产纤维素酶真菌的基因组重组初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是自然界中存在最广泛的一类碳水化合物,同时它也是地球上数量最大的再生资源。纤维素酶(cellulase)能将天然纤维素降解生成纤维素分子链、纤维二糖和葡萄糖。利用微生物生产的纤维素酶将其转化为人类急需的能源、食物和化工原料,对于人类社会解决环境污染、食物短缺和能源危机具有重大的现实意义。
     分子育种技术(molecular breeding)继承和发展了杂交育种,引进了新的概念和方法,可以加速育种进度。本文采用基因组重排(genome shuffling)进行分子育种,对象是整个细胞,能弥补诱变育种的不足。把通过诱变育种改良获得的多种不同的突变株进行多次连续的原生质体融合,使得不同菌株来源的基因组能够得到充分的重组,高通量检出得到一批性能改善的重组子,再进入下一轮的基因组重排,可大大提高重组率。
     本课题以纤维素酶生产菌株斜卧青霉(Penicillium decumbens)为出发菌株,通过原生质体的制备、原生质体反复融合,使细胞进行基因组重排,得到一系列与亲本相比具有优越性的重组子。将这些重组子和亲本菌株进行了形态学,产酶活力以及胞外全蛋白电泳图谱分析比较,证实了重组子和亲本的亲缘关系,以及融合过程中的染色体发生的交换分离。
     首先以青霉菌株M114和Ju-A10为例,研究了青霉的菌丝及孢子原生质体的形成和再生条件。菌丝制备原生质体的条件为3mg/mL纤维素酶和3mg/mL蜗牛酶对生长32h的菌丝体进行处理,处理时间为1h。对于耐受性孢子,加大酶的用量为5mg/mL,孢子预先萌发8h,酶处理12h~18h,原生质体产率可达85%。原生质体的再生采用葡萄糖再生培养基效果最好,再生率可达81%。
     在PEG的诱导下进行了M114和Ju-A10的原生质体融合,得到融合子Fu-3。表型上它分别具有两亲本的特征性状,菌丝形态如M114,分生孢子如Ju-A10;其CMCase酶活可以达到M114的2.38倍,Ju-A10的1.86
Cellulose is the most abundant organic raw material in the world, and it is the only renewable resource that is available in large quantities. Cellulase can decompose the natural cellulose into cellulose molecular chain, cellobiose and glucose. It has great realistic meaning for human being to solve environment pollution, food shortage and energy crisis that using cellulase produced by microorganism transforms cellulose to energy, chemical and food.
    Molecular breeding inherited and improved crossbreeding; it accelerated the breeding-schedule by using new notion and method. The object of genome shuffling is the whole cell, it made cross breeding to mutation strain, and cause different strain's genome to recombine completely, the chance of various forward mutation concordances to a recon improves. Simultaneity, accumulative detrimental mutation was replaced by the sequence of wild type strain. Hence, improved recon was detected by high flux, and then entered the next genome shuffling; the forward mutation rate can be enhanced greatly.
    Therefore, using the Penicillium decumbens as original strain, which produces cellulase, this research subject prepared protoplasts and made recursive fusion of them to fulfill the recombination among cells, and then we selected a series of hybrids with the better quality than the parental strains by genome shuffling. We contrast the hybrids with the parental strains from the morphologic characteristics, cellulase activity and extra-cellular protein electrophoresis strips, thus make sure the relative relationship between the hybrids and parental strains, and interpret the exchange and separation of chromosome in the course of fusion.
    Take the strain M114 and Ju-A10 as examples; we studied the preparation and regeneration using the hypha and spores of Penicillium. The
引文
1. Amold M B et al. Isolation and characterization of protoplasts from Saccharomyces rouxii. J. Bacteriol. 1979,137:1386-1394
    2. Baltz R H. Genetic recombination in Streptomyces fradiae by protoplast fusion and cell remigration. J. Gen. Microbiol. 1978,107:93-102
    3. Barski G, Soricut S and Cornefert F. "Hybrid" type cells incombined cultures of two different mammalian cell strains. J. Natl. Cancer Inst. 1961,26:1269-1291
    4. Burger M et al. Some observations on the form and location of inverters in the yeast cell. J. Biochem. 1961,5:290-317
    5. Hiunbelin M, Griesser V, Keller T et al. GTP cyelohydrolase 11 and 3, 4-dihydroxy-2-butanone 4-phosphate synthesis are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J. Ind Microbiol Biotechnol. 1999, 22:1-7
    6. Hoopwood D A, Wright H M. Bacterial protoplast fusion. Mol.Gen. Genet [J]. 1978,162:307-317
    7. Kim J, Park S. R, Lim W J et al. Cloning and characterization of the rmostable endoglucanase (Ce18Y) from the hyper thennophilic Aquifex aeolicus VF5 J. Biochemical & Biophysical Research Communications. 2000,279(2):420-426
