纤维素酶产生菌的抗阻遏选育及其产酶条件优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素酶是一种多组分复合酶系,一般由内切-β-1,4-葡聚糖苷酶、外切-β-1,4-葡聚糖苷酶和β-1,4-葡萄糖苷酶三种组分构成。纤维素酶自被发现以来就受到众多学者的青睐,主要是纤维素酶具有非常广泛的应用领域,如食品工业、纺织工业、畜牧业、能源等,但生产成本高限制了纤维素酶的工业化进程。提高纤维素酶产生菌的产酶能力和优化生产菌的产酶条件是提高酶产量、降低酶成本的重要途径。
     本文从自然界筛选产酶能力较高的野生菌,通过紫外、微波诱变结合阻遏剂筛选对其进行抗阻遏选育,获得抗阻遏效能和发酵产酶能力提高的变异菌株,利用响应面法对变异菌株的发酵条件进行优化,探讨了纤维素酶的部分酶学性质。本文的主要工作内容和研究结果如下:
     (1)从沂蒙山区的灌木枯枝、腐土中采样,用羧甲基纤维素刚果红培养基初筛,然后通过摇瓶发酵测定各菌株的酶活进行复筛,筛选出一株CMCA和FPA相对较高的菌株,通过菌落形态、菌丝和孢子显微形态观察,依据《真菌鉴定手册》和《普通真菌学》等书籍的参考,将其初步鉴定为绿色木霉(T. viride Persex Fx NS90)。
     (2)分别考察了不同浓度阻遏剂甘油、纤维二糖、葡萄糖对绿色木霉生长和产酶的影响,结果表明:对菌体生长,在4%浓度范围内,甘油、葡萄糖、纤维二糖的浓度越高,菌体量也越大。对发酵产酶,当甘油在0.4%时能促进酶的生产,而在2%时阻遏酶的分泌;纤维二糖对酶的发酵没有呈现明显的影响;葡萄糖除0.4%外,其他浓度均对酶的生产有阻遏作用。经紫外照射90s,微波辐射60s,选育到的突变株相对于原始菌株在相同浓度的阻遏剂下其CMCA和FPA分别提高了41%和44.95%。突变株在生长过程中,菌落由黄色逐渐变为绿色,呈现黄色孢子。
     (3)采用响应面分析法优化绿色木霉变异菌株UW-Ⅲ的发酵产酶条件。根据模型预测和实验验证,得到绿色木霉变异菌株UW-Ⅲ产酶的响应面模型优化发酵条件为微晶纤维素、麸皮和发酵时间分别为6.1 g/L、8.5 g/L和96 h,且CMC酶活达362.523 U/mL
     (4)研究了绿色木霉纤维素酶的部分酶学性质,包括最适温度、最适pH、温度稳定性、pH稳定性以及甘油、葡萄糖、纤维二糖的影响等,结果显示:绿色木霉纤维素酶的最适反应温度是50℃,最适pH是5.0左右,酶具有相对较好的温度稳定性和pH稳定性;纤维二糖在低添加量下对绿色木霉纤维素酶活具有促进作用,葡萄糖对纤维素酶的抑制作用明显。
Cellulase is a multi-component enzyme complex, which is generally composed of endo-β-1,4-glucanase, exo-(3-1,4-glucanase andβ-1,4-glucosidase. Cellulose is interested by many scholars, mainly because it has a very wide range of applications, such as food industry, textile industry, animal husbandry, energy and so on. The industrialization process of cellulase is limited by its high production costs. The important ways to raise enzyme yield and reduce enzyme costs are increasing of cellulase producing capability and optimizing of fermentation conditions.
     In this study, a higher yield cellulase-producting wild strain was screened. Then through UV and microwave irradiation, combining with repressor agent screening, a cellulase-producing mutant was bred, which had higher ability of anti-repressor and enzyme production. Subsequently, the fermentation conditions of mutant were optimized by response surface methodology and parts of enzymatic properties of cellulase was discussed. The main contents and results of this thesis are as follows:
     Samples were collected from dead branches and rotten soil in Yimeng. A strain of high CMCA and FPA was screened by carboxymethylcellulose congo red medium and fermentation culture. By observing colony morphology, microscopic morphology of mycelium and spores, and based on "Fungal Identification Manual", "ordinary Mycology", it was identified as Trichoderma viride (T. Viride Persex Fx NS90).
