爆燃助推钻地弹侵彻混凝土过程的试验研究及数值仿真
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由多级爆燃助推机构串联组成的爆燃助推钻地弹是一种新概念钻地弹,通过多级火药燃烧助推能够得到更深的侵彻深度。本文运用试验研究和数值模拟等方法全面系统地研究了爆燃助推钻地弹对混凝土目标的侵彻过程,给爆燃助推钻地弹的研制提供重要参考和理论依据。本文的主要研究内容包括以下几个方面:
     1)研究了碎裂区混凝土的运动及损伤情况。设计缩比试验,制作了彩色分层混凝土靶体,侵彻后将靶体切开,依据混凝土不同的颜色观察到弹孔周边3倍以上弹径的混凝土区域发生了位移,根据切割断面的干湿分界线判断出混凝土碎裂区的损伤情况。用LS-DYNA软件进行了仿真,得到与试验结果相近的数据,再将此种仿真方法扩展到真实弹的侵彻研究上,得到了碎裂区混凝土的运动及损伤情况,为爆燃助推机构设计方案的制定提供了重要参考。
     2)研究了爆燃助推机构的点火延时并建立了内弹道模型。开展了双药室延时点火试验,测量了两个药室的压力变化情况,讨论了小孔延时点火部件的作用过程和各药室内压力的变化规律。建立了相应的内弹道计算模型并进行了计算,通过将理论计算的压力曲线与试验测得的曲线进行对比分析,证实了模型的正确性,并根据此方法建立了爆燃助推机构工作的内弹道模型,为多级助推机构的合理配合提供了设计依据。
     3)研究了爆燃助推钻地弹侵彻混凝土的阻力公式并建立了工程计算模型。基于经典的空腔膨胀解析模型,考虑侵彻过程中弹丸加速度对侵彻阻力的影响,参考Li和Chen给出的Forrestal阻力修正模型,求得被他们研究中忽略了的对阻力有影响的加速度项,提出了一种能够适用于助推钻地弹的侵彻混凝土半经验阻力计算公式。结合爆燃助推机构的内弹道模型,建立了爆燃助推侵彻过程的工程计算模型。
     4)建立了爆燃助推钻地弹侵彻混凝土过程的数值仿真模型。采用LS-DYNA程序进行了爆燃助推钻地弹动能侵彻混凝土过程的三维数值模拟研究,确定了合理的有限元仿真模型,选取了合适的材料模型和参数。根据本文的研究现状,选取内弹道模型仿真爆燃助推过程,确定了与数值仿真模型的数据交换方式并对三级爆燃助推钻地弹侵彻混凝土的过程进行了数值模拟。
     5)开展了三级爆燃助推钻地弹动能及爆燃助推侵彻混凝土的试验研究。动能侵彻试验验证了弹丸结构及各主要部件能够承受动能侵彻过载,为理论研究中参数变量等的选取提供了试验数据。爆燃助推侵彻能增加近20%的侵彻深度,试验表明爆燃助推增侵原理是完全可行的,总体设计方案是合理的,也验证了文中建立的计算模型的正确性。
     6)对爆燃助推钻地弹侵彻深度的影响因素进行了研究。通过计算得出了在弹丸设计时引信点火时刻、小孔点火延时、弹丸各级质量分布、弹丸各级爆燃助推机构内火药装药量分布及各级火药种类的选择等几个主要技术要点对增加弹丸侵彻深度的影响,提出了这些技术要点的一般设计原则,并提出了三级爆燃助推钻地弹的改进设计方案。
The deflagration boosting projectile, which is composed of multi-stage deflagration boosting mechanisms, is a new concept Earth Penetrating Weapon. Owing to the multi-stage deflagration boosting, it can obtain much deeper penetration depth. Through experimental methods and numerical simulations, the process that deflagration boosting projectile penetrates into concrete targets is across-the-board researched in this dissertation, and the research results can afford some important reference and theoretical basis for the manufacturing of deflagration boosting projectile. The followings are the main contents of this dissertation:
     1) The movement and damage situations of the fracture-zone concrete are researched. In the research, the subscale test is designed and multilayer colorized concrete target is made. After been penetrated by the kinetic energy projectile, the target is cut. Because the concrete in different part has different color, the displacement of the concrete in the region which is the part surrounding the bullet-hole and is more than triple projectile diameter is easily found. Basing on dry and wet dividing line on the concrete cut surface, the damage of the fracture zone is obtained. The experiment is simulated with LS-DYNA3D, and the numerical analysis tallies closely the experiment. Then the simulation study method is used in the penetrating study of the real projectile, and the movement and damage situations of the fracture-zone concrete are obtained. It affords some important references for design of the deflagration boosting mechanism.
