciences,2005,77:1813-1824.
    25. Shelmet JJ, Reichard GA, Skutches CL, et al. Ethanol causes acute inhibition of carbohydrate,fat, and protein oxidation and insulin resistance. J Clin Invest, 1988, 81: 1137-1145.
    26. Avogaro A, Valerio A, Miola M, et al. Ethanol impairs insulin-mediated glucose uptake by an indirect mechanism. J Clin Endocrinol Metab, 1996, 81: 2285–2290.
    27. Langer RD, Criqui MH, Reed DM. Lipoproteins and blood pressure as biological pathways for effect of moderate alcohol consumption on coronary heart disease. Circulation, 1992, 85:910-915.
    28. Suh I, Shaten J, Cutler JA, et al. Alcohol use and mortality from coronary heart disease: the role of high-density lipoprotein cholesterol. Ann Int Med, 1992, 116:881-887.
    29. Kenkre PV, Lindeman RD, Lillian Yau C. et al. Serum insulin concentrations in daily drinkers compared with abstainers in the New Mexico elder health survey. J Gerontol A Biol Sci Med Sci, 2003, 58(10):M960-963.
    30. Wannamethee SG, Shaper AG, Perry IJ, et al. Alcohol consumption and the incidence of type II diabetes. J Epidemiol Community Health, 2002, 56 (7):542-548.
    31.庞红,张军,毛丽梅,等.长期酒精摄入对大鼠糖酵解途径关键酶活性的影响.卫生研究,2004;33(2):195-197.
    32. Lautt WW, Legare DJ, Reid MAG, et al. Alcohol suppresses meal-induced insulin sensitization (MIS). Metab Syndr Relat Disord, 2005 (3): 51–59.
    33. Guarino MP, Afonso RA, Raimundo N, et al. Hepatic glutathione and nitric oxide are critical for hepatic insulin-sensitizing substance action. Am J Physiol Gastrointest Liver Physiol, 2003(284):G588–G594.
    34. Hong-Brown LQ, Frost RA, Lang CH. Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res, 2001, 25(9):1373-1383.
    35. Monte SM, Ganju N, Tanaka S, et al. Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin Exp Res, 1999, 23(5):770-777.
    36. Poirier LA,Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: regulation by heterotrimeric G-protein. Biochem J, 2001, 354(Pt2):323-330.
    37. Chen L, Nyomba BL. Glucose intolerance and resistin expression in rat offspring exposed to ethanol in utero: modulation by postnatal high-fat diet. Endocrinology, 2003, 144(2):500-508.
    38. Avogaro A, Valerio A, Miola M, et al. Ethanol impairs insulin-mediated glucose uptake by an indirect mechanism. J Clin Endocrinol Metab, 1996, 81:2285-2290.
    39. Tuma DJ, Casey CA,Sorrell MF. Chronic ethanol-induced impairments in receptor-mediated endocytosis of insulin in rat hepatocytes. Alcohol Clin Exp Res, 1991, 15(5):808-13.
    40.张思仲等,胰岛素抵抗的发生机理.见:李秀钧主编.胰岛素抵抗综合征.人民卫生出版社,2001:22-43.
    41. Livy DJ, Parnell SE, and West JR. Blood ethanol concentration profiles: a comparison between rats and mice. Alcohol, 2003, 29:165-171.
    1. Ajani UA, Hennekens CH, Spelsberg A, et al. Alcohol consumption and risk of type 2 diabetes mellitus among US male physicians. Arch Intern Med, 2000, 160(7):1025-1030.
    2. Conigrave KM, Hu BF, Camargo CA Jr, et al. A prospective study of drinking patterns in relation to risk of type 2 diabetes among men.. Diabetes, 2001, 50(10):2390-2395.
    3. Davies MJ, Baer DJ, Judd JT, et al. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA, 2002, 287(19):2559-2562.
    4. Bonora E, Targher G, Alberiche M, et al. Homeostasis model assessment closely mirrors the glucose clamp technique in the assessment of insulin sensitivity: studies in subjects with various degrees of glucose tolerance and insulin sensitivity. Diabetes Care, 2000, 23:57-63.
    5. Haffner SM, Miettinen H, Stern MP. The homeostasis model in the San Antonio Heart Study. Diabetes Care, 1997, 20: 1087-97.
    6. Balkau B, Randrianjohany A, Papoz L, et al. A prospective study of alcohol use and non-insulin dependent diabetes mellitus. Am J Epidemiol , 1991, 134:1469-70.
