广谱高效生物农药木霉菌的诱变及其拮抗和生防作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
木霉(Trichoderma)常分离于根际、土壤、叶围等环境,生存范围广、适应性强、对植物病原菌具有广谱的拮抗作用,而且还能产生多种酶类分解土壤中的动植物残体,产生使植物能够吸收利用的有机物。
     本研究从山东省多种生态区取得不同土样、利用微生物分离方法,从852份采集样品中,分离到野生木霉菌株255株,利用常规形态鉴定法和凝胶电泳分类的聚类分析鉴定,隶属木霉属的8个种,它们分别是绿色木霉(T. viride)、哈茨木霉(T. harziamum)、钩状木霉(T. hamatum)、黄绿木霉(T. aureoviride)、桔绿木霉(T. citrinoviride)、长枝木霉(T. longibrachiarum)、康氏木霉(T. koningii)、拟康氏木霉(T. pseudokoning)。
     进一步与植物土传病原真菌进行拮抗作用实验,选出了拮抗作用较好的菌株T32,分析了木霉的拮抗作用机理。对部分植物病菌拮抗作用的方式主要有重寄生作用、营养竞争作用和空间位点竞争作用等几种。其中对立枯丝核菌(Rhizoctonia solani)(小麦纹枯病)的作用是重寄生作用:而对大丽轮枝菌(Verticillium dahliae)(棉花黄萎病)、棉蔫萎镰孢霉(Fusarium vasinfectum)(棉花枯萎病)、玉米黑粉菌(Ustilago maydis)(玉米黑粉病)主要是营养竞争作用:对瓜蔫萎座镰孢霉(F. bulbigenum)(西瓜枯萎病)、茄腐皮镰孢霉(F. solani)(大豆根腐病)等是空间位点竞争作用。
     利用核辐射等诱变技术,~(60)Co-γ射线最佳辐射剂量为0.8kGy-1kGy,紫外线照射为5-7分钟,结合突变菌株对部分杀菌剂化学农药耐药性及对6种植物土传病菌的拮抗作用大小、生长速度快慢、产孢量多少等指标,选出高拮抗性、高产孢量、生长速度快的突变菌株T1010。
     对突变菌株T1010进行发酵条件进行实验,结果表明其生长所需碳氮比为24:1,葡萄糖为最佳碳源,甘氨酸为最佳氮源,磷、钾、硫是生长必须元素。培养菌丝最适温度为30℃,pH值6,高温培养3天后转入低温20℃培养产孢。大量培养时麦麸作培养基既方便又省钱,大量生产木霉制剂0.5吨,制剂木霉孢子含量达
Trichoderma spp. are fungi that are highly interactive in root, soil and foliar environments. They are frequently dominant components of the microflora in widely varying habitats. They can biocontrol against a wide range of plant-pathogen. Furthermore, they are potent producers of a variety of plant polysaccharide degrading enzymes and capable of degrading a variety of xenobiotic materials. Trichoderma frequently enhances plant growth, the uptake and use of these nutrients.
    Out of 255 isolates of Trichoderma from 852 soil samples in Shandong Province, eight Trichoderma species were identified by conidiophore morphology and cluster analysis for soluble protein. With optical microscope and polyacrylamide gel eletrophoresis, they are Trichoderma harzianum, Trichoderma citrinoviride, Trichoderma longibrachiatum, Trichoderma viride, Trichoderma hametum, Trichoderma aureoviride, Trichoderma konningii and Trichoderma pseudokong.
    T32 was efficient for controlling some soil-borne plant-pathogenic fungi than others. The main mechanisms are as follows: mycoparasition, competition for nutrients and space. In dual cultures with 6 soil-borne plant-pathogenic fungi, T32 hyphae attached to the host Rhizoctonia solani and coiling around the pathogen hyphae and parasitied into pathogenic hyphae. The phenomenon of competition for nutrients was illustrated in dual cultures with Verticillium dabliae, Fusarium var vasinfectum, Ustilago maydic. T32 competed space against Fusarium bulbigenum, Fusarium solani in dual cultures.
