资源冷杉大院种群遗传结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
资源冷杉(Abies ziyuanensis)是松冷杉属濒危物种。分布于广西资源县和湖南城步县交界的银竹老山、湖南新宁县和东安县交界的舜黄山及湖南炎陵县大院,湖南炎陵县大院分布点是种群数量最大、自然更新良好的分布点。本研究对分布于湖南炎陵县大院的资源冷杉种群进行样地调查,在中牛石、香菇蓬、鸡麻捷和和平坳4个自然分布亚种群内采集成年植株及幼苗叶片,并对每个成体单株进行精确定位,采用SSR、cpSSR分子标记及叶绿体DNA序列(rrn5-trnR、matK)对样品进行了分析,目的在于,研究清楚资源冷杉大院种群的年龄结构和空间分布格局。揭示资源冷杉大院种群的时间和空间遗传结构。研究结果表明:
     1.资源冷杉大院种群老龄个体较少,中龄级个体占多数,种群趋于相对稳定。在调查的4个地段中,中牛石亚种群存在严重的龄级缺失。
     2.当样方大小统一为30×30m时,中牛石居群在较小的尺度上聚集分布,在尺度大于8m以后,种群成随机分布。其余三个地段,种群在1-15m的尺度上均呈聚集分布。种群分形特征研究表明,资源冷杉大院种群格局强度的尺度变化、占据空间能力都很弱。在研究的4个地段中,和平坳地段的资源冷杉种群空间利用能力最强,个体分布最不均匀,种群更新状况最佳。鸡麻捷地段资源冷杉种群占据空间能力最弱,个体分布较均匀,种群更新能力最差。
     3.对资源冷杉大院种群的遗传多样性研究表明,资源冷杉大院种群的遗传多样性较低,这主要与资源冷杉大院种群的分布,种群发生过瓶颈效应有关。在四个亚种群水平中,遗传多样性水平从高到低依次为:和平坳>香菇棚>中牛石>鸡麻捷。
     4.对资源冷杉大院种群的总体时间遗传结构表明,不同年龄等级各亚种群间遗传差异不大,时间遗传结构比较稳定,基因能够世代延续。分别对4个亚种群的时间遗传结构研究亦表明,遗传变异主要存在于龄级内,龄级间变异较小。不同年龄等级的遗传多样性由高到低为:5龄级>3龄级>4龄级>2龄级>1龄级。
     5.资源冷杉大院种群整体空间遗传结构比较明显,和平坳亚种群与其它三个亚种群存在着明显的遗传分化与差异,这主要是资源冷杉各亚种群间基因交流较少及资源冷杉大院种群的分布地区有很大关系。利用空间自相关分析资源冷杉大院种群天然亚种群小尺度范围的空间遗传结构,结果揭示资源冷杉和平坳亚种群在小尺度范围内呈现出空间遗传结构斑块状,而香菇棚和鸡麻捷亚种群的遗传变异缺乏空间结构,表现为自然状态下的随机分布。6.根据以上研究结果,对资源冷杉大院种群的保护提出了相应的策略:人为促进各亚种群间的基因交流、重点保护和平坳亚种群等。
Abies ziyuanensis, which is survived the Quaternary glaciation stage, is a member of Pinaceae family. A.ziyuanensis distributed in Yinzhulaoshan of Guangxi, Shunhuangshan and Dayuan of Hu’nan. The distribution of Dayuan is the largest and good natural regeneration population. In this study, the distribution of A. ziyuanensis populations in Dayuan of Hu’nan was investigated. Leaves of adult and seedling trees were sampled in Zhongniushi, Xianggupeng, Jimajie and Hepingao.The adult trees were precisely positioned. Using SSR, cpSSR molecular markers and chloroplast DNA sequences (rrn5-trnR, matK) analyzed all the samples, to study clearly the population structure and spatial distribution pattern of the age, reveale the resources of temporal and spatial genetic structure of A. ziyuanensis populations in Dayuan. The main conclusions were as follows:
     1. The results showed that old individuals were less in the population of A. ziyuanensis in Dayuan, the population age structure is relatively stable. In the four populations, Zhongniushi had serious lack of age class.
