一个新的内切葡聚糖酶基因umcel5K的克隆、表达及其表达产物的酶学特性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作从牛瘤胃的富集培养物中提取未培养细菌的总DNA,用柯斯质粒pWEB::TNC为载体构建宏基因组文库,得到一个包含约8千个克隆的宏基因组文库。该文库外源片段最大为50.8kb,最小约20.5kb,平均大小为35.6kb,外源总DNA容量约为2.86×108bp。对文库进行活性筛选,获得1个表达既表达内切酶活性又表达4-MUC活性的克隆,对具有活性的克隆进行亚克隆、测序分析。鉴定分析表明:该克隆上潜在的内切酶基因umce/5K具1个1002bp的ORF(Open Reading Frame),可编码含333个氨基酸的蛋白质。umce/5K蛋白与一个来源于未培养细菌的糖苷水解酶家族5的纤维素酶CelA(ABA02176)同源性最高,一致性为53%、相似性为68%;其次与来自混合纤维弧菌的糖苷水解酶家族5的纤维素酶CelA(AAB61461)一致性为51%、相似性为67%。将该ORF转入表达载体后用IPTG诱导表达Umcel 5K蛋白,经过Ni-NTA纯化后测定其酶学特性。Umcel 5K最适pH和最适温度分别为5.0和50℃。从Umcel 5K的pH耐受性和热稳定性实验中可知,Umcel 5K较适合偏酸酸性的环境,是个中温酶,不耐高温。其Km值为3.843mg/ml,Vmax为152.4U/mg。部分金属如Fe3+、Cr2+或Cu2+会抑制该酶的酶活,而另外一些金属离子如K~+、Li~+等对Umcel 5K的活性影响不大。
In this study, total DNA of uncultured microorganisms from the enrichment cultures of the contents of buffalo rumens was isolated . A metagenomic cosmid library that contained approximate 8×10~3 clones was constructed. By functional screening, a clone expressing both exoglucanase and endoglucanase activity was found from the library, and subcloning and sequencing analysis identified one gene (designated umcel5K) that contained an open reading frame (ORF) encoding a protein of 333 amino acid residues. The encoded products of the gene shared 53% identities and 68% similarities with a cellulase CelA(ABA02176) of glycosyl hydrolase family 5 from a uncultured bacterium. The ORF of umcel5K amplified by PCR was clonded into vecter pET30a(+), and over-expressed in Escherichia coli. The Ni-NTA purified expressed product was characterized. The optimum pH of the recombinant enzyme was 4.5~5.0, and optimum temperature was 50℃for endoglucanase activity. The enzyme kinetics experiment determined that the values for Km and Vmax of Umcel5K is 3.843mg/ml and 152.4 U/ mg. Certain ions such as Fe~(3+)、Cr~(2+) and Cu~(2+) had inhibitory effect on the activity of the enzyme, while K~+、Li~+ showed little influence.
引文
[1] Lynd L R, Paul J W,Van Zyl W H,et al.Micribial cellulose utilization:Fundatnentals and biotechnology [J]. Microbiology and molecular biology reviews,2002,66(3):506—577.
    [2] Christian P.The triehoderrna cdlulase regulatory puzzle [J].enzyme,Microb.Technol.,1993, 15(2): 90- 99.
    [3] Sibtola, H., and Neimo, L1., In: Symp. on Enz. hyd. of Cellulase. Bailey, M., Enari, T. M., Linko, M.,(Eds), SITRA, Helsinki, p9(1975)
    [4] Chanzy,H. (1991), Aspects of cellulose structure. In: Kennedy, J.F., Phillips, GO.Williams, P.A. (Eds), Cellulose Sources and Exploitation, Ellis Horwood, Chichester, pp3—12
    [5] Hon, D., Cellulose:a random walk along its historical path. [J].Cellulose, 1994,1 (1):1-25
    [6] Li Li,Jur Gen F,Peter P.et al.Termite gut symbiotic archaezoa are becoming living metabolic fossils[J]. Eukaryotic Cell,2003,2(5): 1091 — 1098.
    [7] BeWch, J. P, C. Tardif, A. Belaich and C.Gaudin. (1997). The biological degradation of Cellulose[J].FEMS Microbiol.R ev. 13 ,219—248.