    7. Cefalu WT. Insulin resistance: cellular and clinical concepts. Exp Biol Med, 2001, 226(1):13-26.
    8.任颖,陆广华,厉锦华,等.HOMA法和血糖钳夹法胰岛素抵抗指数的关系.上海第二医科大学学报,2002,22(4):325-330.
    9.曲巍,孙秀发,付元华等.过量酒精摄入对大鼠细胞因子及胰岛的影响.中国公共卫生,2004,20(10):1174-1175.
    10. Flanagan DE, Moore VM, Godsland IF, et al. Alcohol consumption and insulin resistance in young adults. Eur J Clin Invest, 2000, 30(4):297-301.
    11. Kato I, Kiyohara Y, Kubo M, et al. Insulin-mediated effects of alcohol intake on serum lipid levels in a general population: the Hisayama Study. J Clin Epidemiol, 2003, 56(2):196-204.
    12. Felder MR, Watson G, Huff MO, et al. Mechanism of induction of mouse kidney alcohol dehydrogenase by androgen. Androgen-induced stimulation of trans- cription of the Adh-1 gene. J Biol Chem, 1988, 263(28):14531-14537.
    13. Furuya, D T, Binsack, R, Machado, UF, et al. Low ethanol consumption increases insulin sensitivity in Wistar rats. Brazilian Journal of Medical and Biological Research, 2003(36): 125–130.
    14. Baron AD,Brechtel G,Wafface P,et al. Rates and tissue sites of non- insulin and insulin mediated glucose uptake in human. Am J Physiol,1988,255:E769-774.
    15. Rothman DL,Schulman RG,Schulman GI. 31 P nuclear magnetic resonance measurements ofmuscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-depent diabetes mellitus. J Clin Invest,1992,89:1062-1075.
    16. Saltiel AR,Kahn CR. Insulin singnaling and the regulation of glucose and lipid metabolism Nature, 2001, 414:799-812.
    17. Litherland G,Hajduch E,Hundal HS. Intracellular signaling mechanisms regulating glucose transport in insulin sensitive tissues.Mol Metnbr Biol, 2001,18:195-204.
    18.陈家伦.胰岛素信号转导及临床意义(上).国外医学内分泌学分册,2002, 22(1):1-4.
    19.陈家伦.胰岛素信号转导及临床意义(下).国外医学内分泌学分册,2002,22(2):65-68.
    20. Michael MD, Kulkarni RN, Postic C, et al. Loss of insulin signaling in hepocytes leads to sevear insulin resistance and progressive hepatic dysfunction. Mol cell, 2000, 6:87-97.
    21. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest, 2000, 105:199-205.
    22. Goldstein BJ, Ahmad F, Ding W, et al. Regulation of the insulin signaling pathway by cellular protein-tyrosine phosphatases. Mol Cell Biochem, 1998, 182:91-99.
    23. Carvalho E, Jansson PA, Axelsen M, et al. Low cellular IRS-1 gene and protein expression predict insulin resistance and NIDDM. The FASEB Journal, 1999, 13:2173-2178.
    24. Dominici FP, Hauck S, Argentino DP, et al. Increased insulin sensitivity and up-regulation of insulin receptor, insulin receptor substrate (IRS)-1 and IRS-2 in liver of Ames dwarf mice. J Ebdocrinol, 2002, 173(1):81-94.
    25. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest, 2000, 105:199-205.
    26. Yu C, Cline G W, et al. Mechanism by which fatty acids inhibit insulin activation of IRS-1 associated phosphatidylinositol 3-kinase activity in muscle. Journal of Biological Chemistry, 2002, 277(52):50230-50236.
    27. Fasshauer M, Klein J, Ueki K, et al. Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. J Biol Chem, 2000,275 (33):25494-501.
    28. Kadowaki T. Insights into insulin resistance and type2 diabete from knock out mouse models. J Clin Invest, 2000, 106(4):459-465.
    29. Kido Y, Burks DJ, Withers D, et al. Tissue-specific insulin resistance in mice with mutations in the insulin receptor, IRS-1, and IRS-2. J Clin Invest, 2000, 105:199-205.
    30.张旭照,应晨江,刘烈刚,等.酒精对大鼠胰岛素敏感性和骨骼肌胰岛素受体底物mRNA表达的影响.中华预防医学杂志,2004,38(5):335-338.
    31. Tuma DJ,Casey CA,Sorrell MF. Chronic ethanol-induced impairments in receptor-mediated endocytosis of insulin in rat hepatocytes. Alcohol Clin Exp Res, 1991, 15(5):808-13.
