若尔盖高原湿地土壤真菌的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用全球定位系统(GPS)采集了若尔盖高原湿地74个样点86个土样,用稀释平板法对该区土壤真菌进行了分离计数。对分离到的真菌进行了初步鉴定,并分析了真菌数量与土壤类型、土壤质地、土壤养分、土壤水分、pH等土壤环境因子的相关性;同时在ArcGIS9.0平台上运用地统计学方法研究了该地区土壤真菌数量的空间分布特征。根据土壤真菌的数量、种群及其分布研究该地区土壤真菌的物种多样性。还分析了若尔盖高原湿地土壤木霉的种类及土壤木霉在拮抗病原菌和分解纤维素方面的潜在能力。主要研究结果如下:
     若尔盖湿地土壤真菌数量为9.68×10~2±2.48×10~(-3)(10.8~1.41×10~4)cfu.g~(-1)干土。不同样点的土壤真菌总数存在较大差异,真菌数量最高达1.41×10~4 cfu.g~(-1)干土,最低仅有10.8 cfu.g~(-1)干土,相差100倍以上。同一样点内,土壤真菌数量随土层深度增加而减小。不同地理区域,土壤真菌的数量分布表现为嫩哇(1865.263 cfu.g~(-1))>唐克(1543.246 cfu.g~(-1))>班佑(823.010 cfu.g~(-1))>辖曼(285.098 cfu.g~(-1))>阿西(134.751cfu.g~(-1))。不同土壤类型方式下,土壤真菌数量表现为沼泽土(3.80×10~3 cfu.g~(-1))>泥炭土(2.72×10~3 cfu.g~(-1))>草甸土(1.08×10~3 cfu.g~(-1))>风沙土(0.27×10~3 cfu.g~(-1))。真菌数量随土壤质地的不同而表现为中壤土(1.74×10~3 cfu.g~(-1)干土)>轻壤土(1.38×10~3cfu.g~(-1)干土)>砂壤土(0.34×10~3 cfu.g~(-1)干土)>砂土(0.17×10~3 cfu.g~(-1)干土)。
     若尔盖高原湿地土壤真菌数量的空间分布呈呈环状或条块状分布,整体上由湿地外围向内部逐渐增加。
     74个表层土经分离共获得771株土壤真菌。分布范围较广的真菌为青霉(Penicillium spp.)、木霉(Trichoderma spp.)、镰刀菌属(Fusarium spp.)、腐霉属(Pythium spp.)、酵母类真菌、曲霉(Aspergillus spp.)和毛霉(Mucor spp.),其分离频率分别为98.68%、63.51%、31.08%、21.63%、33.78%、25.68%和29.73%,在真菌总数中所占的比例分别为21.79%、12.71%、4.41%、3.89%、4.67%、3.50%和3.63%。
     土壤真菌与土壤生态因子间的相关分析表明,真菌数量与土壤中全钾、有机质含量以及土壤含水量均呈正相关,与pH值土壤全氮、全磷、速效钾、速效磷、碱解氮呈负相关。其中真菌数量与速效钾和碱解氮含量呈显著负相关。另外,真菌数量与物种丰富度(S)、Shannon-wiener指数(H′)呈负相关,相关系数较小。土壤真菌的物种丰富度(S)、Shannon-wiener指数(H′)、Pielou均匀度指数(E)和优势度指数(D)分别为6.8649±3.0805、0.7650±0.2498、0.9697±0.0627、0.2418±0.1353。辖曼地区土壤真菌物种丰富度(S)和Shannon-wiener指数(H′)最高,分别达8.400和0.8759。
     从若尔盖高原湿地土壤中分离木霉菌株98个,其中哈茨木霉19株,黄绿木霉29株,深绿木霉10株,康氏木霉12株,绿色木霉13株,长枝木霉7株,还有木霉组的棘孢木霉6株,粗梗组的淡黄木霉2株。
     木霉生长速度测定结果表明,多数木霉菌株生长速度迅速,为空间和营养资源的强竞争者。对峙培养中,木霉菌株对立枯丝核菌均有一定程度的抑制作用,其中T1、T2和T5的抑制率较高在75%以上。难挥发性代谢产物的抑制效果显著,T23、T27、T25、T28和T32效果最好。
     通过纤维素分解实验,从分离出的98株木霉中初步筛选出具有纤维素分解能力的菌株29株。再经过刚果红纤维素培养基的筛选,有7株木霉分解纤维素能力较好,其中5株为绿色木霉,另外2株为黄绿木霉和康氏木霉。
86 soil samples of 74 plots,located by GPS(Global Position System),were collected from the Zoige plateau wetland.Quantities of fungi were determined with the dilution plate technique.The soil fungi were identified and the correlations between fungi quantities and soil ecological factors which included soil fertility,soil humidity,land-use type and pH were analyzed by using the software of SPSS.According to the quantities,communities and their distribution,the fungi diversity was also studied.Potential which could antagonize to pathogen and decompose cellulose was also analyzed.