    [8] Ahsan, M. M,T. Kimura, S. Karita, K. Sakka and K. Ohmiya.( 1996). Cloning, DNA sequencing, And expression of the gene encoding Clostridium thermocellum cellulose CelJ,the largest Catalytic component of the cellulosime [J]..Bacteriol. 178,5732—5740
    [9] Berger,E .,W.A.Jo nes,D .T Jones and D .R .Woods.(1989).Clonning and sequencing of an Endoglucanase gene from Butyrivibrio fibrisolvens H17c.Mol.Gen.Genet 219,193—198
    [10] Vercoe, P. E., J. L. Finks, and B. A. White.(1995). DNA sequence and transcriptional Characterization of a beta-glucanase gene from Ruminococcus flavefaciens. FD-1. Can. [J]. Microbiol.41,869—876.
    
    [11] Karen M K L,Matrl S A,Teeri T T,et al,The celulases endoglucanase I and cellobiohydrolase II of Trichoderma reesei act synergistically to solubilize native cotton cellulose but not to decrease its molecular size[J].Applied and Environmental Microbiology, 1996,62(8):2883—2887.
    
    [12] Alinda A Ester D,Marc Van Mil,et al. EglC a new endoglucanase from Aspergillus niger with major activity towards xylogulcan. [J]. Applied and Environmental Microbiology, 2002,68(4): 1556—1560.
    [13] Singh A., Hayashi, K. Microbial cellulases: protein architecture, molecular properties and biosynthesis [J].Appl.Microbiol, 1995,40:1~44.
    [14] Rachel.G.Larusa R.Sima Y, ed al.Cell,a nomelhlosomal fanfily 9 enzyme from Ciostridlum thermocellum,is a processive endoglucanase that degrades crystalline cellulose[J].J Bact,2003, 185(2):391~398.
    [15] Te'o Vet al.Extrempophiles,1998, 32:24~32.
    [16] Rouvinen J, Bergforst, Teeri T Three dimisional structure of cellobiohydrolase Ⅱ From T [J].reerei.Science, 1990,24 9(4967):380~386.
    [17] Juy M, Amit A G, Alzari P M,et al.Crystal structure of a thermostable bacterial cellulose degrading enzyme [J].Nature, 1992,357~373.
    [18] Cavaro Paulo A.et al.Enzyme Microb Techo. 1999,25:639~643.
    [19] Linder Met al. protein Sci[M]. 1995,4:1056~1064.
    [20] Reesi.E.T.;Stu.R.G.H.;Levinson,H.S.J.Becterid[M] 1960,69,485-497
    [21] Humpheg A E.The hydlolysis of cellulosic matelialo to uletrl products[J]. AdvChem Se1,1979,181: 25-53.
    [22] Wood T M,Maccpae S L.In bioconversion of cellulose substance into energy,chemicals and microbial protein [M]. Edited by T K Ghose Gal India,1978 111~141.
    [23] Eunki Kim, et al.Factorial optimization of a six cellulose mixture [J] Biotechnolog and Bioengineering, 1998, 58 (5):496~501.
    [24] 陈力宏.纤维素酶在食品发酵中的应用[J].中国酿造,1990(5):2~5.
    [25] 谭宏等.长梗木霉纤维素酶的产生及提取,微生物学通报,1993,20(2):90~93.
    [26] 崔福绵,刘菡,韩辉,等.康宁木霉Cp8829纤维素酶生产条件的研究[J].微生物学通报,1995,22(2):72~75.
    [27] Lee R.Lynd et al,Fuel Ethanol form Cellulosic Biomass[J], Science,1991, (1251): 1318~1323.
    [28] 梁靖,须海荣.纤维素酶在速溶茶中的应用研究[J].茶叶,2002,28(1):25~26.
    [29] 周正红,贾宗剑,高孔荣.纤维素酶在食品发酵工业中的应用及前景[J].西南大学学报(自科与医学版).
    [30] 邱立友,朱德育.黑曲霉酶学特性及其在洒精生产中的应用[J].河南农业大学学报,1993,27(3):291~295.