     2) The keyhole delayed ignition technology in deflagration boosting mechanism is researched, and its interior ballistics model is established. The interior ballistic experiment of double-chamber fire mechanism is done, and the changing situations of pressure in two chambers are measured in the experiment. Then the working process of the keyhole delayed ignition device and the change laws of pressure in each chamber are discussed. After that, the interior ballistics model is established and the calculation is done. Comparing the pressure-time curve which is obtained by the theoretic calculation with the curve which is measured in the experiment, it shows that the model is correct. So the interior ballistics model of the deflagration boosting mechanism is established by this method.
     3) The semi-empirical calculation formula of penetration resistance which can be used for deflagration boosting projectile penetrating into concrete targets is researched, and its engineering calculation model is established. Li and Chen deduce the Forrestal resistance modified model, but the acceleration term affecting the resistance is ignored in their researches. Basing on the cavity-expansion theory and considering the influences of projectile acceleration on penetration resistance in the penetrating process, it solves the acceleration term and deduces the semi-empirical calculation formula of penetration resistance. Then combining the study of the interior ballistics model, the engineering calculation model of the penetrating process is established.
     4) The numerical simulation model of the Process that deflagration boosting projectile penetrating into concrete targets is established. The process is simulated with LS-DYNA3D. The model which is built in finite element simulation is reasonable and the material model which is chosen is suitable. Then combining the research of this dissertation, the interior ballistics model is used to simulate the deflagration boosting process, and the technique of data exchange in simulation is determined. After that, the penetrating process is simulated.
     5) The kinetic energy and deflagration boosting penetrating into concrete targets experiments of the three-level deflagration boosting projectile are done. The kinetic energy penetrating experiment not only verifies that the projectile structure and the main components can endure the overload in the kinetic energy penetrating, but also provides the test data for the parameter selection in the theoretical research. The deflagration boosting penetrating experiment shows that the penetration depth increases by nearly20%through the deflagration boosting, the design scheme is rational, and the model is proper.
     6) The research of influence factor in the deflagration boosting projectile's penetration depth is done. Through the calculation, the influences of technical points on penetration depth are researched. The technical points include the ignition timing of fuse, the keyhole delayed ignition, the mass distribution of the projectile, the charge weight of each deflagration boosting mechanism distribution, the species of gunpowder, and so on. Also the design principles of technical points are obtained. Then improved design scheme of the three-level deflagration boosting projectile is put forward.