     The effect of different concentrations of glycerol, glucose, cellobiose on Trichoderma viride growth and enzyme production was studied. The results show that, in the concentration range of 4%, the biomass of strain growing showed positive correlation to the concentrations of glycerol, glucose, cellobiose in the medium.When the concentration of glycerol in the medium was 0.4%, the production of enzyme was promoted, but the concentration was 2%, the production was repressed. Cellobiose did not show significant effects on the enzyme production.Except the 0.4% concentration, other concentrations of glucose all repress the enzyme production.After 90s UV radiation and 60s microwave treatment, compared to the original strain in the same concentration of repressor, the CMCA and FPA of the mutant produced had increased 41% and 44.95% respectively. In the growth process of the mutant strain, the color of mutant colony changed from yellow to green, and the spores presented yellow during the cells culture.
     The fermentation conditions of mutant UW-Ⅲwas optimizated by response surface analysis. According to the model prediction and experimental verification, response surface model for enzyme production fermentation conditions of mutant UW-Ⅲwere optimized that microcrystalline cellulose, wheat bran and fermentation time were the value was 6.1 g/L,8.5 g/L and 96 h, and the CMCA was up to 362.523 U/mL.
     Parts of the enzymatic properties, including optimum temperature, optimum pH, temperature stability, pH stability and the effect of glycerol, glucose, cellobiose addition was studied. The results showed that:the optimum temperature of cellulase was 50℃. The optimum pH was around 5.0. Cellulose has a relatively good temperature stability and pH stability. Under the low amount of addition, cellobiose has positive effects on cellulose. Glucose has strong inhibition to cellulase.
引文
[1]李振红,陆贻通.高效纤维素降解菌的筛选[J].环境污染与防治,2003,25(3):133-135,153.
    [2]杨洋,张玉苍,何连芳,等.纤维素类生物质废弃物水解方法的研究进展[J].酿酒科技,2009,(10):82-86.
    [3]曲音波,高培基,赵昕,等.纤维素类废弃物生物转化技术研究进展[J].纤维素科学与技术,1997,5(2):1-9.
    [4]顾方媛,陈朝银,石家骥等.纤维素酶的研究进展与发展趋势[J].微生物学杂志,2008,28(1):83-87.
    [5]李燕红,赵辅昆.纤维素酶的研究进展[J].生命科学,2005,17(5):392-396.
    [6]Qu YB, Zhu MT, Liu K, et al. Studies on cellulosic ethanol production for sustaina ble supply of liquid fuel in China[J]. Biotechnology Journal,2006,1(11):1235-124 0.
    [7]王亮,尚会建,杨立彦,等.纤维素酶的应用研究进展[J].河北工业科技,2010,27(6):441-443,461.
    [8]Farrell A E,Plevin R J,Jones AD,et al.Ethanol can contribute to energy and environ mental goals[J].Science,2006,311 (5760):506-508.
    [9]Willian M, Catherine T. Microbioal enzyme and biotechnology (2nd edition)[M].Nor them Ireland:The Universities Press,1990,7-8,13-14.
    [10]Elena S, Lymar, Bin Li, et al. Purification and Characterization of a Cellulose-Bindi ng (3-Glucosidase from Cellulose-Degrading Cultures of Phanerochaete chrysosporium [J]. Applied and environmental microbiology,1995, (8):2976-2980.
    [11]高伦江,董全,唐春红.纤维素酶的研究进展及前景展望[J].江苏食品与发酵,2007,(4):14-17.
    [12]Bhat MK. Cellulases and related enzymes in biotechnology[J].Biotechnology Advance s,2000,18(5):355-383.