     2. The point pattern analysis showed that when the size was 30×30m, the Zhongniushi plot showed random distribution in the smaller scale extent and presented stochastic mode at scales>8m, While the other three plots were clustered distribution. Population fractal characteristics reflect that both the population pattern of intensity scale and the capability of occupy space were weak. Among the four populations, the capability of occupy space in Hepingao is the strongest, the individual in this population is most uneven distribution, population regeneration is the best. While the capability of occupy space in Jimajie is the weakest, the individual in the plot is relatively even distribution, the population regeneration is the worst.
     3. Genetic diversity in A. ziyuanensis population showed that the level of diversity was low, this mainly related to the distribution of the A. ziyuanensis population and the bottleneck was happened in the population. In the four populations, the genetic diversity decreased from Hepingao, Xianggupeng, Zhongniushi to Jimajie.
     4. Genetic differentiation among different size classes was analyzed in A. ziyuanensis, to reflect its temporal genetic differentiation. No significant differences were found in different size classes, the temporal structure was stable, and the gene can transfer in generations. The temporal genetic structure in the four populations were respectively studied, the result also showed that the difference among different size classes was low. The genetic diversity in different size classes decreased from 5(old tree), 3(middle tree), 4(adults), 2(juveniles) to 1(seedlings).
     5. The population spatial genetic structure in A. ziyuanensis is clear. There was clear genetic differentiation between the Hepingao population and the other three populations. This relate to low gene flow among populations and the distribution of A. ziyuanensis population. Spatial autocorrelation analysis was used to study the fine-scale spatial genetic structure of the natural populations of A. ziyuanensis. The result revealed significant spatial structure of genetic variation in smaller scale in population of Hepingao. While the genetic variation in populations of Xianggupeng and Jimajie was found to be lack of spatial structure, which randomly distributed.
     6. Based on all the analysis, the strategies to conserve A. ziyuanensis population were also discussed. Such as promote the gene flow among the populations, focal protecting Hepingao population and so on.
引文
[1]刘起衔.湖南产新植物[J].植物研究,1988,8(3):85-86.
    [2]于永福.中国野生植物保护工作的里程碑-《国家重点保护野生植物名录(第一批)》[J].植物杂志,(5):3-11.
    [3]傅立国.中国植物红皮书[M].北京:科学出版社,1992.
    [4]向巧萍.中国的几种珍稀濒危冷杉属植物及其地理分布成因的探讨[J].广西植物,2001,21(2): 113-117.
    [5]肖学菊,康华魁.关于大院冷杉的考查报告[J].植物新探,1991,18(2):38-40.
    [6]汪维勇,裘利洪.江西裸子植物多样性及保护[J].江西林业科技,1998,S1(3):13-15.
    [7]饶龙兵.基于生物芯片标记技术的五种濒危冷杉保护遗传学研究[D].北京:中国林业科学研究院,2009.
    [8]张玉荣.资源冷杉的濒危机制与种群保育研究[D].北京:北京林业大学,2009.
    [9]刘克旺,侯碧清.湖南桃源洞自然保护区植物区系初步研究[J].武汉植物学研究,1991,9(1):53- 61.
    [10]吉成均,方精云,谢长富.我国南部5种冷杉植物木材的比较解剖学研究[J].西北植物学报,2003, 23(7):1202-1208.
    [11]苏何玲,唐绍清.濒危植物资源冷杉遗传多样性研究[J].广西植物,2004,24(5):414-417.
    [12]代文娟,唐绍清,刘燕华.叶绿体微卫星分析濒危植物资源冷杉的遗传多样性[J].广西科学,13(2): 151-155.
    [13] Tang S, D.W, Li M, Zhang Y, et al. Genetic diversity of relictual and endangered plant Abies ziyuanensis(Pinaceae) revealed by AFLP and SSR markers[J].Genetica,2008,133(1):21-30.
    [14]韦范.中国南方4种冷杉属植物的种群遗传结构和系统地理的比较[D].桂林:广西师范大学, 2009.
    [15]刘峰,陈伟烈,贺金生.神农架地区锐齿槲栎种群结构与更新的研究[J].植物生态学报,2000,(24): 396-401.
    [16]张国志,王仁卿.中国分布北界的山茶(Camellia japonica)种群大小结构和空间格局分析[J].植物生态学报,2000,24(1):118-122.