引文
[1]金丰年等.深钻地武器的发展及其侵彻.解放军理工大学学报,2000,2(3):34-40
    [2]王涛等.国外钻地武器的现状与发展趋势.导弹与航天运载技术,2005,5:51-56
    [3]Backmann M E, Goldsmith W. The mechanics of penetration of projectiles into targets. Int J Engng Sci,1978,16:1-99
    [4]钱伟长.穿甲力学.国防工业出版社,1984
    [5]赵国志.穿甲工程力学.兵器工业出版社,1992
    [6]林晓,查宏振,魏惠之.撞击与侵彻力学.兵器工业出版社,1992
    [7]王儒策,赵国志.弹丸终点效应.北京理工大学出版社,1992
    [8]Anderson Jr C E, Bodner S R. Ballistic impact:the status of analytical and numerical modeling. Int J Impact Engng,1988,7:9-35
    [9]Goldsmith W. Non-ideal projectile impact on targets. Int J Impact Engng,1999,22: 95-395
    [10]Li Q M, Reid S R, Wen H M, Telford A R. Local impact effects of hard missiles on concrete targets. Int J Impact Engng,2005,32(14):224-284
    [11]Robertson HP. Terminal ballistics. National Research Council Washington,1941
    [12]Brown SJ. Energy release protection for pressurized system. Part Ⅱ:Review of studies into impact/terminal ballistics. Applied Mechanics Review.1986,39(2)
    [13]ACE. Fundamental of protective design. Office of the Chief of Engineers, Army Corps of Engineers, Report AT 1207821.1946
    [14]Young C W. The development of empirical equation for predicting depth of an earth penetrating projectiles. SC-DR-67-60,1967
    [15]Young C W. Depth prediction for earth-penetrating projectiles. J. of the Soil Mechanics and Foundations Division, Proceedings of the American Society of Civil Engineers, 1969:803-817
    [16]Young C W. Equation for predicting earth penetration by projectiles:an update. SAND-88-0013
    [17]Young C W. Penetration equations. SAND-97-2426,4-5
    [18]Young C W. Empirical equation for predicting penetration performance in layered earth materials for complex penetrator configurations. Sandia Lab, Report SC-DR-72-0523, 1972
    [19]Berard R S. Deep penetration theory for homogeneous and layered targets. S-75-9, 1975
    [20]Berard R S. Empirical analysis of projectile penetration in rock. AD-A047989,1977
    [21]Berard R S. Depth and motion prediction for earth penetrators. S-78-4,1978
    [22]TM5-1300. Structures to Resist the Effects of Accidental Explosions. Washington D C: Department of the Army,1965
    [23]Gwaltney R C. Missile generation and protection in light-water-cooled power reaction plants. USA, Tennessee, Oak Ridge National Laboratory, Report ORNL-USTC-22, 1968
    [24]NDRC. Effects of impact and explosion. National Defense Research Committee, Vol 1, Summarry Technical Report of Division 2, Washington D C.1946
    [25]Kennedy R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects. Nuclear Engineering and Design,1976,37:183-203
    [26]Kar A K. Local effects of tomado-generated misiles. J of Struct Div ASCE, May 1978, 104(ST5):809-815
    [27]Degen P P. Perforation of reinforced concrete slabs by rigid missiles. Journal of the Structural Division,1980,71:79-88