    [13]Tilbeugh HV, Tomme P,Claeyssens M,et al. Limited proteolysis of the cellobiohydrol ase I from T.ressei[J].FEBS Letters,1986,204(2):223-227.
    [14]Pitt RE. A model of cellulase and Amylase Additives in Silage[J].Journal of Dairy Science,1990,73(7):1788-1799.
    [15]阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学,1995,7(5):22-25.
    [16]Rouvinen J,Bergfors T,Teeri T.Three-dimisional structure of cellobiohydrolaseⅡfrom T.reesei.Science,1990,249(4967):380-386.
    [17]Divne C, Stahlberg J, Reinikainen T,et al. The three-dimensional crystal structure of the catalytic core of cellobiohydro-lase I from Trichoderma reesei.Science,1994,26 5(5171):524-528.
    [18]Meinke A, Damude H G, Tomme P, et al. Enhancement of the endo-β-1,4-glucanase activity of an exocellobiohydrolase by deletion of a surface loop. J Bio Chem,199 5,270(9):4383-4386.
    [19]Wilson DB, Walker LP. Engineering cellulase[J].Bioresource Technology,1991,36(1):9 7-99.
    [20]Sinnott ML.Catalytic mechanism of enzymatic glycosyl transfers[J].Chem.Rev.,1990,9 0(7):1171-1202.
    [21]汗天虹,王春卉,高培基.纤维素酶纤维素吸附区的结构与功能[J].生物工程进展,2000,20(2):37-40.
    [22]吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向[J].生物工程进展,1994,14(4):25-27.
    [23]宋波,邓晓皋,施雷霆.纤维素酶的研究进展[J].上海环境科学,2003,22(7):491-494.
    [24]谢占玲,吴润.纤维素酶的研究进展[J].草业科学,2004,21(4):72-76.
    [25]阎伯旭,高培基.外切葡聚糖纤维二糖水解酶的分离纯化和部分性质研究[J].生物化学杂志,1997,13(3):362-364.
    [26]Li X, Gao PJ.CMC-liquefying enzyme, a low responsible for fragmentation from Sir eptomyces sp. LX[J].Journal of Applied Microbiology,1997,83:59-66
    [27]杜鹃,庄蕾,季明杰,等.棘孢曲霉SM-L22 β-葡萄苷酶的纯化与性质[J].菌物系统,2002,21(2):239-245
    [28]Ida L, Barbara RE, Lynette ML, et al.Substrate-enzyme interactions in cellulase syst ems[J].Bioresource Technology,1996,58(2):163-169.
    [29]Elwyn TR, Ralph GHS, Hillel SL. The Biological degradation of soluble cellulose d erivatives and its relationship to the mechanism of cellulose hydrolysis[J]. Quarterma ster General Laboratories,1950,59:485-497.
    [30]Enari TM, Niku-Paavola ML.Nephelometric and turbidometric assay for cellulase[J]. Methods in Enzymology,1988,160:117-126.
    [31]Nummi M, Niku-Paavola ML, Enari TM,et al. Immunoelectrophoretic detection of ce llulases[J]. FEBS Letters,1980,113(2):164-166.
    [32]Hakalehto E,Haikara A,Enari TM,et al. Hydrochloric acid extractable protein patterns of Pectinatus cerevisiophilus strains[J]. Food Microbiology,1984, 1(3):209-216.
    [33]任恒星,冷云伟,李浩,等.纤维素酶生产研究进展[J].安徽农学通报,2010,16(15):63-79
    [34]陈辉,陆善祥.生物质制燃料乙醇[J].石油化工,2007,36(2):107-117
    [35]朱跃钊,卢定强,万红贵,等.木质纤维素预处理技术研究进展[J].生物加工过程,2004,2(4):11-16.
    [36]Ha SH, Mai NL, An G, et al. Microwave-assisted pretreatment of cellulose in ionic liquid for accelerated enzymatic hydrolysis[J]. Bioresource Technology,2011,102(2): 1214-1219.
    [37]Zhao Y, Wang HT, Lu WJ,et al.Combined supercritical and subcritical conversion of cellulose for fermentable hexose production in a flow reaction system[J].Chemical Engineering Journal,2011,166(3):868-872.