    32.周绍良,郝丽萍,陈轶英等.长期酒精摄入对雄性大鼠胰岛素敏感性及肝脏IR、IRS-1、IRS-2 mRNA表达的影响.卫生研究,2006,35(3):294-296.
    33. Kerouz NJ, H?rsch D, Pons S,et al.Differential regulation of insulin receptor substrates-1 and -2 (IRS-1 and IRS-2) and phosphatidylinositol 3-kinase isoforms in liver and muscle of the obese diabetic (ob/ob) mouse. J Clin Invest, 1997,100:3164-172.
    34. Marette A, Richardson JM, Ramlal T, et al. Abundance, localization and insulin-induced translocation of glucose transporters in red and white muscle. AM J Physoil, 1992, 263(2 pt 1):C433-52.
    35. Kadowaki.T. insights into insulin resistance and type 2 diabetes from knock-out mouse models. J Clin Invest,2000,106(4);459-465.
    36. Czech MP,Corvera S. Signaling mechanisms that regulate glucose trans-port. J Biol Chem,1999,274(4):1865-1868.
    37. Morris JZ, Tissenbaum HA, Ruvkun GA. phosphatidylinositol 3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature, 1996, 382:536-539.
    38. Franke TF, Kaplan DR, Cantley LC. PI3K:downstream Aktion blocks apoptosis.cell, 1997,88:435-437.
    39. Virkamaki A,Ueki K,Kahn CR,et al.Protein一protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest,1999,103 :931-943.
    40. Dhand R,Hiles I,Panayotou G, et al. PI3-Kinase is a clial specificity enzyme: autsregulation by an intrinsic ptotein- serin- serin kinase activity. Embo J, 1994, 13:552-533.
    41. Jiang ZY, Lin YW, Clemont A. Characterization of selective resistance to insulin signaling in the vasculature of obese Zucker rats. J Clin Invest, 1999, 104:447-457.
    42. Anai M, Funaki M, Ogihara T, et al. Enhanced insulin-stimulated activation of phosphatidylinositol
    3-kinase in the liver of high-fat-fed rats. Disbetes, 1999, 48(1):158-169.
    43. Andreelli F, Laville M, Ducluzeau PH, et al. Defective regulation of phosphatidylinositol 3-kinase gene expression in skeletal muscle and adipose tissue of non-insulin-dependent diabetes mellitus patients. Diabetologia, 1999, 42(3):358-364.
    44. Czech MP, Corvera S. Signaling mechanisms that regulate glucose transport. J Biol Chem, 1999, 274:1865-1868.
    45. Yu Zhiwen, Buren J, Nilsson E, et al. Insulin can enhance GLUT4 gene expression in 3T3-F442A cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose-potenfial implications for insulin resistance. Biochimica et Biophysica Acta (BBA)/Molecular Basis of Disease, 2001, 1535: 174 -185.
    46. Katz BB, Burcelin R, Tson TS, et al. The metabolic consequences of alterd glucose transporter expression in transgentic mice. Mol Med, 1996, 74:639-652.
    47. Carey AL, Lamont B, Andrikopoulos S, et al. Interleukin-6 gene expression is increased in insulin-resistant rat skeletal muscle following insulin stimulation. Biochemical and Biophysical Research Communications, 2003, 302:837-840.
    48. James DE,Piper RC,Slot JW. Insulin stimulation of GLUT4 translocation:a model for regulated recycling. Trends Cell Biol,1994,4(4):120-126.
    49. Mingone G, Rosa G, Rocco P,et al .Skeletal muscle triglycerideslowering is associated with net improvement of insulin sensitivity,TNF-a reduction and GLUT4 expression enhancement[J].Int J Obes Relat Metab Disord , 2002, 26 (9) :1165-1172.
    50. Zisman A,Peroni O,Abel E, et al. Targeted disruption of the glucose transporter 4 selectively in muscle causes insulin resistance and glucose intolerance .Nat Med, 2000, 6(8):924-928.
    51. Zierath JR, Krook A, Wallbery H, et al. Insulin action in skeletal muscal from patient with NIDDM. Mol Cell Biochem, 1998, 182:153-160.
    52. Maier VH, Gould GW. Long time insulin treatment of 3T3-L1 adipocytes results in mis-tsrgeting of GLUT4: implication for insulin stimulated glucose transport. Diabetology, 2000, 43:1273-1281.
    53. Zierath JR, Galuska D, Nolte LA, et al. Effects of glycaemia on glucose transport in isolated skeletal muscle from patients with NIDDM: in vitro reversal of muscular insulin resistance. Diabetologia, 1994, 27:270-277.