    [28]Haldar A, Miller F J. Penetration depth in concrete for no deformable missiles. Nuclear Engineering and Design,1982,71:79-88
    [29]Haldar A, Hamich H A, Miller F J. Concrete structures:penetration depth estimation. Journal of Structural Division, ACSE,1983,109(1):245-250
    [30]Haldar A, Hamich H A. Local effect of solid missiles on concrete structures. ASCE Journal of Structural Engineering,1984,110(5):948-960
    [31]Berriaud C, Sokolovsky A, Gueraud R, Dulac J, Labrot R. Local behavior of reinforced concrete walls under missile impact. Nuclear Engineering and Design,1978,45:457-469
    [32]Barr P. Guidelines for the design and assessment of concrete structures subjected to impact. Report, UK Atomic Energy Authority, Safety and Reliability Directorate, HMSO, London,1990
    [33]Hughes G. Hard missile impact on reinforced concrete. Nuclear Engineering and Design,1984,77:23-35
    [34]Forrestal M J, Luk V K. Penetration into soil targets. Int J Impact Engng,1992,12(3): 427-444
    [35]Forrestal M J, Altman B S, Cargile J D, Hanchak S J. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets. Proceedings of the sixth International Symposium on Interaction of Nonnuclear Munitions with Structures, Panama City Beach, May 3-7,1993:9-32
    [36]Forrestal M J, Altman B S, Cargile J D, Hanchak S J. An empirical equation for penetration of ogive-nose projectiles into concrete target. Int J Impact Engng,1994, 15(4):395-405
    [37]Forrestal M J, Frew D J, Hanchak S J, Brar N S. Penetration of grout and concrete targets with ogive-nose steel projectiles. Int J Impact Engng,1996,18(5):465-476
    [38]Frew D J, Hanchak S J, Green M L, Forrestal M J. Penetration of concrete targets with ogive-nose steel rods. Int J Impact Engng,1988,21:489-497
    [39]Forrestal M J, Frew D J, Hickerson J P, Rohwer T A. Penetration of concrete targets with deceleration-time measurements. Int J Impact Engng,2003,28:479-497
    [40]Qian L X, Yang Y B, Liu T. A semi-analytical model for truncated-ogive-nose projectiles penetration into semi-finite concrete targets. Int J Impact Engng,2000,24: 947-955
    [41]Tenland J A. Penetration into concrete by truncated projectiles. Int J Impact Engng, 2004,30:447-464
    [42]Chen X W, Li Q M. Local impact effects on high strength concrete by a non-deformable projectile. Proceedings of the 4th Asia-Pacific Conference on Shock and Impact Loads On Structures(SILOS/4),2001
    [43]Chen X W, Li Q M. Deep penetration of truncated-ogive-nose projectile into concrete target. Impact engineering and applications. In:Akira Chiba, Shinji Tanimura, Kazuyuki Hokamoto,eds. Proceedings of the 4th International Symposium on Impact Engineering(ISIE/4),2001
    [44]Chen X W, Li Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics. Int J Impact Engng,2002,27(6):619-637
    [45]Li Q M, Chen X W. Penetration into concrete targets by a hard projectile. Structures under shock and impact Ⅶ. In:Jones N, Brebbia CA, Rajendran AM,eds. Seventh International Conference on Structures under Shock and Impact(SUSI/7),2002,91-100