    [38]DeLu TY,Qing J, Waleed WAD,et al.Improved pretreatment of lignocellulosic biomas s using enzymatically-generated peracetic acid[J].BioresourceTechnology,2011,102(8):51 83-5192.
    [39]Juien S, Chornet E, Overend RP.Influence of acid pretreatment (H2SO4, HCl, HNO3) on reaction selectivity in the vacuum pyrolysis of cellulose[J].Journal of Analytical and Applied Pyrolysis,1993,27(1):25-43.
    [40]Kumar S, Kothari U, Kong LZ, et al. Hydrothermal pretreatment of switchgrass and corn stover for production of ethanol and carbon microspheres[J]. Biomass and Bio energy,2011,35(2):956-968.
    [41]Nakagame S, Richard PC, John FK,et al.The isolation, characterization and effect of lignin isolated from steam pretreated Douglas-fir on the enzymatic hydrolysis of cel lulose[J].Bioresource Technology,2011,102(6):4507-4517.
    [42]Melanie H, Prabuddha B, Jay HL,et al.Biological pretreatment of cellulose:Enhancin g enzymatic hydrolysis rate using cellulose-binding domains from cellulases[J].Biores ource Technology,2011,102(3):2910-2915.
    [43]曲音波.微生物技术开发原理[M].北京:化学工业出版社,2005.
    [44]邱立友.固态发酵工程原理及应用[M].北京:中国轻工业出版社,2008.
    [45]Reeta RS, Rajeev KS, Anil Kumar Patel,et al.Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for mic robial cellulases[J].Enzyme and Microbial Technology,2010,46(7):541-549.
    [46]Weber J, Agblevor FA.Microbubble fermentation of Trichoderma reesei for cellulase production[J]. Process Biochemistry,2005,40(2):669-676.
    [47]Wu JZ, Peter CK, Wong KH,et al.Studies on submerged fermentation of Pleurotus t uber-regium (Fr.) Singer-Part 1:physical and chemical factors affecting the rate of mycelial growth and bioconversion efficiency[J]. Food Chemistry,2003,81 (3):389-393.
    [48]Mitchell L, Goen H, Ralf CR.Ethanol from lignocellulose using crude unprocessed c ellulase from solid-state fermentation[J]. Bioresource Technology,2010,101 (18):708 3-7087.
    [49]Xia LM, Chen PL.Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry[J]. Process Biochemistry,1999,34(9):909-912.
    [50]Zhou YJ, Zhang JN, Dai LM,et al.Cellulase production by semi-continuous solid stat e fermentation (SSF)[J].Journal of Biotechnology,2010,150(Supplement 1):169-170.
    [51]Singh S, Tyagi CH, Dutt D,et al.Production of high level of cellulase-poor xylanases by wild strains of white-rot fungus Coprinellus disseminatus in solid-state fermentat ion[J].New Biotechnology,2009,26(3-4):165-170.
    [52]Reeta RS, Anil KP, Carlos RS,et al.Recent advances in solid-state fermentation[J].Bi ochemical Engineering Journal,2009,44(1):13-18.
    [53]刘颖,张玮玮,王馥.绿色木霉产纤维素酶发酵条件的研究[J].食品工业科技,2008,29(3):128-130.
    [54]王生慧,高秀峰.康宁木霉固态发酵生产纤维素酶条件研究[J].湖北农业科学,2009,48(3):678-680.
    [55]王巧兰,郭刚,林范学.纤维素酶研究综述[J].湖北农业科学,2004,(3):14-20.
    [56]Muhammad ZA, Suleyman AM, Rosmaziah W.Statistical optimization of process con ditions for cellulase production by liquid state bioconversion of domestic wastewater sludge[J].Bioresource Technology,2008,99(11):4709-4716.
    [57]Muhammad S, Roquya S, Aqeel A,et al.Cellulase production from Aspergillus niger MS82:effect of temperature and pH[J]. New Biotechnology,2009,25(6):437-441.