    [17] Zhao X N, Liu L H, Gao S Y, et al. A study on the structural dynamics and spacial pattern of Vatica xishuang bannaensis population[J].Acta Botanica Sinica (in Chinese),1993,35(7):552-560.
    [18]张文辉,王延平,康永祥等.太白山太白红杉种群空间分布格局研究[J].应用生态学报,2005,16 (2):207-212.
    [19]宋萍,洪伟,吴承祯等.珍稀濒危植物桫椤种群结构与动态研究[J] .应用生态学报,2005,16(3): 413-418.
    [20] Wu X P, Zheng Y, Ma K P. Population distributions and dynamics of Quercus liaotungensis,Fraxinnusrhynchophylla and Acermonoin Dongling Mountain Beijing[J]. Acta Botanica Sinica,2002,44(2): 212-223.
    [21] Arista M.The structure and dynamics of an Abiesp insapo forest in southern Spain[J]. Forest Ecology and Management.1995,74:81-89.
    [22]李先琨,苏宗明.濒危植物元宝山冷杉种群结构与分布格局[J].生态学报,2002,22(12):2246- 2253.
    [23]李先琨,向悟生,唐润琴.濒危植物元宝山冷杉种群生命表分析[J].热带亚热带植物学报,2002,10 (1):9-14.
    [24]卢杰,潘刚,罗大庆等.濒危植物急尖长苞冷杉种群结构及空间分布格局[J].林业资源管理,2009, 8(4):48-53.
    [25]张桥英,罗鹏,张运春等.白马雪山阴坡林线长苞冷杉(Abies georgei)种群结构特征[J].生态学报, 2008,28(1):129-135.
    [26]蒋雪琴,刘艳红,赵本元.湖北神农架地区巴山冷杉(Abies fargesii)种群结构特征与空间分布格局[J].生态学报,2009,29(5):2211-2218.
    [27]张文辉,许晓波,周建云等.濒危植物秦岭冷杉种群空间分布格局及动态[J].西北植物学报,2005, 25(9):1840-1847.
    [28]史小华,刘毅,彭佳龙等.秦岭冷杉和巴山冷杉种群年龄结构及动态的比较分析[J].东北林业大学学报,2009,37(1):10-14.
    [29]赵常明,陈庆恒,乔永康等.青藏高原东缘岷江冷杉天然群落的种群结构和空间分布格局[J].植物生态学报,2004,28(3):341-350.
    [30]程伟,罗鹏,吴宁.岷江上游林线附近岷江冷杉种群的生态学特点[J].应用与环境生物学报,2005, 11(3):300-303.
    [31]沈泽昊,方精云,刘增力等.贡嘎山海螺沟林线附近峨眉冷杉种群的结构与动态[J].植物学报, 2001,43(12):1288-1293.
    [32]葛颂,洪德元.濒危物种裂叶沙参及其近缘广布种泡沙参的遗传多样性研究[J].遗传学报,1999, 26(4):410-417.
    [33]葛颂,陈家宽.同工酶和植物进化生物学研究[M].武汉:武汉大学出版社,1994:208.
    [34] Brown A H D.The case for core collections[M].Cambridge:Cambridge University Press, 1989:136- 156.
    [35] Falk D A,Holsinger K E.Genetics and conservation of rare plants[M].New York:Oxford University Press,1991.
    [36]张春雨.新疆野苹果(Malus sieversii)群体遗传结构与核心种质构建方法[D].泰安:山东农业大学, 2008.
    [37] Hamrick J L.Isozymes and the analysis of genetic structure in plant populations[M].Portland: Dioscorides press,1989:87-105.
    [38] Wright S.Evolution in Mendelian populations[J].Genetics,1931,16:97-159.
    [39] Antonovics J,Bradshaw A D,et al.Heavy metal tolerance in plants[M].London:Acedemic Press, 1971,7:85.
    [40] Bradshaw A D. Plant evolution in extreme environments.In:Creed R(ed.)Ecological Genetics and Evolution.Qxford:Blackwell,1984.
    [41]陈长卿.中国小麦条锈菌分子群体遗传结构研究[D].陕西:西北农林科技大学,2008.
    [42] Wright S.Genetical structure of populations[J].Nature,1950,166(4215):247-249.