    [46]Li Q M, Chen X W. Dimensionless formulae for penetration depth of concrete target impacted by a nondeformable projectile. Int J Impact Engng,2003,28(1):93-116
    [47]Reid S R, Wen H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles. UMIST Report ME/AM/02.01/TE/G/018507/Z,2001
    [48]王浩,陶如意.截卵形弹头对混凝土靶侵彻性能的试验研究.爆炸与冲击,2005,25(2):171-175
    [49]范志锋,沈培辉,赵晓利.侵彻弹不同头部形状侵彻混凝土效率分析.弹箭与制导学报,2002,22(3):47-49
    [50]曾鉴荣,刘高敏,温殿英等.卵形弹侵彻混凝土靶实验研究.高压物理学报,1998,12(1):67-71
    [51]王道荣,孙宇新,郭扬.混凝土靶高速侵彻的模型律.弹道学报,2001,13(4):7-11
    [52]陈小伟.穿甲/侵彻问题的若干工程研究进展.力学进展,2009,39(3):316-351
    [53]文鹤鸣.混凝土靶板冲击响应的经验公式.爆炸与冲击,2003,23(3):267-274
    [54]陈小伟.混凝土靶的侵彻与穿甲理论.解放军理工大学学报,2007,8(5):486-496
    [55]王成华,史利平,徐孝诚.混凝土靶侵彻计算的半经验法.强度与环境,2007,34(2):31-37
    [56]葛涛,王明洋,周泽平等.混凝土靶体中侵彻与贯穿的过载估算方法.兵工学报,2007,28(5):516-519
    [57]石志勇,汤文辉,赵国民等.混凝土靶中侵彻深度的相似性研究.弹道学报,2005,17(1):62-68
    [58]尹放林,王明洋,钱七虎.弹体垂直侵彻深度工程计算模型.爆炸与冲击,1997,17(4):333-339
    [59]尹放林,严少华,钱七虎等.弹体侵彻深度计算公式对比研究.爆炸与冲击,2000,20(1):79-82
    [60]葛涛,王明洋,李晓军等.弹体冲击混凝土半无限靶的侵彻阻力与深度计算.振动与冲击,2008,27(1):107-110
    [61]代庆斌,晏麓晖,蒋志刚.混凝土靶板冲塞型穿孔模型研究.弹道学报,2005,17(3):26-30
    [62]皮爱国,黄风雷.大长细比弹体斜侵彻混凝土靶的动力学响应.爆炸与冲击,2007,27(4):331-338
    [63]顾晓辉,王晓鸣,陈惠武等.动能侵彻体垂直侵彻半无限厚混凝土靶的试验研究.实验力学,2004,19(1):104-108
    [64]顾晓辉,王晓鸣,陈惠武等.动能弹低速垂直侵彻钢筋混凝土的试验研究.南京理工大学学报,2006,30(1):1-4
    [65]段建,杨黔龙,周刚等.串联随进战斗部侵彻混凝土靶实验研究.爆炸与冲击,2007, 27(4):364-369
    [66]王可慧,初哲,周刚等.串联动能侵彻弹侵彻混凝土靶研究.高压物理学报,2005,19(1):93-96
    [67]程义,杨清文,吴硕.助推钻地弹侵彻混凝土靶研究.弹道学报,2006,18(2):72-74
    [68]陈小伟.动能深侵彻弹的力学设计(Ⅰ):侵彻/穿甲理论和弹体壁厚分析.爆炸与冲击,2005,25(6):449-505
    [69]陈小伟,金建明.动能深侵彻弹的力学设计(Ⅱ):弹靶的相关力学分析与实例.爆炸与冲击,2006,26(1):71-78
    [70]陈小伟,张方举,杨世全等.动能深侵彻弹的力学设计(Ⅲ):缩比实验分析.爆炸与冲击,2006,26(2):105-114
    [71]沈成康.弹体侵彻混凝上靶的挤凿机理分析方法.上海力学,1999,20(2):132-138
    [72]吴祥云,李永池,何翔等.细长弹体侵彻混凝土的机理研究.岩石力学与工程学报,2003,22(11):1817-1822
    [73]Bishop R F, Hill R, Mott N F. The theory of indentation and hardness tests. Proc Phys Soc,1945,57(3):147-159
    [74]Hill R. A theory of earth movement near a deep underground explosion. Armament Research Establishment,1948:21-48
    [75]Hopkins H G. Dynamic expansion of spherical cavities in metals. North-Holland Publishing,1960
    [76]Goodier J N. On the mechanics of indentation and cratering in solid targets of strain-hardening metal by impact of hard and soft spheres. AIAA Proc 7th symposium on Hypervelocity Impact Ⅲ,1965:215-259
    [77]Ross B, Hanagud S. Report N0014-71A0243, Stanford Research Institute, Mento Park, California,1971
    [78]Butler D K. An analytical study of projectile penetration in rock. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-7 AD-A012140,1975
    [79]Rohani B. Analysis of projectile penetration into concrete and rock targets. US Army Waterways Experiment Station, Vicksburg, Misc. Paper S-75-25 AD-A016909,1975