    Mutations were conducted under certain condition, UV light and ~(60)Co-γ rays. T32 was treated with an appropriate ~(60)Co- γ radiation dose (0.8 kGy-1 kGy) and UV radiation time was 5-7 minites. Mutants tolerant of chemical fungicides were selected. The stable mutants T1010 with high production of spores and high growth rate were selected against soil-borne plant-pathogenic fungi in dual cultures in comparison with
引文
1. Ahmed S A, Perez S C, Emilia C M. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) to Phytophthora capsici using Trichoderma harzinum and its relation with capsidiol accumulation. Eur. J. Plant Pathol., 2000,106(9): 817~824.
    2. Allen M C, Haenseler C M. Antagonistic action of Trichoderma on Rhizoctonia and other soil fungi. Phytopathology, 1935, 25:244~252.
    3. Altomare C, Norve W A, Bjorkman T. Solubilization of phosphates and micronutrients by the plant-growth promoting and biocontrol fungus T. harzianum Rifai 1295-22. Appli Environ. Microbiol., 1999, 65:2926~2933.
    4. Bankole S A, Adebanjo A. Biocontrol of brown blotch of cowpea caused by Coiletotrichum truncatum with Trichoderma viride. Crop Prot., 1996, 15 (7): 633~636.
    5. Bissett J. A revision of the genus Trichoderma I. Section Longibrachiatum sect.nov. Can. J. Bot., 1984, 62:924~931.
    6. Bilu A. Dag A, Elad Y and Shafir S. Honey bee dispersal of biocontrol agents: an evaluation of dispensing devices. Biocontrol Sci. Technol., 2004, 14:607~617.
    7. Blaich R & Esser K. Funtion of enzymes in wood destroying fungi. Arch. Microbiol.,1975, 103:271~277.
    8. Chet I, Baker R. Isolation and biocontroi potential of Trichoderma hamatum fromsoil naturally suppressive to Rhizoctonia solani. Phytopathoiogy. 1981, 71:286~290.
    9. Chet I, Harman G E, Baker R. Trichoderma hamatum: its hyp.hal interactions with Rhizoctonia solani and Pythium spp.. Microb. Ecol.,1981,7:29~38.
    10. Chet I. Trichoderma application, mode of,action, and potential as a biocotrol agent of soil-borne plant pathogenic fungi. In'Innovative Approaches to Plant Disease Control (ed. by I. Chet). New Yerk, Wiley. 1987. pp:372.
    11. Clare B G. Starch-gel electrophoresis of proteins as an aid in identifying fungi. Nature(London), 1963, 200:803-804.
    12. Cohen-Kupiec R, Broglie K E, Friesem D, Broglie R M and Chet 1. Molecular characterization of a novel β -1,3 exo-glucanase related to mycoparasitism of Trichoderma harzianum. Gene, 1999, 226:147-154.
    13. Donzelli B G G, Ostroff G and Harman G E. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Carbohydr. Res., 2003, 338:1823-1833.
    14. Elad Y. Katan J, Chet I. Physical, biological, and chemical control integrated for soilborne diseases in potatoes. Phytopathology, 1980, 70(5):418-422.
    15. Elad Y, Barak R, Chet I. The possible role of lectins in mycoparasitism. Bacterial, 1983, 154:1431-1435.
    16. Elad Y, Chet I, Boyle P, Henis Y. Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii scanning electron microscopy and fluorescence microscopy. Phytopathology, 1983, 73: 85-88.
    17. Elad Y, Sivan A, Zeidan O, Kleifeld O and Chet I. Biological and integrated control of soil pathogens as a means for reduction of fungicides. In: (H.I. Shuval, ed.) Developments in Ecology and Environmental Quality, 1983, pp. 587-594.