     Fungi quantity ranged from 10.8 to 1.41×10~4(cfu·g~(-1) dry soil).At the same plot,there were more fungi in upper(0~20cm) than in deeper soil layers(20~40cm).In different regions,fungi quantities from high to low were as follows:Nengwa(1865.263 cfu.g~(-1) dry soil)>Tangke(1543.246 cfu.g~(-1) dry soil)>Banyou(823.010 cfu.g~(-1) dry soil)>Xiaman (285.098 cfu.g~(-1) dry soil)>A'xi(134.751 cfu.g~(-1) dry soil).In different land patterns,swamp land(3.80×10~3 cfu·g~(-1) dry soil)>turf land(2.72×10~3 cfu·g~(-1) dry soil dry soil)>meadow land (1.08×10~3 cfu·g~(-1) dry soil)>sand land(0.27×10~3 cfu·g~(-1) dry soil).
     The spatial distribution of soil fungi mainly exhibited as strip zonal and circularity patterns.And the content of soil fungi increased gradually from outside toward center.The regions with low content(<250 cfu·g~(-1) dry soil) were mainly distributed in the north of A'xi and Heihe.The regions with high content(>2500 cfu·g~(-1) dry soil) were mainly located in the northeast of Nengwa and Tangke and Qi-Daoban of Banyou.
     A total of 771 fungi isolates were collected from the soil in the Zoige plateau wetland. 25 fungal genera were identified.Among these genera,Penicillium spp.,Trichoderma spp., Fusarium spp.,Pythium spp.,yeast,Aspergillus spp.and Mucor spp.were isolated more frequently at 98.68%,63.51%,31.08%,21.63%,33.78%,25.68%and 29.73%in these samples,respectively.Their proportions of quantity were 21.79%,12.71%,4.41%,3.89%, 4.67%,3.50%and 3.63%,respectively.
     Soil fungi quantities were closely correlated with soil ecological factors.At some degree,fungi quantity was correlated with total potassium,organic matter and water contents positively,but with pH,total phosphorus,rapidly available potassium,rapidly available nitrogen,rapidly available phosphorus,slowly available potassium and total nitrogen negatively.The fungi quantity had a significantly negative correlation with soil available potassium and rapidly available nitrogen.In addition,the relationship was noticed between soil fungi quantities and community diversity.The quantity of fungi had a low negative correlation with the abundance(S) and Shannon-wiener's diversity(H′).The abundance(S),Shannon-wiener's diversity(H′),Pielou's evenness(E) and dominance index(D) were 6.8649±3.0805,0.7650±0.2498,0.9697±0.0627 and 0.2418±0.1353, respectively.Fungi quantity in Nengwa was the most,but in Xiaman the abundance(S) and Shannon-wiener's diversity(H′) were the most.They were 8.400 and 0.8759,respectively.