    [31] 明景熙.啤酒工业中可再生资源开发[J].中国酿造,2000,4:28~29.
    [32] 肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志,2002,22(2):33~35.
    [33] 宋国安.纤维素酶的应用开发前景[J].河南化工,1999,(6):5~6.
    [34] 仁大明.浅谈饲用纤维素酶生产与应用[J].饲料工业,1995,(3):1~3.
    [35] Kamaya, Y, Role of endoglucanase in enzymatic modification of bleached kraft pulp.[J] Ferm Bioeng 1996,82:549~553.
    [36] Oksanen,T, Pere, J. Buchert, J. and Viikari, L,The efect of T. reesei cellulases and hemicellulases on the paper technical properties of never-dried bleached kraft pulp[J]. Cellulose 1997,4:329~339.
    [37] 乞永立,耿月霞,任章启.纤维索酶的生产及应用[J].河北化工,2000,(1):25~26.
    [38] Torsvik V, φbvreas L. Curr Opin Microbio, 2002, 5: 240~245.
    [39] 梁威,邱东茹,熊丽,等.生命科学[M],2002,14(3):142~144.
    [40] Wang G Y, Graziani E,Waters B,et al.Novel natural products from soil DNA libraries in a streptomycete host.Org Lett,2000,2:2401-2404
    [41] 阎冰,洪葵,许云,马超,宏基冈组克隆——微生物活性物质筛选的新途径[J].微生物学通报,2005,32(1):113-117
    [42] Handelsman J,Rondon M R,Brady S F, Clardy J,Goodman R M.Molecular biological accesses to the chemistry of unknown soil microbes:A new frontier for natural p products[j].Chem Biol,1998,5(10):245~249.
    [43] Streit Wr, Daniel R, Jaeger KE. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms[J].Curr Opin Biotechnol,2004,15 (4):285~290.
    [44] Patrick Lorenz,Christa Schleper. Metagenome-a challenging source of enzyme discovery [J].J Mol Catal B:Enzymatic, 2002,19 (20):13~19.
    [45] 徐平,李文均,姜成林,等.微波炉法快速提取放线菌基冈组DNA.微生物学通报,2003,30(4):82-84.
    [46] Courtois S,Cappellano Cm,Ball M,et al, Recombinant en2vironmental libraries provide access to microbial diversity for drug discovery from natural products[J]. Appl Environ Micro-biol,2003,69 (1):49~55.
    [47] Henne A,Daniel R, Schmitz RA,et al.App EnvironMicrobiol[M], 1999,65:3901~39071.
    [48] Knietsch A, Waschkowitz T, Bowien S,et al,Appl EnvironMicrobiol[M],2003, 69: 1408~14161.
    [49] RondonM R, August P R, Bettermann A D,et al.Appl EnvironMicrobiol[M], 2000, 66:2541~2547.
    [50] Schioss PD,Handelsman J.Biotechnological prospects from metagenomics[J]. Curr Opin Biotechnol,2003, 14 (3):303~310.
    [51] Tyson GW, Chapman J,Hugenholtz P, et al,Community structure and metabolism through reconstruction of microbial genomes from the environment [J].Nature,2004,428 (2):37~43.
    [52] Schmeisser C,Stockigt C,Raasch C,et al,Metagenome survey of biofiims in drinking2water networks[J].Appl Environ Microbiol,2003,69 (12):7298~7309.