    54. Poirier MLA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: Regulation by heterotrimeric G-proteins. Biochem J, 2001,354, 323-330.
    55. Onishi Y, Honda M, Ogihara T, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun, 2003, 303:788-794.
    56. Wilkes JJ, Nagy LE. Chronic ethanol feeding impairs glucose tolerance but does not produce skeletal muscle insulin resistance in rat epitrochlearis muscle. Alcohol Clin Exp Res,1996,20:1016-022.
    57. Chen L, Nyomba BL. Effects of prenatal alcohol exposure on glucose tolerance in the rat offspring. Metabolism,2003,52(4):454-62.
    1. Livy DJ, Parnell SE, West JR.. Blood ethanol concentration profiles:a comparison between rats and mice. Alcohol, 2003, 29:165-171.
    2. Hong-Brown LQ, Frost RA, Lang CH. Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res, 2001, 25(9):1373-1383.
    3. Liping Hao, Xuzhao Zhang, Wei Qu, et al. Influence of Alcohol Consumption on Insulin Sensitivity and IRS-1 mRNA Expression in Skeletal Muscle of Rats. Chinese Journal of Chronic Disease. 2005, 4(3): 21-27.
    4. Wick AN, Drury DR, Nakada HI, et al. Locatization of the primary metabolic blook produced by
    2-deoxyglucose.J Biol Chem, 1957, 224:963-969.
    5. Carvalho E,Rondinone C,Smith U. Insulin resistance in fat cells from obese Zucker rats-evidence for an impaired activation and translocation of protein kinase B and glucose transporter 4. Mol Cel Biochem, 2000, 206(1-2):7-16.
    6. Le Marchand Brustel Y, Tanti JF, Cormont M, et al. From insulin receptor signaling to Glut4 translocation abnormalities in obesity and insulin resistance. J Recept Signal Transdut Res, 1999, 19: 217-228.
    7. Ishizuka T, Miura A, Kajita K. Alterationsin in sulin-induced postreceptor signaling in a dipocytes of the Otsuka Long-Evas Tokushima fatty rat strain. J Endocrinol, 1998, 156:1-13.
    8.曾旭辉,徐健华,周专,等.大鼠胰岛B细胞原代培养的一种实用方法.华中理工大学学报,1998,26(5):24-26.
    9. David L.Spector, Robert D.Goldman,Leslie A.Leinwand,主编.黄培堂等译.第10节鸡胚胎成肌细胞的分离和培养.细胞实验指南,北京:科学出版社,2001,71-78.
    10. Rothman DL,Schulman RG,Schulman GI. 31 P nuclear magnetic resonance measurements of muscle glucose-6-phosphate: evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-depent diabetes mellitus. J Clin Invest,1992,89:1062-1075.
    11.曾天舒,袁莉,陈路路.肿瘤坏死因子α对3T3-L1细胞葡萄糖摄取和IRS-1信号通路的影响.中国免疫学杂志,2006,22(9):830-834.
    12. Vagts AJ, He DY,Yaka R, et al. Cellular adaptation to chronic ethanol results in altered compartmentalization and function of the scaffolding protein RACK1. Alcoholism: Clinical and Experimental Research, 2003, 27(10):1599-1605.
    13. Shih CL,Chi SI,Chiu TH,et al. Ethanol effects on nitric oxide production in cerebral pial cultures. Alcoholism: Clinical and Experimental Research, 2001, 25:612-618.
    14.郝丽萍,胡学锋,庞红,等.乙醇对小鼠胰岛瘤细胞凋亡的影响及其分子机制.毒理学杂志,2006, 20(3):138-140.
    15. Wick AN, Drury DR, Nakada HI, et al. Locatization of the primary metabolic blook produced by 2-deoxyglucose. J Biol Chem,1957,224:963-969
    16.沃格尔HG,沃格尔WH.药理学实验指南—新药发现和药理学评价.科学出版社,2001,第一版.
    17. BO YU, Adrienne Schroeder, LAURA EN. Ethanol stimulates glucose uptake and translocation of GLUT-4 in H9c2 myotubes via a Ca2+ dependent mechanism. Am J Physiol Endocrinol Metab, 2000, 279: E1358–E1365.
    18. Sun XJ,Rothenberg P, Kabncr, et al. Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature,1991,352:73-77.
    19. Onishi Y, Honda M, Ogihara T, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun, 2003, 303:788-794.
    20. Sasaki Y, Hayashi N, Ito T, Fusamoto H, Kamada T, Wands JR. Influence of ethanol on insulin receptor substrate-1 mediated signal transduction during rat liver regeneration. Alcohol, 1994,29(1):99-106.