    [43]马玉敏.中国野生板栗(Castanea mollissim Blume)群体遗传结构和核心种质构建方法[D].泰安:山东农业大学,2009.
    [44] Barrett S C H,Eckert C G.Variation and evolution of mating systems in seed plants[M].Academic Press. 1990:229-254.
    [45] Loveless M D,Hamrick J L.Ecological determinants of genetic structure in plant Populations[J].Annual Reviews,1984,11(15):65-95.
    [46] Slatkin M.Gene flow and the geographic structure of natural population[J].Science,1987,236(4803): 787-792.
    [47] Hamrick J L.Gene flow and distribution of genetic variation in plant populations.In K.Urbanska(ed) Differentiation Patterns in Higher Plants New York:Academic Press,1987:53-67.
    [48] Levin D A,Kerster H W.Gene flow in seed plants[J].Evolutionary Biology,1974,7:139-220.
    [49]马啸.老芒麦野生种质资源的遗传多样性及群体遗传结构研究[D].雅安:四川农业大学,2008.
    [50]黄仕训.元宝山冷杉濒危原因初探[J].农村生态环境,1998,14(1):6-9.
    [51]刘军.毛红椿天然亚种群遗传结构研究[D].北京:中国林业科学研究院,2007.
    [52]杨光伟,冯丽春,敬成俊.桑树种群遗传结构变异分析[J].蚕业科学,2003,29(4):323-329.
    [53]王中仁.植物等位酶分析[M].北京:科学出版社,1999:54-56.
    [54]魏俊杰,陈梅香,刘志增等.玉米DH系的表现及其同工酶电泳分析[J].作物杂志,2010,1:81-83.
    [55]胡树贵,李艳.44个百合品种同工酶遗传多样性研究[J].西部林业科学,2009,38(4):27- 35.
    [56] Penel Ci,Greppin H.Evolution of the auxin-oxidase and peroxidase activity during the spinach's photoperiodic induction and sexual-istion[J].Plant Cell Physiol,1972,13(1):151-156.
    [57]钟诲文,杨中汉,朱广廉.根据过氧化物酶同工酶图谱鉴定银杏植株的性别[J].林业科学,1982, 18(1):1-5.
    [58]赵云云.雌雄构树过氧化物酶同工酶的比较研究[J].首都师范大学学报,1996,17(2):84-87.
    [59]晁无疾.我国葡萄野生种质资源的同工酶研究初报[J].中国果树,1981(4):41-44.
    [60]李芳,李霞,郑红霞等.雌雄芦笋过氧化物酶及酯酶同工酶的比较研究[J].江西农业学报,2009,21 (11):30-32.
    [61]罗建勋,顾万春,陈少瑜.云杉天然群体基因分化与种质资源异地保存抽样策略[J].西南林学院学报,2007,27(1):5-10.
    [62]贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10.
    [63]张光富,高邦权.江浙莼菜遗传多样性和遗传结构的ISSR分析[J].湖泊科学,2008,20(5):662- 668.
    [64] Escudero A,Iriondo J M,Torres M E.Spatial analysis of genetic diversity as a tool for plant conservation[J].Biological Con-servation,2003,113(3):351-365.
    [65]蔡凝枫,严宁,胡虹等.黄花杓兰云南中甸亚种群遗传结构及克隆多样性的分析[J].云南植物研究,2008,30(1):69-75.
    [66]杨娟.金钱槭属植物亚种群遗传结构及谱系地理研究[D].西安:西北大学,2008.
    [67] Streiff R,Labbe T,Bacilieri R,et al.Within-population genetic structure in Quercus robur L.and Quercus petraea(Matt.)Liebl.assessed with isozymes and microsatellites[J].Molecular Ecology,1998,7(3):317- 328.
    [68]刘美华.长柄水青冈种群遗传结构和系统地理学研究[D].上海:华东师范大学,2008.
    [69]闰伯前,王艇,胡理乐等.药用植物华中五味子的种群遗传多样性及遗传结构[J].生态学杂志, 2009,28(5):811-819.
    [70] Sokal R R,Jacquez G M,Wooten M.Spatial auto-correlation analysis of migration and selection[J]. Genetics,1989,121:845-855.