    18. Elad Y. Biogical control of grape grey mould by Trichoderma harzianum. Crop Prot., 1994,13:35-38.
    19. Elad Y, Rav David D, Levi T, Kapat A, Kirshner B, Gorin E and Levine A. Trichoderma harzianum T39 - mechanisms of biocontrol of foliar pathogens. Modern Fungicides and Antifungal Compounds II, Intercept Ltd, Handover, Hampshire, UK, 1998, pp. 459-467.
    20. Elad Y, Kirshner B, Nitzani Y and Sztjenberg A. Management of powdery mildew and gray mold of cucumber by Trichoderma harzianum T39 and Ampelomyces quisqualis AQIO. Biocontrol, 1998, 43:241~251.
    21. Elad Y and Kapat A. Role of Trichoderma harzianum protease in the biocontrol of Botrytis cinerea. Eur. J. Plant Pathol., 1999,105: 177~189.
    22. Elad Y. Biological control of foliar pathogens by means of Trichodema harzianum and potential modes of action. Crop Prot. 2000, 19:709~714.
    23. Eiad Y. TRICHODEX: commercialization of Trichodema harzianum T39-a case study. A grow Report, Biopesticides: Trends and Opportunities. PJB Publications Ltd, Richmond, GB 2001, pp. 45~50.
    24. Freeman S, Maymon M, Kirshner B, Ray-David D and Elad Y. Use of GUS transformants of Trichoderma harzianum isolate T39 (TRICHODEX) for studying interactions on leaf surfaces. Biocontrol Sci. Technol., 2002, 12:401~407.
    25. Freeman S, Minz D, Kolesnik. Trichoderma biocontrol of Collelotrichum acutatum and Botrytis cinerea in strawberry, population survival, and identification of biocontrol isolates according to ITS sequence analysis. Eur. J. Plant Pathol., 2004,110:361~370.
    26. FIores A, Chef I, Herrera-Estreila A. Improved biocontrol activity of Trichoderma harzianum srains by over-expression of the proteinase encoding gene prbl. Curr. Genet., 1997, 31(1): 30~37.
    27. Guetsky R, Shtienberg D, Elad Y and Dinoor A. Combining biocontrol agents to reduce the variability of biological control. Phytopathology, 2001, 91:621~627.
    28. Harman G E, Backman P A. Symposium: biocontrol and biotechnological methods for controlling cotton pests. Proceedings of the Beltwide cotton production research conferences, 1989, 1:15~20.
    29. Harnman G E, Hayes C K, Lorito M, et al. Chitinolytic enzymes of Trichoderma harzianum: purification of chitobiosidase and endochitinase. Phytopathology 1993, 83:313-318.
    30. Harman G E and Kubicek C P. Trichoderma Gliocladium. London. Tayor and Francis, 1998,2:73-191.
    31. Harman G E. Myths and dogmas of biocontrol: changes in perceptions derived from research on Trichoderma harzianum T-22. Plant Dis., 2000, 84(4): 377-393.
    32. Harman G E, Howell C R, Viterbo A, Chet I and Lorito-M. Trichoderma spp. Opportunistic avirulent plant symbionts. Nature Microbiol, 2004. Rev. 2:43-56.
    33. Hayes C K, Klemsdal S, Lorito M, et al. Isolation and sequence of an endochitinase-encoding gene from a cDNA library of Trichoderma harzianum. Gene,1994,138: 143-148.
    34. Howell C R. Cotton seedling preemergence damping-off incited by Rhizopus oryzae and Pythium spp. and its biological control with Trichoderma spp. Phytopatholohy. 2002, 92:177-180.
    35. Howell C R. Mechanisms employed by Trichoderma species in the biology control of plant diseases: the history and evolution of current concepts. Plant Dis., 2003, 87:4-10.
    36. Kapat A, Zim G. and Elad Y. Effect of two isolates of Trichoderma harzianum on the activity of hydrolytic enzymes produced by Botrytic cinerea. Physiol. Mol. Plant Pathol. 1998, 52:127-137.