    21. Matsumoto J, Kaneda M, Tada M,et al. Differential mechanisms of constitutive Akt/PKB activation and its influence on gene expression in pancreatic cancer cells.Jpn J Cancer Res,2002,93(12):1317-1326.
    22. Boos J. A target for phosphoinositide 3-kinase: Akt/PKB. TIBS, 1995, 4:441-442.
    23. Franke TF,Kaplan DR,Cantley LC,et al. Direct regulation of the Akt pro-to-oncogene product by phosphatidylinositol 3,4-bisphosphate. Science, 1997,275(5300):665-668.
    24. Lawlor MA,Alessi D. PKB/Akt:a key mediator of cell proliferation,survival and insulin responses? J Cell Sci, 2001, 114(16):2903-2910.
    25. Cho H,Mu J,Kim JK,et al. Insulin resistance and a diabetes mellitus like syndrome in mice lacking the protein kinase Akt2(PKB beta).Science,2001, 292(5522):1728-1731.
    26. Kohn AD,Summers SA,Birnbaum MJ,et al. Expression of a constitutively active Akt ser/thr kinase in 3T3-Ll adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Bio Chew, 1996, 21(49): 31372-31378.
    27. Brozinick JT, Birnbaum MJ: Insulin, but not contraction, activate Akt/PKB in isolated rat skeletal muscle. J Biol Chem, 1998, 273:14679–14682.
    28. Brozinick JT, Roberts BR and Dohm GL. Defective Signaling Through Akt-2 and -3 But Not Akt-1 in Insulin-Resistant Human Skeletal Muscle. Diabetes, 2003, 52:935-941.
    29. Zisman A,Peroni O,Abel E, et al. Targeted disruption of the glucose transporter 4 selectively inmuscle causes insulin resistance and glucose intolerance. Nat Med, 2000, 6(8):924-928.
    30. Maier VH, Gould GW. Long time insulin treatment of 3T3-L1 adipocytes results in mis-tsrgeting of GLUT4: implication for insulin stimulated glucose transport. Diabetology, 2000, 43:1273-1281.
    31. Poirier MLA, Rachdaoui N, Nagy LE. GLUT4 vesicle trafficking in rat adipocytes after ethanol feeding: Regulation by heterotrimeric G-proteins. Biochem J, 2001,354, 323-330.
    1王维治,张丽梅.饮酒、慢性酒精中毒及治疗对策.世界医学杂志, 2000,4(5):56-59.
    2 Luchsinger JA, Tang MX, Siddiqui M, Shea S, Mayeux R. Alcohol intake and risk of dementia. J Am Geriatr Soc, 2004, 52(4):540-6.
    3庄辉.酒精性肝病的流行病学.中华肝脏病杂志.2003,11:689.
    4武世荣.韩曙光.李晋.王选.酒精性急性胰腺炎53例报告.Proceeding of Clinical Medicine J.Oct, 2003, 12:746~747.
    5 Mayer EJ, Newman B, Quesenberry CPJr, Frieman GD, Selby JV. Alcohol consumption and insulin concentrations. Role of insulin in associations of alcohol intake with high-density lipoprotein cholesterol and triglycerides. Circulation, 1993, 88: 2190-2197.
    6 Razay G, Heaton KW. Alcohol consumption and cardiovascular risk factors in middle aged men. Cardiovasc Risk Factors, 1995, 5: 200-205.
    7 Kiechl S, Willeit J, Poewe W, Egger G, Oberhollenzer F, Muggeo M, Bonora E. Insulin sensitivity and regular alcohol consumption: large, prospective, cross sectional population study (Bruneck study). Br Med J, 1996, 313: 1040-1044.
    8 Konrat C, Mennen LI, Caces E, Lepinay P, Rakotozafy F, Forhan A, Balkau B; D.E.S.I.R. Study Group. Alcohol intake and fasting insulin in French men and women. The D.E.S.I.R. Study. Diabetes Metab, 2002, 28: 116-123.
    9 Flanagan DE, Moore VM, Godsland IF, Cockington RA, Robinson JS, Phillips DI. Alcohol consumption and insulin resistance in young adults. Eur J Clin Invest, 2000, 30: 297-301.
    10 Davies MJ, Baer DJ, Judd JT, Brown ED, Campbell WS, Taylor PR. Effects of moderate alcohol intake on fasting insulin and glucose concentrations and insulin sensitivity in postmenopausal women: a randomized controlled trial. JAMA, 2002,287: 2559-2562.