     98 Trichoderma isolates were isolated from the Zoige plateau wetland.There were 19 isolates of T.harzianum,29 isolates of T.aureoviride,10 isolates of T.atrooviride,12 isolates of T.koningii,13 isolates of T.viride,7 isolates of T.longibrachiatum,6 isolates of T.asperellum,2 isolates of T.cerinum,respectively.
     The test of hyphal growth rate showed that most of Trichoderma strains grew rapidly, and were the stronger competitor for space and nutrition resource.The result of the dual culture showed the inhibition rates of hypaal growth of Trichoderma against Rhizoctonia solani were 33.43%~77.99%,T1,T2 and T5 showed higher inhibition rates than 75.00%. The non-volatile substances of the isolates tested had obvious inhibition to hyphal growth of R.solani,among them T23,T27,T25,T28 and T32 showed higher inhibition rates.
     From the primary screen by Hechisum medium,there were 29 Trichoderma strains having the ability of decomposing cellulose,which were screened from all 98 Trichoderma. There were 7 Trichoderma having higher ability of decomposting cellulose from the re-election holding on cellulose-congo red medium.
引文
[1]Lal R.Soil management and soil biotic processes[M].Management of tropical agroecosystems and the beneficial soil biota,USA:Science Publishers,1999:67-81.
    [2]孙广友.若尔盖高原沼泽生态环境及其合理开发的研究[M].北京:科学出版社,1987.
    [3]何池全,赵魁义,赵志春.若尔盖高原湿地草场退化成因分析及其保护作用[J].中国草地,2000,6:11-16.
    [4]杨霞,翟兴礼,余国莹.若尔盖高原湿地生物多样性现状及其保护对策[J].长春大学学报,2002,12(3):16-20.
    [5]王长科,王跃思,张安定,等.若尔盖高原湿地资源及其保护对策[J].水土保持通报,2001,21(5):20-22.
    [6]李帅英,吴增志,李保会.物种多样性研究进展[J].河北林果研究,2002,17(1):72-79.
    [7]刘灿然,马克平.生物群落多样性的测度方法V.生物群落物种数目的估计方法[J].生态报,1997,17(6):601-610.
    [8]赵平,彭少麟.种、种的多样性及退化生态系统功能的恢复和维持研究[J].应用生态学报,2001,12(1):132-136.
    [9]刘世贵,葛绍荣,龙章富.川西北退化草地土壤微生物数量与区系研究[J].草业学报,1994,3(4):70-76.
    [10]李学静.保护生物多样性和人类社会可持续发展战略[J].天津成人高等学校联合学报,2002,4(4):73-76.
    [11]崔雨新,王小明.分子生物学技术在环境生物学中的应用[J].自然杂志,1999,21(5):295-301.
    [12]高平平,晁群芳,张学礼,等.TGGE分析焦化废水处理系统活性污泥细菌种群动态变化及多样性[J].生态学报,2003,23(10):1963-1969.
    [13]Fisher R A..The relation between the number of species and number of individuals in random sample of an animal population[J].Journal of Animal Ecology,1943(12):42-58.
    [14]Borneman J,Skroch P W,O'Sullivan K M,et al.Molecular microbial diversity of an agricultural soil in Wisconsin[J].Applied and Environmental Microbiology,1996,62(6):1935-1943.
    [15]Uphoff H U,Felske A,Fehr W,et al.The microbial diversity in picoplankton enrichment cultures:a molecular screening of marine isolates[J].FEMS Microbiology Ecology,2001,35:249-258.
    [16]Erhart R,Bradford D,Seviour E M,et al.Development and use of fluorescent in situ hybridisation probes for the identification and enumeration of 'Microthrix parvicella'in activated sludge[J].Systemic Application Microbiol,1997,20:310-318.
    [17]Kelly J J,Haggblom M,Tare R L.Changes in soil microbial communities over time resulting from one time application of zinc:a laboratory microcosm study[J].Soil Biology &Biochemistry,1999,31(10):1455-1465.