    37. Khan J, Ooka J J, Miller S A, et al. Systemic resistance induced by Trichoderma hamatum 382 m cucumber against phytophthora crown rot and leaf blight. Plant Dis..2004,88:280-286.
    38. Lorito M, Harman G E, Hayes C K, et al. Chitinolytic enzymes produced by Trichoderma harzianum: Antifungal activity of purified endochitinase and chitobiosidase. Phytopathology, 1993, 83: 302-307.
    39. Lorito M, Woo S L, Fernandez I G, Colucci G, Harman G E. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathosens. Proc. Natl. Acad. Sci., 1998, 95:7860~7865.
    40. Madhosingh C. Tyrosinase isoenzymes in six agaric species of basidiomycetes. Can.J. Microbiol., 1970,16:895~899.
    41. Martin J E Use of acid, rosebengal and streptomycin in the plate method-for estimating soil fungi. Soil Science, 1950, 69:215~232.
    42. Maymon M, Minz D, Barbul O, et al. Identification of Trichoderma biocontrol isolates to clades according to Ap-PCR and ITS sequence analyses. Phytoparasitica,2004, 32:370~375.
    43. Neta Okon Levy, Elad Y, Korolev N, Katan J. Resistance induced by soil biocontrol application and soil solarization for the control of foliar pathogens. IOBCwprs Bull.2003, 27(1):171~176.
    44. Okunishi M, Yamada K and Komagata K. Electrophoretic comparison of enzymes from basidiomycetes in different stages of development. J. Gen. Appl. Microbiol..1979, 25:329~334.
    45. Prasad R D, Rangeshwaran R, Hegde S V, Anuroop C P. Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Prot., 2002.21(4):293~297.
    46. Rifai M A. A revision of the genus Trichoderma. Mycol. Pap. CMI. 1969, pp.116.
    47. Rodriguez-Kabana R, Kelley W D, Curl E A. Proteolytic activity of Trichoderma viride in mixed culture with Sclerotium rolfsii in soil. Can. J. Microbiol., 1978, 24:487~490.
    48. Roiger D J, Jeffers S N and Caldwell R W. Occurrence of Trichoderma species in apple orchard and woodland soil. Soil Biol. Biochem., 1991, 23:353~359.
    49. Schirmbock M, Lorito M, et al. Parallel formation and synergism of hydrolytic enzymes and peptaibol antibiotics, molecular mechanisms: involved in the antagonistic action of Trichoderma harzianunt against phytopathogenic fungi. Appl Environ Microbiol., 1994, 60(12):4364~370.
    50. Singh .J S, Raghubanshi A S, Srivastava S C. Microbial biomass act as a source of plant nutrients in dry tropical forest and savannia. Nature,1989,338:499~500.
    51. Sivakumar D, Wijeratnam R S W, et al. Combined effect of generally regarded as safe (GRAS) compounds and Trichoderma harzianum on the control of postharvest diseases of rambutan. Phytoparasitica, 2002,30(1):43~51.
    52. Sivan A and Chet I. Trichoderma harzianum an effective biocontrol agent of Fusarium spp. In: (V. ,Jensen, and H. Sorenson, eds.) Microbial Communities in Soil. 1986, pp:88~95.
    53. Sivan A, Harman G E and Stasz T E. Transfer of isolated nuclei into protoplasts of Trichoderma harzianum. Applied and Environmental Microbiology,1990,56:2404~2409.
    54. Sivan A and Harman (G E. Improved rhizosphere competence in a protoplast fusion progeny of Trichoderma harzianum. J. Gen. Microbiol.,1991,137:23~29.
    55. Sivan A and Chet I. Microbial control of plant diseases. In: R. Mitchell (ed.). Environmental Microbiology. 1992, pp:335~354.
    56. Stasz T E, Weeden N F and Harman G E. Methed of isozyme electrophoresis for Trichoderma and Gliocladium species. Mycologia,1988, 80:870~874.