    11 Facchini F, Chen YDI, Reaven GM. Light-to-moderate alcohol intake is associated with enhanced insulin sensitivity. Diabetes Care, 1994, 17: 115-119.
    12 Goude D, Fagerberg B, Hulthe J. Alcohol consumption, the metabolic syndrome and insulin resistance in 58-year-old clinically healthy men (AIR study). Clin Sci 2002; 102: 345-352.
    13 Razay G, Heaton KW. Alcohol consumption and cardiovascular risk factors in middle agedmen. Cardiovasc Risk Factors , 1995, 5: 200-205.
    14 Lazarus R, Sparrow D, Weiss ST. Alcohol intake and insulin levels. The normative aging study. Am J Epidemiol, 1997, 145: 909-916.
    15 Bell RA, Mayer-Davis EJ, Martin MA, D'Agostino RB, Haffner SM. Associations between alcohol consumption and insulin sensitivity and cardiovascular disease risk factors: Insulin Resistance and Atherosclerosis Study. Diabetes Care, 2000, 23: 1630-1636.
    16 Wei M, Gibbons LW, Mitchell TL, Kampert JB, Blair SN. Alcohol intake and incidence of type 2 diabetes in men. Diabetes Care, 2000, 23:18-22.
    17 de Vegt F, Dekker JM, Groeneveld WJ, Nijpels G, Stehouwer CD, Bouter LM, Heine RJ. Moderate alcohol consumption is associated with lower risk for incident diabetes and mortality: the Hoorn Study. Diabetes Research and Chinical Practice, 2002, 57:53-60.
    18 Holbrook TL, Barrett-Connor E, Wingard DL. A prospective population-based study of alcohol and non-insulin-dependent diabetes mellitus. Am J Epidemiol, 1990, 132:902-9.
    19 Balkau B, Randrianjohany A, Papoz L, Eschwege E. Re: "A prospective population-based study of alcohol use and non-insulin-dependent diabetes mellitus". Am J Epidemiol, 1991, 134: 1469 -70.
    20 Tsumura K, Hayashi T, Suematsu C, Endo G, Fujii S, Okada K. Daily alcohol consumption and the risk of type 2 diabetes in Japanese men: the Osaka Health Survey. Diabetes Care, 1999,22:1432-7.
    21 Wannamethee SG, Shaper AG, Perry IJ, Alberti KG. Alcohol consumpation and the incidence of typeⅡdiabetes. J Epidemiol Community Health, 2002, 56:542-8.
    22 Watanabe M, Barzi F, Neal B, Ueshima H, Miyoshi Y, Okayama A, Choudhury SR. Alcohol consumption and the risk of diabetes by body mass index levels in a cohort of 5,636 Japanese. Diabetes Res Clin Pract, 2002, 57:191-7.
    23 Carlsson S, Hammar N, Efendic S, Persson PG, Ostenson CG, Grill V. Alcohol consumption, type 2 diabetse mellitus and impaired glucose tolerance in middle-aged Swedish men. Diabet Med, 2000, 17(11):776-81.
    24 Lieber CS. Alcohol and the liver. Hepatology, 1984; 4: 1243-1260.
    25 Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition of gluconeogenesis following alcohol in humans. Am J Physiol, 1998; 275: 897-907.
    26 Vrij-Standhardt WG. Effects of alcohol on the metabolism of macronutrients In Biomedical and Social Aspects of Alcohol Use: A Review of the Literature. Van der Heij DG , Schaafsma G (eds). Pudoc: Wageningen, 1995; 62-71.
    27 O'Keefe SJD, Marks V. Lunchtime gin and tonic. A cause of reactive hypoglycaemia. Lancet,1997; i: 1286-1288.
    28 Yki-Jarvinen H, Nikkila EA. Ethanol decreases glucose utilization in healthy men. J Clin Endocrinol Metab, 1985; 61: 941-945.
    29 Shelmet JJ, Reichard GA, Skutches CL, Hoeldtke RD, Owen OE, Boden G. Ethanol causes acute inhibition of carbohydrate, fat and protein oxidation and insulin resistance. J Clin Invest, 1988; 81: 1137-1145.
    30 Joffe BI, Shires R, Lamprey JM, Baker SG, Seftel HC. Effect of drinking bottled beer on plasma insulin and glucose responses in normal subjects. S Afr Med J, 1982; 62: 95-97.
    31 Avogaro A, Watanabe RM, Gottardo L, Kreutzenberg S, Tiengo A, Pacini G. Glucose tolerance during moderate alcohol intake: insights on insulin action from glucose/lactate dynamics. J Clin Endocrinol Metab, 2002; 87: 1233-1238.