    [71]李作洲,郎萍,黄宏文.中国板栗亚种群间等位酶基因频率的空间分布[J].武汉植物学研究,2002, 20(3):165-170.
    [72] Epperson B K.Recent advances in correlation studies of spatial patterns of genetic variation[J]. Evolutionary Biology,1993,27:95-155.
    [73] Bjornstad O N , Falck W, Stenseth N C.A geographic gradi-ent in small rodent density fluctuations:a statistical modeling ap-proach[J].Proceedings of the Royal Society of London B,1995,262:127-133.
    [74] Epperson B K.Spatial structure of genetic variation within populations of forest trees[J].New Forests, 1992,6:257-278.
    [75] Williams C G,Hamrick J L.Elite populations for conifer breeding and gene conservation[J].Canadian Journal of Forest Re-search,1996,26:453-461.
    [76] Sokal R R,Oden N L.Spatial autocorrelation in bi-ology1.Methodology[J].Biological Journal of the Linnean So-ciety,1978,10:199-228.
    [77]何田华,杨继,饶广远.植物亚种群遗传变异的空间自相关分析[J].植物学通报,1999,16(6):636- 641.
    [78] Leonardi S,Raddi S,Borghetti M.Spatial autocorrelation of allozyme traits in a Norway spruce(Picea abies)population[J].Canadian Journal of Forest Research,1996,26(1):63-71.
    [79]赵茹.野生大豆保护遗传学基础研究[D].上海:复旦大学,2007.
    [80] Delucas A I,Gonzalez-Martinez S C,Vendramin G G.et al.Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Ation[J].Molecular Ecology,2009,18:4564-4576.
    [81] Cottrell J C,Munro R C,Tabbener H E,et al.Comparison of fine- scale genetic structure using nuclear microsatellites within two British oakwoods differing in population history[J].Forest Ecology and Management,2003,176:287-303.
    [82] Tomokazu Takahashi,Naoki Tani,Kaoru Niiyama,et al.Genetic succession and spatial genetic structre in a natural old growth Cryptomeria japonica forest revealed by nuclear and chloroplast microsatellite markers[J].Forest Ecology and Management,2008,255(7):2820-2828.
    [83] Tani N,Tsumura Y,et al.Genetic structure within a Japanese stone pin(Pinus pumila Regel)population on Mt.Aino-dake in central Honshu[J].Japanese Journal Plant Research,1998,111(1):7-15.
    [84]聂一农,胡绍燕.用过氧化物酶同工酶酶谱鉴定芦笋植株性别的研究初报[J].北京农学院学报, 1988,3(3):26-29.
    [85]何敬胜,李作洲,黄宏文.濒危物种—巴东木莲等位酶遗传变异的空间自相关分析[J].云南植物研究,2005,27(2):171-180.
    [86]汤飞燕,李守淳,陈媛媛等.极濒危植物中华水韭安徽亚种群遗传结构的空间自相关分析[J].江西师范大学学报,2009,33(4):445-451.
    [87]李秀玲,陈健,王刚.西北地区红砂种群ISSR遗传变异的空间自相关分析[J].中国沙漠,2008,28 (3):468-472.
    [88]李昂,罗毅波,葛颂.采用空间自相关分析研究两种兰科植物的群体遗传结构[J].生物多样性, 2002,10(3):249-257.
    [89]李作洲,龚俊杰,王瑛等.水杉孑遗亚种群AFLP遗传变异的空间分布[J].生物多样性,2003,11 (4):265-275.
    [90]刘军,陈益泰,孙宗修等.基于空间自相关分析研究毛红椿天然亚种群的空间遗传结构[J].林业科学, 2008,44(6):45-52.
    [91]刘亚令,李作洲,张鹏飞等.猕猴桃自然亚种群SSR遗传变异的空间自相关分析[J].生物多样性, 2006,14(5):421-434.
    [92]何天明,陈学森,许正等.利用SSR标记对伊犁河谷野杏种群遗传结构的分析[A].中国园艺学会第十届会员代表大会暨学术讨论会论文集[C].2005:121-131.
    [93]王英,康明,黄宏文.用分子标记揭示植物随机大种群中亚种群的遗传结构一茅栗自然种群空间遗传结构的SSR分析[J].植物生态学报,2006,30(1):147-156.