    57. Stasz T E, Nixon K Harman G E, Weeden N F and Kuter G A. Evaluation of phenetic species and phylogenetic relationships in the genus Trichoderma by cladistic analysis of isozyme polymorphism. Mycologia, 1989,81:391~403.
    58. Steyaert J M, Ridgway H .J, Elad Y and Stewart A. The genetic basis of mycoparasitism - a mechanism of biological control by Trichoderma spp. New Zealand Journal of Crop and Horticultural Science, 2003,31:281~291.
    59. Tronsmo A. Trichoderma harzianum used for biological control of storage rot on carrots. Norwegian Journal of Agricultural Sciences, 1989,3:157~161.
    60. Tronsmo A. Biological and integrated controls of Botrytis cinerea on apple w??h Trichoderma harzianum. Biological Control,1991,1:59~62.
    61. Weindling R. Trichoderma lignorum as a parasite of other soil fungi. Phytopathology, 1932,22: 837~845.
    62. Weindling. R. Studies on a techal principle effective in the parasitic action of T.lignorun on R.solani and other soil fungi. Phytopathology, 1934,24:1153~1179.
    63. Widden P and Abitbol J J. Seasonality of Trichoderma species in spruce forest soil. Mycologia, 1980,72:775~784.
    64. Viterbo A, Haran S, Friesem D, Ramot O, Chet I. Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbioi Lett. 2001, 200(2):169~174.
    65. Yedidia I, Benhamou N and Chet I. Induction of defense responses in cucumber plants (Cuctumis sativus L.) by the biocontrol agent Trichoderma harzianum. Appl. Environ. Microbiol. 1999,65:1061~1070.
    66. Yedidia I, Benhamou N, Kapulnik Y, and Chet I. Induction and accumulation of PR proteins activity during early stages of root colonization by the mycoparasite Trichoderma harzianum strain T-203. Plant Physiol., 2000,38:863~873.
    67. Yedidia I, Srivastva A K, Kapulnik Y and Chet I. Effect of Trichoderma harzianum on microelement concentrations and increased growth of cucumber plants. Plant and soil, 2001, 235:235~242.
    68. Yedidia I. Shoresh M, Kerem Z, et al. Concomitant induction of systemic resistance to Pseudomonas syringae pv. iachrymans in cucumber by Trichoderma asperellum(T-203) and the accumulation of phytoalexins. Appl. Environ. Microbiol., 2003,69:7343~7353.
    69.北京大学生物系化学教研室编.生物化学实验指导.北京,高等教育出版社.1987,pp:107~113.
    70.蔡芷荷,吴清平,许红立,等.木霉和粘帚霉的生物防治研究进展.微生物学通报.1998.25(5):284~286.
    71.陈伯清.潘国庆,高慧,等.木挥菌HT-O3对草莓灰霉病防治的研究.江苏农业科学.2004.4:47~50.
    72.方中达.植病研究方法.北京,农业出版社,1979,PP:112~160.
    73.高克祥,刘晓光,郭润芳.木霉菌对五种植物病原真菌的重寄生作用.山东农业大学学报(自然科学版),2002,33(1):37~42.
    74.惠友为,孙勇,潘亚妮,等.木霉在植物抗真菌病害上的作用.西北农业学报,2003,12(3):96~99.
    75.惠有为,潘亚妮.孙勇.赵健.耐低温木霉TR-165固态发酵条件的研究.西北大学学报(自然科学版),2004,34(1):69~72.
    76.纪明山,王英姿,程根武,等.西瓜枯萎病拈抗菌株筛选及田间防效试验.中国生物防治,2002,18(2):71~74.
    77.驹田旦.植物病害生物防除的现状和未来.植物防疫(日本)1989,43(1):11~15.
    78.驹形和男.微生物化学分类的实验方法。贵州,贵州人民出版社,1989,pp:247~276.
    79.李梅云,王革,段玉琪,等.木霉对烟草黑胫病菌的拈抗机制.植物保护学报,2002,29(4):309~312.