    32 Christiansen C, Thomsen C, Rasmussen O, Hauerslev C,Balle M, Hansen C, Hermansen K. Effect of alcohol on glucose, insulin, free fatty acid and triacylglycerol responses to a light meal in non-insulin-dependent diabetic subjects. Br J Nutr 1994; 71(3): 449-454.
    33曲巍,郝丽萍,于东,等.长期乙醇摄入对大鼠胰岛形态结构与功能影响.中国公共卫生,2006,22 (7):781-783.
    34 Koko V, Todorovic V, Nikolic JA, Glisic R, Cakic M, Lackovic V, Petronijevic L, Stojkovic M, Varagic J, Janic B, et al. Rat pancreatic B-cells after chronic alcohol feeding. A morphometric and fine structural study. Histol Histopathol, 1995, 10(2):325-37.
    35李光伟.胰岛β细胞功能评估.国外医学内分泌分册,2001;21(5):225-227.
    36张军,孙秀发,唐丽.长期摄入酒精对大鼠血糖和胰岛素的影响.卫生研究,2002;31(2):88-90.
    37付元华,孙秀发,曲巍,等.长期酒精摄入对大鼠胰岛的影响及与氧化应激关系的探讨.卫生研究,2004;33(4):440-443.
    38曲巍,孙秀发,付元华,等.过量酒精摄入对大鼠细胞因子及胰岛的影响.中国公共卫生,2004;20(10):1174-1175.
    39 Tiengo A, Valerio A, Molinari M, Meneghel A, Lapolla A. Effect of ethanol, acetaldehyde and acetate on insulin and glucagons secretion in the perfused rat pancreas. Diabetes 1981,30:705-9.
    40 Walsh CH, O’Sullivan DJ, Cork I. Effect of moderate alcohol intake on control of diabetes. Diabetes 1974, 23:440-2.
    41 Holley DC, Bagby GJ, Curry DL. Ethanol-insulin interrelationships in the rat studies in vitro and in vivo: evidence for direct ethanol inhibition of biphasic glucose-induced insulin secretion. Metabolism, 1981, 30:894-9.
    42 Shin JS, Lee JJ, Yang JW, Kim CW. Ethanol decreases basal insulin secretion from HIT-T15 cells. Life sci 2002, 70:1989-97.
    43庞红,张军,毛丽梅,杨年红,应晨江,郝丽萍,孙秀发.长期酒精摄入对大鼠糖酵解途径关键酶活性的影响.卫生研究,2004;33(2):195-197.
    44 Nicholson DW,Thornberry NA.Caspases:killer proteases.Trends Biochem Sci,1997,22:299-306.
    45 Cohen GM.Caspases:the executioners of apoptosis.Biochem J,1997,326:1-16.
    46 Thornberry NA, Lazebnik Y.Caspases:enemies within.Science,1998,281:1312-1316.
    47 Tsiotra PC, Tsigos C, Raptis SA. TNFalpha and leptin inhibit basal and glucose-stimulated insulin secretion and gene transcription in the HIT-T15 pancreatic cells.Int Obes Relat Metab Disord,2001,25(7):1018-1026.
    48 Southern C, Schulster D, Green IC. Inhibition of insulin secretion from rat islets of Langerhans by interleukin-6. An effect distinct from that of interleukin-1.Biochem J, 1990, 272:243-245.
    49 Onishi Y, Honda M, Ogihara T, et al. Ethanol feeding induces insulin resistance with enhanced PI 3-kinase activation. Biochem Biophys Res Commun, 2003, 303: 788-794.
    50 Wilkes JJ, DeForrest LL, hagy LE. Chronic ethanol feeding in a high-fat diet decreases insulin-stimulated glucose transport in rat adipocytes. Am J Physiol,1996,271:E477-E484.
    51 Patel BC, D'Arville C, Iwahashi M, et al. Impairment of hepatic insulin receptors during chronic ethanol administration. Am J Physiol, 1991, 261 (2Pt1):G199-205.
    52 Furuya, DT, Binsack, R, Machado, UF, et al. Low ethanol consumption increases insulin sensitivity in Wistar rats. Brazilian Journal of Medical and Biological Research, 2003,36: 125– 130.
    53 Daniela TF, Ralf B, Mary EO, et al. Low ethanol consumption induces enhancement of insulin sensitivity in liver of normal rats. Life sciences,2005,77:1813-1824.
    54 Shelmet J.J, Reichard G.A, Skutches C.L, et al. Ethanol causes acute inhibition of carbohydrate,fat, and protein oxidation and insulin resistance. J Clin Invest, 1988, 81: 1137-1145.