    [53] Hugenholtz P, Goebel BM, Pace NR. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. [J] Bacteriol. 1998, 180(18): 4765~4774
    [54] Rappe MS, Giovannoni SJ. The uncultured microbial majority[J]. Annu Rev Microbial. 2003, 57: 369~394
    [55] 萨姆布鲁克 J.,弗里奇 E.F.,曼尼阿蒂斯 T,分子克隆实验指南(第二版),北京:科学出版社,1999.19~22
    [56] Zhou J, Brouns MA, Tiedje JM. DNA recovery from soil of diverse composition.[J]. Appl Environ Microbiol. 1996, 62(2): 316~322
    [57] Richardson TH, Tan X, Frey Get al. A novel, high performance enzyme for starch liquefaction. Discovery and optimization of a low pH, thermostable a-amylase[J]. Biol Chem. 2002, 277: 26501~26507
    [58] Teather RM, Wood PJ. Use of Congo red-polysaccharide interactions in enumeration and characterisation of cellulolytic bacteria from the bovine rumen.[J]. Appl Environ Microbiol. 1982, 43(4): 777-780
    [59] Kwon Ki-sun, Lee Jaehoon, Kang Hyung-gyoo et al. Detection of β-Glucosidase activity in polyacrylamide gels with esculin as substrate.[J]. Appl Environ Microbiol. 1994, 60(12): 4584-4586
    [60] Heptinstall J, Stewart JC, Seras M. Fluorimetric estimation ofexo-cellobiohydrolase and β-D-glucosidase activities in cellulase from Aspergillus fumigatus Fresenius.[J]. Enzyme Microb Technol. 1986, 8(2): 70-74
    [61] Sebat JL, Colwell FS, Crawford RL. Metagenomic profiling: microarray analysis of an environmental genomic library[J]. Appl Environ Microbiol. 2003, 69(8): 4927-4934
    [62] Laemmli. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature. 1970, 224(5259): 680-685
    [63] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem. 1976, 72:248-254
    [64] Miller GL. Use of dinitrosalicyclic acid reagent for determination of reducing sugar[J]. Biotechnol Bioeng Symp. 1959, 5:193-219
    [65] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem. 1976, 72:248-254
    [66] 胡莹,杨凌,杨胜利.糖苷酶序列分类法和作用机理的研究进展[J].药物生物技术,2006,13(1):066~070
    [67] 王玢,汪天虹,张刚等.产低温纤维素酶海洋嗜冷菌的筛选及研究[J].海洋科学,2003,27(5):42~45
    [68] 曾胤新,俞勇,陈波等.低温纤维素酶产生菌的筛选、鉴定、生长特性及酶学性质,高技术通讯,2005,15(4):58~61
    [69] 白玉,杨大群,王建辉等.天山冻土耐冷茵的分离与产低温酶菌株的筛选[J],冰川冻土.2005,27(4):615~618
    [70] Ando S, et al. Appl Environ Microbiol, 2002, 68(1): 430~433.
    [71] 强郁荣,李丽,封晔等.黄河中上游半干旱区典型盐渍土中细菌耐盐性及产酶特性研究[J].西北农业学报2006,15(3):65~68,82
    [72] Susan Grant,Dimitry Y. Sorokin, William D. et al. A phylogenetic analysis of Wadi el Natrun soda lake cellulase enrichment cultures and identification ofcellulase genes from these cultures[J]. Extremophiles (2004) 8:421-429
    [73] 黄永光,黄旭,黄平.茅台酒酿酒极端环境与极端酿酒微生物[J],酿酒科技2006,12:47~50
    [74] Daniel R. The soil metagenome-a rich resource for the discovery of novel natural products[J]. Curr Opin Biotechnol. 2004, 15(3): 199-204
    [75] Schloss PD, Handelsman J. Biotechnological prospects from metagenomics[J]. Curr. Opin. Biotechnol. 2003, 14:303-310
    [76] Handelsman J, Rondon MR, Brady SF et al. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products[J]. Chem Biol. 1998, 5(10): R245-249
    [77] Voget S, Leggewie C, Uesbeck A et al. Prospecting for novel biocatalysts in a soil metagenome[J]. Appl Environ Microbiol. 2003, 69(10): 6235-6242
    [78] Streit WR, Daniel R, Jaeger KE. Prospecting for biocatalysts and drugs in the genomes of non-cultured microorganisms[J]. Curr Opin Biotechno, 2004, 15(4): 285-290.
    [79] 杜连起,李香艳.酶制剂在啤酒生产中的应用[J].酿酒科技,1996,75(3):48~49.
    [80] 许梓荣,王振来,王敏奇.高麦麸饲粮添加酶类物质对仔猪生长忡能和胴体组成的影响[J].浙江大学学报(农业与生命科学版),1998,6:7~10.
    [81] 郭小权,胡国良,刘妹,β-葡聚糖酶的抗营养作用及β-葡聚糖酶在饲料中的应用[J],江西饲料,2001,2:11~13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700