    [58]Crispen M, Rajni HK, Remigio Z,et al.Purification and characterization of cellulases produced by two Bacillus strains[J]. Journal of Biotechnology,2000,83(3):177-18 7.
    [59]Lee YJ, Kim BK, Lee BH,et al.Purification and characterization of cellulase produce d by Bacillus amyoliquefaciens DL-3 utilizing rice hull[J].Bioresource Technology,20 08,99(2),:378-386.
    [60]Ye XY, Ng TB, Cheng KJ. Purification and characterization of a cellulase from the ruminal fungus Orpinomyces joyonii cloned in Escherichia coli[J].The International J ournal of Biochemistry & Cell Biology,2001,33(1):87-94.
    [61]Rajeev KS, Reeta RS, Gincy MM,et al.Cellulase production using biomass feed stoc k and its application in lignocellulose saccharification for bioethanol production[J].Re newable Energy,2009,34(2):421-424.
    [62]Dewey DYR, Mary M.Cellulases:Biosynthesis and applications[J]. Enzyme and Micr obial Technology,1980,2(2):91-102.
    [63]乞永立,耿月霞,等.纤维素酶的生产及应用[J].河北化工,2001,(1):25-26
    [64]包先进,唐晓峰,陈宗道,等.纤维素酶提高砖茶品质的研究[J].西南农业大学学报,1995,17(6):541-544
    [65]闫训友,史振霞,等.纤维素酶在食品工业中的应用进展[J].食品工业科技,2004,(10):140-146
    [66]司笑丁.纤维素酶在酒精生产中的应用探讨[J].酿酒科技,2004,(6):61-62.
    [67]周春晖,孙加龙.纤维素酶及其应用[J].中国商办工业,2002,(2):43-44.
    [68]陈东辉,马仁汀.纤维素纤维织物的生物整理[J].纺织学报,1996,17(6):4-7.
    [69]Tyndall RM.Improving the softness and surface of cotton fabrics and garments by tr eatment with cellulase enzymes[J].Textile Chem Color,1992,24(6):23-26.
    [70]陈伙甫,裴相元.纤维素酶曲添加剂对鹿茸产量及饲料消化率的影响[J].兽医大学学 报,1990,(4):382-386.
    [71]戴四发,金光明,王立克,等.纤维素酶研究现状及其在畜牧业中的应用[J].安徽技术师范学院学报,2001,15(3):32-38.
    [72]孙清.燃料乙醇技术讲座(一)燃料乙醇及其发展状况[J].可再生能源,2010,28(1):153-155.
    [73]柳羽丰,王滨生,王佳祥.非粮燃料乙醇发展综述[J].化学工程师,2009,16(7):53-55.
    [74]魏亚琴,李红玉.纤维素酶高产菌选育研究进展及发展趋势[J].兰州大学学报(自然科学版),2008,44:107-115.
    [75]张传富,顾文杰,彭科峰,等.微生物纤维素酶的研究现状[J].生物信息学,2007,35(1):34-36.
    [76]陈阿娜,汤斌.纤维素酶高产菌株选育研究进展[J].安徽农学通报,2006,12(10):64,144.
    [77]朱永涛,刘巍峰,王禄山,等.不依赖微生物培养的纤维素降解酶及基因资源的挖掘[J].生物工程学报,2009,25(12):1838-1843.
    [78]谭宏,刘淑欢,李剑英,等.长梗木霉纤维素酶的产生及提取[J].微生学通报,1993,20(2):90-93.
    [79]杨礼富,谢贵水,王真辉,等.木质纤维素酶高产菌株的筛选和鉴定[J].热带作物学报,2001,22(3):70-77.
    [80]江玉姬,陈汉青,童金秀,等.产纤维素酶菌株C真3的筛选[J].福建农业科技,2003,(3):45-46.
    [81]林远声,列璞怡.降解纤维素的真菌分离_鉴定及其酶活测定[J].中山大学学报(自然科学版),2004,43:82-85.