    [18]Tscherko D,Hammesfahr U,Marx M C,et al.Shifts in rhizosphere microbial communities and enzyme activity of poa alpine across an alpine chronosequence[J].Soil Biology and Biochemistry,2004,36:1685-1698.
    [19]何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,29(2):90-98.
    [20]韩洁,张志南,于子山.渤海中、南部大型底栖动物物种多样性的研究[J].生物多样性,2003,11(1):20-27.
    [21]田永辉.不同树龄茶对根际固氮菌组成及多样性研究[J].福建茶叶,2000,(3):19-21.
    [22]田永辉.不同茶园群落茶树根际微生物群落生态特征[J].茶叶通讯,2001,2:24-28.
    [23]张英,郭良栋,刘润进.都江堰亚热带地区常见植物根围的丛枝菌根真菌[J].菌物系统,2003,22(2):204-210.
    [24]周智彬,李培军.塔克拉玛干沙漠腹地人工绿地土壤中微生物的生态分布及其与土壤因子间的关系[J].应用生态学报,2003,14(8):1246-1250.
    [25]章家恩,刘文高,朱丽霞.广东省不同地区土壤微生物数量状况初步研究[J].生态科学,2002,21(3):223-225.
    [26]刘世贵,葛绍荣,龙章富.川西北退化草地土壤微生物数量与区系研究[J].草业学报,1994,3(4):70-76.
    [27]李为,余龙江,袁道先,等.西南岩溶生态系统土壤微生物的初步研究[J].生态学杂志,2004,23(2):136-140.
    [28]龙健,黄昌勇,滕应,等.红壤矿区复垦土壤的微生物生态特征及其稳定性恢复研究对土壤微生物生态特征和群落结构的影响[J].应用生态学报,2004,15(2):237-240.
    [29]马万里.土壤微生物多样性研究的新方法[J].土壤学报,2004,41(1):103-107.
    [30]Mukherjee P K,Kanthadai R.Effect of temperature on antagonistic and biocontrol potential of Trichoderma spp.on Sclerotium rolfsi[J].Mycopathologia,1997,139(3):151-155.
    [31]Barak R,Elad Y,Mirelman D,et al.Lectins:a possible basis for specific recognition in the interaction of Trichoderma and Sclerotium rolfsi[J].Phytopathology,1985,75(4):458-462.
    [32]Elad Y,Chet I,Boyle P.Parasitism of Trichoderma spp.on Rhizoctonia solani and Sclerotium rolfsi -scanning electron microscopy and fluorescent microscopy[J].Phytopathology,,1983,73(1):85-88.
    [33]张伟,许俊杰,张天宇.土壤真菌研究[J].菌物研究,2005,3(2):52-58.
    [34]粱晨,吕国忠.土壤真菌分离和计数方法的探讨[J].沈阳农业大学学报,2000,31(5):515-518.
    [35]向万胜,吴金水,肖和艾,等.土壤微生物的分离、提取与纯化研究进展[J].应用生态学报,2003,14(3):453-456.
    [36]Hawksworth D L.The fungal dimension of biodiversity:magnitude,significance and conservasion [J].Mycological Research,1991,95:641-655.
    [37]Hawksworth D L,Rossman A L.Where are all the undescribed fungi[J].Phytopathology,1997,87:888-891.
    [38]方中达.植病研究方法[M].北京:中国农业出版社,1998.
    [39]许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.92-108.
    [40]武觐文.氧化松针煮汁培养基一种选择性真菌培养基[J].微生物学报,1975,15(1):37-41.
    [41]Vilarino A,Arinel J,Schuepp H.Extraction of vesicular arbuscular mycorrhizal mycelium from sand samples[J].Soil Biology and Biochemistry,1993,25:99-100.