    [80]Bernard R S. A projectile penetration theory for layered targets. US Army Waterways Experiment Station, AD-A025976,1976
    [81]Forrestal M J, Longcope D B, Norwood F R. A model to estimate forces on conical penetrators into dry porous rock. ASME Journal Applied Mechanics,1981,48:25- 29
    [82]Longcope D B, Forrestal M J. Closed-form approximations for forces on conical penetrators into dry porous rock. ASME Journal Applied Mechanics,1981,48(4): 971-972
    [83]Forrestal M J, Norwood F R, Longcope D B. Penetration into targets described by locked hydrostats and shear strength. Int J Solids Struct,1981,17:915-924
    [84]Forrestal M J, Grady D E. Penetration experiments for normal impact into geologic targets. Int J Solids Struct,1982,18:229-234
    [85]Longcope D B, Forrestal M J. Penetration of target described by a Mohr-Coulomb failure criterion with a tension cut-off. ASME Journal Applied Mechanics,1983,50: 327-333
    [86]Forrestal M J, Longcope D B, Lee L M. Analytical and experimental studies on penetration into geological targets. Sandia National Laboratories, Albuquerque, Report AD-P001710,1983
    [87]Forrestal M J. Penetration into dry porous rock. Int J Solids Struct,1986,22:1485-1500
    [88]Forrestal M J, Luk V K. Dynamic spherical cavity-expansion in a compressible elastic-plastic solid. J Appl Phys,1988,55:275-279
    [89]Forrestal M J, Okajima K, Luk V K. Penetration of 6061-T651 aluminum targets with rigid long rods. ASME Journal Applied Mechanics,1988,55(4):755-760
    [90]Luk V K, Forrestal M J, Amos D E. Dynamic spherical cavity expansion of strain-hardening materials.1991,58:1-6
    [91]Forrestal M J, Brar N S, Luk V K. Penetration of strain-hardening targets with rigid spherical-nose rods. J Appl Mech,1991,58:7-10
    [92]Forrestal M J, Luk V K, Rosenberg Z, Brar N S. Penetration of 7075-T651 aluminum targets with ogival-nose rods. Int J Solids Struct,1992,29:1729-1736
    [93]Forrestal M J, Tzou D Y, Askari E, Longcope D B. Penetration into ductile metal targets with rigid spherical-nose rods. Int J Impact Engng,1995,16:699-710
    [94]Warren T L, Forrestal M J. Effects of strain hardening and strain-rate sensitivity on the penetration of aluminum targets with spherical-nosed rods. Int J Solids Struct,1998,35: 3737-3753
    [95]Piekutowski A J, Forrestal M J, Poormon K L, Warren T L. Penetration of 6061-T6511 aluminum targets by ogive-nose steel projectiles with striking velocities between 0.5 and 3.0 km/s. Int J Impact Engng,1999,23:723-734
    [96]Forrestal M J, Piekutowski A J. Penetration experiments with 6061-T6511 aluminum targets and spherical-nose steel projectiles at striking velocities between 0.5 and 3.0 km/s. Int J Impact Engng,2000,24:57-67
    [97]Luk V K, Forrestal M J. Penetration into semi-finite reinforced concrete targets with spherical and ogival nose projectiles. Int J Impact Engng,1987,6(4):291 -301