    [82]徐昶,龙敏南,邬小兵,等.高产纤维素酶菌株的筛选及产酶条件研究[J].厦门大学学报(自然科学版),2005,44(1):107-111.
    [83]余永红,邓泽元,范亚苇,等.一株新型产纤维素酶菌种的分离鉴定[J].食品工业科技,2006,(06):52-53.
    [84]魏亚琴,邵建宁,麻和平,等.纤维素酶产生菌的选育研究和形态鉴定[J].中国酿造,2010,(12):133-136.
    [85]陈力宏.纤维素酶在食品发酵中的应用[J].中国酿造,1990,(5):2-5.
    [86]宋小炎,宋桂经,孙彩云,等.抗高浓度葡萄糖阻遏的纤维素酶高产菌的选育[J].山东大学学报(自然科学版),1999,34(4):488-492.
    [87]管斌,孙艳玲,谢来苏,等.抗分解代谢阻遏纤维素酶变异株的选育[J].无锡轻工大学学报,2000,19(3):244-247.
    [88]董志扬,祝令香,于巍,等.纤维素酶高产菌株的诱变选育及产酶条件研究[J].核农学报,2001,15(1):26-31.
    [89]王金华,李睿,邱雁临.原生质体诱变提高米曲霉产纤维素酶活力的研究[J].湖北农业科学,2002,(6):123-125.
    [90]张年凤,赵允麟.纤维素酶菌株的选育及其产酶条件[J].粮食与饲料工业,2003,(5):23-25.
    [91]张强,赵文娟.液态发酵纤维素酶菌种的选育及产酶条件研究[J].陕西农业科学,2005,(4):39-40.
    [92]兰时乐,李立恒,王晶,等.微波诱变结合化学诱变选育纤维素酶高产菌的研究[J].微生物学杂志,2007,27(1):22-25.
    [93]侯红萍,杜文娟.微波诱变筛选纤维素酶高产菌株[J],中国酿造,2008,201(24):44-45.
    [94]陈淑丽,张琴,韩晶晶,等.绿色木霉原生质体的激光诱变及纤维素酶发酵条件优化[J].核技术,2009,32(11):828-832.
    [95]高珍娜,吕文静,谢航,等.纤维素降解菌的筛选与诱变育种[J].福州大学学报(自然科学版),2010,38(3):450-455.
    [96]方诩,秦玉琪,李雪芝等.纤维素酶与木质纤维素生物降解转化的研究进展[J].生物工程学报,2010,26(7):864-869.
    [97]Antoine M, Barbel HH, Maria E, et.al. New improvements for lignocellulosic ethano 1[J]. Current Opinion in Biotechnology,2009,20:372-380.
    [98]段学辉,颜淑芳,彭云召等.响应面法优化灰绿青霉Penicillium glaucum NS16产酶条件[J].食品与生物技术学报,2010,29(3):464-470.
    [99]GB 2583-2003,纤维素酶制剂[S].
    [100]张瑞萍.纤维素酶的滤纸酶活和CMC酶活的测定[J].印染助剂,2002,3(10):51-53.
    [101]魏景超.真菌鉴定手册[K].上海:上海科技出版社,1979.
    [102]邢来君,李明春.普通真菌学[M].北京:高等教育出版社,1999.
    [103]王晓芳.产纤维素酶的真菌筛选与纤维素酶的诱导及其理化性质的研究[D].南京:南京师范大学生命科学学院,2002.
    [104]Fritscher C, Messner R, Kubicek CP. Cellobiose metabolism and cellobiohydrolase I biosynthesis by Trichoderma reesei[J]. Experimental Mycology,1990,14(4):405-415.
    [105]Tilbeurgh HV, Pettersson G, Bhikabhai R, et.al. Studies of the cellulolytic sy-stem of Trichoderma reesei QM 9414[J]. Eur.J.Biochem,1985,148:329-334.
    [106]Li XH, Yang HJ, Roy B, et.al. Enhanced cellulase production of the Trichoderma viride mutated by microwave and ultraviolet[J]. Microbiological Research,2010,165 (3):190-198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700