    55 Avogaro A, Valerio A, Miola M, et al. Ethanol impairs insulin-mediated glucose uptake by an indirect mechanism. J Clin Endocrinol Metab, 1996, 81: 2285–2290.
    56 Xu D, Dhillon AS, Davey CG, Alcohol and glucose metabolism in skeletal muscles in the rat. Addict Biol, 1996, 1(1):71-83.
    57 Rimm E.B., Williams P., Fosher K., et al., Moderate alcohol intake and lower risk of coronary heart disease: meta-analysis of effects on lipids and haemostatic factors, Br. Med. J., 1999, 319: 1523 -1528.
    58 Cynthia G. Van Horn, Priscilla Ivester, et al. Chronic Ethanol Consumption and Liver Glycogen Synthesis. Archives of Biochemistry and Biophysics, 2001,392(1): 145–152
    59 Gaziano JM, Buring JE, Breslow JL, et al. Moderate alcohol intake, increased levels of high-density lipoprotein and its subfractions, and decreased risk of myocardial infarction. N Engl J Med., 1993, 329: 1829–1834.
    60 Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet, 1991, 338:464-468.
    61 Silva ER, Foster D, Harper MM,et al. Alcohol Consumption Raises HDL Cholesterol Levels by Increasing the Transport Rate of Apolipoproteins A-I and A-II. Circulation, 2000, 102: 2347 - 2352.
    62 Boden G. Effects of free fatty acids (FFA) on glucose metabolism: significance for insulin resistance and type 2 diabetes. Exp Clin Endocrinol Diabetes, 2003, 111(3):121-124.
    63 Yu C, Chen Y, Cline GW, et al., Mechanism by which Fatty Acids Inhibit Insulin Activation of IRS-1 Associated Phosphatidylinositol 3-Kinase Activity in Muscle. J. Biol. Chem., 2002, 277: 50230 - 50236.
    64 Avogaro A, Watanabe RM, Gottardo L, Glucose tolerance during moderate alcohol intake: insights on insulin action from glucose/lactate dynamics. J Clin Endocrinol Metab, 2002, 87(3):1233-1238.
    65 Kato I, Kiyohara Y, Kubo M, et al. Insulin-mediated effects of alcohol intake on serum lipid levels in a general population: The Hisayama Study Journal of Clinical Epidemiology,2003, 56:196–204.
    66 Grimble, R.F. Inflammatory status and insulin resistance. Curr.Opin. Clin. Nutr. Metab. Care.2002, 5:551–559.
    67 Festa A, D'Agostino R Jr, Howard G, et al. Chronic subclinical inflammation as part of the insulin resistance syndrome: the Insulin Resistance Atherosclerosis Study (IRAS). Circulation, 2000, 102(1):42–47.
    68 Hotamisligil GS, Spiegelman BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes, 1994, 43:1271–1278.
    69 Xu H., Barnes G.T, Yang Q.et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest, 2003, 112:1821–1830.
    70 Albert MA, Glynn RJ, Ridker PM. Alcohol consumption and plasma concentration of C-reactive protein. Circulation, 2003, 107(3):443-447.
    71 Kishiore R., McMullen MR, Nagy LE. Stabilization of Tumor Necrosis Factor-αmRNA by Chronic Ethahol: role of A+U-rich elements and p38 mitogen-activated protein kinase signalingpathway.The Journal of Biological Chemistry, 2001, 276(45):41930-41937.
    72 Volpato S, Pahor M and Ferrucci L, et al. Relationship of alcohol intake with inflammatory markers and plasminogen activator inhibitor-1 in well-functioning older adults: the Health, Aging, and Body Composition study. Circulation, 2004, 109(5):607-12.
    73 Patel BC, D'Arville C, Iwahashi M, et al. Impairment of hepatic insulin receptors during chronic ethanol administration. AM J Physiol,1991,261(2 Pt 1):G199-205
    74 de la Monte SM, Ganju N, Tanaka S, et al. Differential effects of ethanol on insulin-signaling through the insulin receptor substrate-1. Alcohol Clin Exp Res, 1999, 23(5):770-777.
    75 Hong-Brown LQ, Frost RA, Lang CH. Alcohol impairs protein synthesis and degradation in cultured skeletal muscle cells. Alcohol Clin Exp Res 2001, 25(9):1373-82.
    76张旭照.应晨江.刘烈刚,等.酒精对大鼠胰岛素敏感性和骨骼肌胰岛素受体底物mRNA表达的影响.中华预防医学杂志,2004,38(5):335-338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700