    [94]陈小勇,宋永昌.黄山青冈种群时间遗传结构[J].华东师范大学学报,1999,12(4):79-84.
    [95]邵丹,裴赢,张恒庆.凉水国家自然保护区天然红松种群遗传多样性在时间尺度上变化的cpSSR分析[J].植物研究,2007,27(4):473-477.
    [96]高三红,王峥峰,张军丽等.广东黑石顶厚壳桂(Cryptocarya chinensis)不同年龄级遗传多样性[J].植物遗传资源学报,2005,6(3):300-303.
    [97]金则新,李钧敏.七子花种群遗传多样性的RAPD分析[J].林业科学,2004,40(4):68-74.
    [98] Brodie C,Houle G,Fortin M J.Development of a populus balsamifera clone in subarctic Quebecreconstructed from spatial analyses[J].Journal of Ecology,1995,83:309-320.
    [99]钟章成.常绿阔叶林生态学研究[M].重庆:西南师范大学出版社.1988:253-314.
    [100]苏志尧,吴大荣.粤北天然林优势种群结构与空间格局动态[J].应用生态学报,2000,11(3):337- 341.
    [101] Kohyama T.Simulating stationary size distribution of trees in rain forests[J].Annals of Botany,1991, 68(2):173-180.
    [102]朱学雷,安树青,张立新.海南五指山热带山地雨林主要种群结构特征分析[J].应用生态学报, 1999,10(6):641-644.
    [103]郭晋平,王石会,康日红等.管涔山青扦(Picea wilsonii)天然林年龄结构及其动态的研究[J].生态学报,1997,17(2):184-189.
    [104] Youngblood A,Max T,Coe K.Stand structure in eastside old-growth ponderosa pine forests of Oregon and northern California [J].Forest Ecology and Management,2004,10(199):191-217.
    [105] Besag J.Contribution to the discussion of Dr Ripley's paper [J].JR Stat Soc B,1977(39):193-195.
    [106]马克明,祖元刚.兴安落叶松种群格局的分形特征—计盒维数[J].植物研究,2000,20(1):104-111.
    [107]马克明,祖元刚.兴安落叶松种群格局的分形特征—信息维数[J].生态学报,2000,20(2):187-192.
    [108] Doyle J J,Doyle J L.A rapid DNA isolation procedure for small quantities of fresh leaf tissue[J]. Phytochemical bulletin,1987,19(1):11-15.
    [109]代文娟.资源冷杉的保护遗传学研究[D].桂林:广西师范大学,2006.
    [110]覃永贤.濒危植物元宝山冷杉的保护遗传学研究[D].桂林:广西师范大学,2007.
    [111]张广荣.梵净山冷杉的保护遗传学研究[D].桂林:广西师范大学,2008.
    [112] Saito Y L,Lian C L,Hogetsu T,et al.Development and characterization of microsatellite markers in Abies firma and interspecific amplification in other Japanese Abies species[J].Molecular Ecology Notes,2005,5(2):234-235.
    [113] Josserand S A,Potter K M,Johnson G,et al.Isolation and characterization of microsatellite markers in Fraser fir (Abies fraseri)[J].Molecular Ecology Notes,2006,6(1):65-68.
    [114] Lian C,Goto S,Hogetsu T.Microsatellite markers for Sachalin fir (Abies sachalinensis Masters)[J]. Molecular Ecology Notes,2007,7(5):896-898.
    [115] Vendramin G G,Lelli L,Rossi P,et al.A set of primers for the amplification of 20 Chloroplast microsatellites in Pinaceae[J].Molecular Ecology,1996,5(4):595-598.
    [116] Suyama Y,Yoshimura Y,Tsumura Y.Molecular phylogenetic position of Japanese Abies(Pinaceae)based on chloroplast DNA sequences[J].Molecular Phylogenetics and Evolution,2000,16(2):271-277.
    [117]李静,叶万辉,葛学军.生境片断化对植物的遗传影响[J].中山大学学报,2005,44(2):193-199.
    [118]陈小勇.生境片断化对植物种群遗传结构的影响及植物遗传多样性保护[J].生态学报,2000,20 (5):884-892.
    [119] Hamrick J L.Reaponse of forest trees to global environmental changes[J].Forest Ecology and Management,2004,(197):323-335.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700