    80.李永孝.农业应用生物统计.济南,山东省科学技术出版礼,1989,pp:87~343.
    81.刘梅,徐同.木霉的营养生长及发酵的条件.云南农业大学学报,2000,15(3):263~268.
    82.刘伊玲.农药实用技术手册.吉林.吉林科学技术出版社,1991.pp:418~556.
    83.刘云龙,何永宏,张旭东,等.哈茨木霉对辣椒生长的影响.云南农业大学学报,2002,17(4):1~2.
    84.陆文华,王未名.~(60)Co-γ射线对块状耳霉的诱变效应.杀虫微生物,1989,2:185~186.
    85.NzojiyobidJean-Berchmans,徐同。宋凤鸡,沈瑛.哈茨木霉M9菌株对水稻的诱导抗病性.中国生物防治,2003,19(3):111~114.
    86.蒲金基,曾会才.绿色木霉LTR12-1对黄瓜枯萎病菌防治作用机制的初步研究.热带农业科学,2002,22(4):22~25.
    87.日本色彩研究所.色谱.东京,1989.
    88.深见顺一,上杉康彦.农药实验法—杀菌剂篇.北京,农业出版社,1991,pp:314~319.
    89.沈其益.棉花病害.北京.科学出版社,1992,pp:85~153.
    90.孙彩云,潘军,陈秀兰,等.抑制姜瘟青枯假单胞菌的木霉菌株的筛选及其抑菌机理.山东大学学报(理学版),2002,37(4):373~376.
    91.魏景超.真菌鉴定手册.上海,上海科学技术出版社,1979,pp:487~494.
    92.文成敬.陶家风,陈文瑞.中国西南地区木霉属分类研究.真菌学报.1993,12(2):118~130.
    93.文成敬,陈文瑞.柑桔青绿霉病及其它贮藏期病害生物防治的研究.全国生物防治学术研讨会论文摘要集.1995,pp:275.
    94.温贤芳.中国核农学.郑州,河南科学技术出版社.1999,pp:601~677.
    95.吴连举,杨依军,武侠等.利用土壤微生物防治人参锈腐病.中国生物防治,1999,15(4):166~168.
    96.吴石平,燕嗣皇,陆德清,等.木霉菌与三唑酮配合对西瓜生长的影响和对枯萎病的防效.西南农业学报,2002,15(2):65~68.
    97.徐同,林振玉.夏声广.哈茨木霉拮抗白绢病菌机制的研究.云南农业大学学报.1989.4(2):179~180.
    98.徐同,钟静萍,李德葆.木霉对土传病原真菌的拮抗作用.植物病理学报 1993,23(1):63~66.
    99.徐同.木霉分子生物学研究进展.真菌学报,1996,15(2):143~148.
    100.燕嗣皇.吴石平,陆德清,等.木霉生防菌对根际微生物的影响与互作.西南农业学报,2005.18(1):40~46.
    101.薛宝娣,李娟,陈永萱.木霉(TR-5)对病原真菌的拮抗机制和防病效果研究.南京农业大学学报,1995,18(1):31~35.
    102.袁虹霞,李洪连等.利用土壤拮抗性微生物防治棉花枯萎病.中国生物防治,1998.14(4):156~158.
    103.章明春.工业微生物诱变育种.北京,科技出版社,1984,pp:106~109.
    104.赵蕾,宋家华,杨合同,等.木霉菌生物学特性及拮抗机制研究概况.山东科学,1996,9(2):59~62.
    105.周德庆.微生物学实验手册.上海,上海科学技术出版社,1986,pp:65~85.
    106.诸葛健,王正祥.工业微生物实验技术手册.北京,中国轻工业出版社出版,1994,PP:145~164.
    107.庄敬华,高增贵,杨长城,陈捷.绿色木霉菌T23对黄瓜枯萎病防治效果及其几种防御酶活性的影响.植物病理学报,2005,35(2):179~183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700