    [98]Forrestal M J, Longcope D B. Target strength of ceramic materials for high-velocity penetration. J Appl Phys,1990,67:3669-3672
    [99]Forrestal M J, Luk V K. Penetration into soil targets. Int J Impact Engng,1992,12: 427-444
    [100]Forrestal M J, Tzou D Y. A spherical cavity-expansion penetration model for concrete targets.Int J Solids Struct,1997,34:4127-4146
    [101]周辉,文鹤鸣.动态柱形空穴膨胀模型及其在侵彻问题中的应用.高压物理学报,2006,1:67-78
    [102]李建春.高速弹对半无限厚混凝土板的侵彻研究[博士论文].西安:西安交通大学,2001
    [103]魏雪英.长杆弹侵彻问题的理论研究[博士论文].西安:西安交通大学,2002
    [104]王延斌,俞茂宏,林俊德.弹体垂直侵彻混凝土靶体的柱形空腔膨胀理论分析.西安交通大学学报,2004,38(3):305-307
    [105]王延斌,张西前,俞茂宏等.长杆弹对岩石靶的侵彻分析.岩石力学与工程学报,2005,24(8):1301-1307
    [106]Yu M H, He L N. A new model and theory on yield and failure of materials under complex stress state. Mechanical Behaviors of Materials,1991:841-846
    [107]俞茂宏.双剪理论及其应用.北京:科学出版社,1998
    [108]王明洋,戎晓力,钱七虎等.弹体在岩石中侵彻与贯穿计算原理.岩石力学与工程学报,2003,22(11):1811-1816
    [109]尹放林,王明洋,钱七虎等.弹丸斜入射对侵彻深度的影响.爆炸与冲击,1998,18(1):69-76
    [110]王瑞臣,王志军,蔡汉文.弹丸斜侵彻混凝土介质的分析计算方法.弹道学报,2000,12(1):75-77
    [111]张迪,林逸汉,曹菊珍.混凝土靶体计及压实效应的球腔动态膨胀模型和侵彻计算.计算力学学报,2004,21(4):493-497
    [112]高世桥,刘海鹏,李科杰等.弹侵彻混凝土靶的法向膨胀理论.应用数学和力学, 2006,27(4):431-437
    [113]李志康,黄风雷.混凝土材料的动态空腔膨胀理论.爆炸与冲击,2009,29(1):95-100
    [114]刘小虎,王乘.弹丸垂直侵彻无钢筋混凝土数值模拟.工程力学增刊,2001,408-412
    [115]宋顺成,才鸿年.弹丸侵彻混凝土的SPH算法.爆炸与冲击,2003,23(1):56-60
    [116]张凤国,李恩征.弹体对半无限厚混凝土靶侵彻的数值分析.工程力学增刊,2001,336-339
    [117]沈成康,吴建成,翁智远.混凝土板在弹体冲击下的响应试验与数值模拟.工程力学增刊,1999,545-551
    [118]龚自明,方泰,张亚栋等.钢制长杆弹斜侵彻中厚靶数值模拟.解放军理工大学学报(自然科学版),2001,4(2):66-70
    [119]栾晓岩,贺虎成,耿忠等.弹丸侵彻混凝土的试验与仿真.系统仿真学报,2008,20(13):3571-3573
    [120]梁龙河,王政,曹菊珍.长杆弹对混凝土的侵爆效应.爆炸与冲击,2008,28(5):415-420
    [121]马爱娥,黄风雷,初哲等.弹体攻角侵彻混凝土数值模拟.爆炸与冲击,2008,28(1):33-37
    [122]陈龙伟,孙远翔,宁建国.动能弹对混凝土靶板侵彻三维数值模拟.北京理工大学学报,2003,23(5):536-539
    [123]田占东,李守苍,段卓平等.弹丸在混凝土靶中的运动轨迹的数值模拟.高压物理学报,2007,21(4):354-358
    [124]梁斌,刘丹.有界混凝土靶尺寸效应对弹丸侵彻的影响研究.弹箭与制导学报,2004,24(4):39-41
    [125]韩丽,高世桥.混凝土靶体尺寸对过载影响的数值研究.计算机仿真,2007,24(6):17-19
    [126]尉志同,余文力,王涛等.动能弹垂直侵彻混凝土靶板的三维数值模拟研究.弹箭与制导学报,2006,26(4):121-123
    [127]杨冬梅,王晓鸣.动能弹对有限厚土壤介质靶侵彻的数值仿真.弹箭与制导学报,2003,23(5):58-60
    [128]纪冲,龙源,万文乾.动能弹侵彻混凝土靶体的三维数值模拟研究.混凝士,2006,196:6-8
    [129]李永池,袁福平,胡秀章等.卵形头部弹丸对混凝土靶板侵彻的二维数值模拟.弹 道学报,2002,14(1):14-19
    [130]陈克,黄德武,S.G.Psakhie.模拟长杆弹侵彻混凝土靶的MCA方法.爆炸与冲击,2004,24(2):127-132
    [131]王峰,胡秀章,王肖钧等.卵形杆弹侵彻混凝土靶的有限元数值模拟.弹道学报,2008,20(1):1-4
    [132]郑振华,余文力,王涛.钻地弹侵彻高强度混凝土靶的数值模拟.弹箭与制导学报,2008,28(3):143-146
    [133]Livermore Software Technology Corporation. LS-DYNA keyword user's manual, Volume Ⅱ, Material Models, Version 971. California:LSTC, May 2007
    [134]屈明,陈小伟.钢筋混凝土穿甲的数值模拟.爆炸与冲击,2008,28(4):341-349
    [135]张凤国,李恩征.混凝土撞击损伤模型参数的确定方法.弹道学报,2001,13(4):12-16
    [136]白金泽.LS-DYNA3D理论基础与实例分析.科学出版社,2005
    [137]801教研室.内弹道学.南京:南京理工大学,1986
    [138]王浩.子母弹内燃式气囊抛撒模型及计算机仿真.兵工学报,2001,22(5):176-181
    [139]过镇海.混凝土的强度和变形实验基础和本构关系.北京:清华大学出版社,1977:10-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700