    [42]《中国生物多样性国情研究报告》编写组.中国生物多样性国情研究报告[R].北京:中国环境科学出版社,1998:57.
    [43]Ogram.A.Soil molecular microbial ecology at age 20:methodological challenges for the future[J].Soil biology& Biochemistry,2000,32(12):1499-1504.
    [44]Kierkegaard J A,Sarwar M,Wong P T W,et al.Field studies on the biofumigation of take-all by Brassica break crope[J].Australian Journal of Agriculture research,2005,1(4):445-456.
    [45]Vandenkoornhuyse P,Baldauf SL,Leyval C,et al.Extensive fungal diversity in plant roots[J].Science,2002,29(5):20-25.
    [46]Van Elsas JD,Garbeva P,Shell J.Effects of agronomical measures on the microbial diversity of soils as related to the suppression of soil of soil of soil-borne plant pathogens[J].Biodegradation,2002,13:29-40.
    [47]Bodding C L,Bassett E E,Jacobsen I,et al.Comparison of technique for the extraction and quantification of extra radical mycelium of arbuscular mycorrhizal fungi in soil[J].Soil Biology and Biochemistry,1999,31:479-482.
    [48]高云超,朱文珊,陈文新.土壤真菌群落生态特征与养分转化[J].生态科学,1998,17(1):60-66.
    [49]吕国忠,孙晓东,李贺.东北地区保护地土壤真菌多样性的研究[J].大连民族学院学报,2006,30(1):6-8.
    [50]董爱荣,吕国忠,吴庆禹,等.小兴安岭凉水自然保护区森林土壤真菌的多样性[J].东北林业大学学报,2005,32(1):8-10.
    [51]邵宝林,龚国淑,张世熔,等.横断山北部高山区不同生态条件下土壤微生物数量及其与生态因子的相关性[J].生态学报,2006,25(8):885-890.
    [52]邵宝林.横断山北部高山区土壤真菌的初步研究.四川农业大学.2005.
    [53]黄庆辉,杨淑专.闽西梅花山自然保护区森林土壤微生物数量分布与区系的研究[J].福建林学院学报,1991,11(1):90-93.
    [54]冯峻丽,朱旭芬.微生物几丁质酶的分子生物学研究[J].浙江大学学报,2004,30(1):102-108.
    [55]Dennis C,Webster J.Antagonistic properties of species-groups of Trichoderma.Ⅱ.Production of volatile antibiotics[J].Transactions of the British Mycological Society,1971,57:41-48.
    [516]朱天辉,邱德勋.Ttrichoderma harzianum对Rhizoctonia solani的抗生现象[J].四川农业大学学报,1994,12(1):11-15.
    [57]Yedidia I,Benhamou N,Kapuinik Y,et al.Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203[J].Plant Physiology Biochemistry,2000,38(11):863-873.
    [58]张旭东,刘云龙,张中义.木霉生防菌对植物生长的影响[J].云南农业大学学报,2001,16(4):299-303,312.
    [59]焦踪,路炳声.康氏木霉制剂对棉花和菜豆幼苗几个生理生化指标的影响[J].中国生物防治,1995,11(1):30-32.
    [60]Yedidia I,Srivastva A K,KapuInik Y,et al.Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants[J].Plant and Soil,2001,235(2):235-242.
    [61]陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究[J].工业微生物,2000,30(4):23-27.
    [62]许修宏,肖玉珍,陈建平,等.高效纤维素分解菌分离筛选的研究[J].东北农业大学学报,1998,29(4):330-333.
    [63]李振红,陆贻通.高效纤维素降解菌的筛选[J].环境污染与防治,2003,25(3):133-135,153.
    [64]Dornsch K H,Gams W,Anderson T H.Compendium of soil fungi[M].Academic Press.1980.
    [65]Domsch K H,Gams W.Fungi in agriculture soil[M].Longman.1972.
    [66]魏景超.真菌鉴定手册[M].上海:上海科学技术出版社,1979.
    [67]巴尼特,亨特著.华北农业大学植保系译.半知菌属图解[M].科学出版社,1977.
    [68]文成敬,陶家风,陈瑞文.中国西南地区木霉属分类研究.真菌学报,1993,12(2):118-130.
    [69]Kullnig-Gradinger CM,Kubicek CP.Phylogeny and evolution of the genus Trichoderma sp.:a multigene approach.Mycol Res,2002,104:1117-1125.
    [70]沈善敏,万洪富,谢建昌.中国土壤肥力[M].北京:中国农业出版社,1998.
    [71]ESRI.Using ArcGIS geostatistical analyst.ESRI,2001,50-87.
    [72]张苹,刀志灵,郭辉军.高黎贡山自然保护区土壤真菌的组成及其生态分布[J].云南植物研究,1999,9.XL.
    [73]中国科学院南京土壤研究所.土壤微生物研究法[M].北京:科学出版社.1985.
    [74]叶姜瑜.一种纤维素分解菌鉴别培养基[J].微生物学通报,1997,24(4):251-252.
    [75]刘起丽,徐瑞富,李春喜等.接种方式对纤维素刚果红培养基筛选菌株的影响[J].湖北农业科学,2007,46(1):147-148.
    [76]Da Silva KR,SalIs JF,Seldin L,Van Elsas.Application of a novel Paenibacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp.in the maize rhizosphere[J].Journal of Microbiological Methods,2003,5:213-231.
    [77]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1983,62-80.
    [78]蔡晓布,钱成,张元,等.西藏中部地区退化土壤秸秆还田的微生物变化特征及其影响[J].应用生态学报,2004,15(3):463-468.
    [79]赵萌,方晰,田大伦.人工林地土壤微生物数量与土壤生态因子的关系[J].林业科学,2007,43(6):7-12.
    [80]姚贤民,吕国忠,杨红,等.长白山森林土壤真菌区系研究[J].菌物研究,2007,5(1):43-46.
    [81]王四宝,刘竟男,王成树,等.皖大别山区虫生真菌群落多样性研究[J].应用生态学报,2004,15(5):883-887.
    [82]张广志.木霉对玉米纹枯病生物防治的初步研究.2005.四川农业大学.
    [83]张初龙,徐同.我国河北、浙江、云南及西藏木霉中记述[J].2005,24(2):184-192.
    [84]张晶,张慧文,李新宇,等.土壤真菌多样性及分子生态学研究进展[J].应用生态学报,2004,15(10):1958-1962.
    [85]王惠春,赵修堂,王启兰.青海高寒草甸不同植被土壤微生物生物量的测定[J].青海草业,2006,15(4):2-5.
    [86]陈杰,董爱荣,吕国忠等.小兴安岭凉水自然保护区白桦林土壤真菌[J].东北林业大学学报,2004,32(6):108-110.
    [87]孙晓东,杨瑞秀,杨红.东北地区保护地土壤真菌多样性研究[J].菌物研究,2004,2(4):1-5.
    [88]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
    [89]谷雪景,赵吉,王娟.内蒙古典型草原土壤微生物生物量的研究[J].农业环境科学学报,2007,26(4):1444-1448.
    [90]高雪峰,韩国栋,张功,等.放牧对荒漠草原土壤微生物的影响及其季节动态研究[J].土壤通报,2007,38(1):145-148.
    [91]丁玲玲,祁彪,尚占环,等.东祁连山亚高山草地土壤微生物功能群数量动态及其与土壤环境关系[J].草业学报,2007,16(2):9-18.
    [92]Green D C,Vilarino A,Newsam R,et al.Quantification of mycelial development of arbuscular mycorrhizal fungi using image analysis[J].Mycorrhiza,1994,5:102-113.
    [93]单丽波,贾旭,周青,等.几丁质酶及其在真菌基因工程中的应用[J].生物工程进展,1998,18(3):37-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700