    8. Kim K et al. Application of protoplast fusion technique to genetic recombination of Micromonospora Rosaria. Enzyme Microb. Technol. 1983,5:273-280
    9. L Ferenczy, F Kevei, J Zsolt. Nature, 1994,248:793
    10. Ma D B, Gao P J & Wang Z N. Preliminary studies on the mechanisms of cellulase formation by T.pseudokoningii S-38. Enzyme Microb Technol. 1990,12:631
    11.Mandels M.发酵法生产纤维素酶的某些问题和解决办法J.应用微生物.1976.6:53-62
    12. MingHua Dai and Shelley D.C. Genome shuffling improved degradation of the anthropogenic pesticide pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Applied and Environmental Microbiology. 2004,70(4):2391-2397
    13.M.P.Coughlan著,吴克谦摘译.细菌和真菌降解纤维素的机理J.国外畜牧科学,1991,18(6):28-31
    14. Ohnishi J, Mitsuhashi S, Hayashi M, Ando S, Yokoi H et al. A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-iysine-producing mutant. Appl Microbiol Biotechnol. 2002,58:217-223
    15. Okada Y, Suzuki T and Hosaka Y. Interaction between influenza virus and Ehrlich's tumor cells. Med. J. Osaka Univ. 1957, 7:709-717
    16. Okamoto T. Fusion of protoplasts of Streptococcus Iactics. Agric.Biol.Chem. 1983,47(11):2675-2676
    17. Olga S, Fernando V and Volker S. Rapid revolution of novel traits in microorganisms. Applied and Environmental Microbiology. 2001,67(8):3645-3649
    18. Ouchi K E et al. UV-killed protoplast fusion as a method for breeding killer yeast. J. Ferment. Technol. 1983,61(6):631-635
    19. Patnaik R, Louie S, Gavriiovic.V, Perry K et al. Genome shuffling of Lactobacillus for improved acid tolerance. Nature biotechnology. 2002,20:707-712
    20. Stal M H. Protoplast formation and cell regeneration in Clostridiumperfringens. Appl. Environ.Microbiol. 1985,50(4): 1097-1099
    21. Thomas K R et al. The effect of 2-glucuronidase and chitinase on the cell walls of Aspergillus niger and Aspergillus Fumigatus. Microbiol. 1979,25:111-123
    22. Thomas K R & Davis B. The effect of calcium on protoplast release species of Aspergillus. Microbiol. 1980,28:69-80
    23. Thomas M Wood. Fungal cellulases. Biochemistry Society Transaction. 1992,20:46-53
    24. Willian M & Catherine T. Microbial Enzyme and biotechnology (2nd edition). The Universities Press, Northern Ireland. 1990,7-8:13-14
    25. Zhang YX, Perry K, Vinci VA, Powell K et al. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature. 2002,415:644-646
    26.曹军卫.黑曲霉原生质体的制备及再生[J].武汉大学学报(自然科 学).1984,4:95-102
    27.陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究[J].工业微生物.2000,,30(4):23-26
    28.陈力宏.纤维素酶在食品发酵中的应用[J].中国酿造.1990,5:2-5
    29.陈漱,曹军卫.几种丝状真菌原生质体的形成与再生[J].真菌学报.1986,5(2):117-123
    30.董志扬,祝令香,于巍等.纤维素酶高产菌株的诱变选育及产酶条件研究[J].核农学报.2001,15(1):26-31
    31.段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较[J].粮食与饲料工业.2000,3:24-26
    32.甘志波.华中农业大学学报.1993,12(5):502-509
    33.高才昌,张树政.酶制剂工业(下册)[M].北京科学出版社.1984,595
    34.吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向[J].生物工程进展.1994,14(4):25-28
    35.高培基,张玉臻,王祖农.一种筛选产高活性糖化型纤维素酶真菌的方法[J].山大微生物.1982,2(总4):1-51
    36.高修功,章克昌.纤维素酶固态发酵过程中菌体生长量的测定[J].工业微生物.1994,24(3):26-31
    37.胡利勇,钟卫鸿.纤维素酶基因克隆及其功能性氨基酸研究进展[J].生物技术2003,13(2):43-45
    38.姜锡瑞.酶制剂应用手册[M].北京:中国轻工业出版社.1999:191-194
    39.明景熙.啤酒工业中可再生资源开发[J].中国酿造.2000(4):28-29
    40.李淑荣,陈祖洁.Sn-9106纤维素酶性质载体筛选及喂饲效果的研究[J].沈阳农业大学学报.1993,增刊
    41.梁霆,王遂.纤维素酶液体深层发酵条件的研究[J].生物技术.1997,7(6):22-26
    42.刘春芬,贺稚非,蒲海燕等.纤维素酶及应用现状[J].粮禽与油脂.2004,1:15
    43.刘家建,陆怡.纤维素酶的研究及应用综述[J].林产纪工通讯.1995,1:6-10
    44.刘妙莲,王洁.纤维素酶的研究及其在饲料中的应用开发[J].精细与专用化学 品.2002,14:13-15
    45.邱雁临.纤维素酶的研究和应用前景[J].粮食与饮料工业.2001,8:30-31
    46.曲音波,高培基,王祖农.青霉的纤维素酶抗降解物突变株的选育.真菌学报.1984,3:238
    47.沈萍,范秀容,李广武主编.微生物学实验[M].高等教育出版社.2001:124-125
    48.宋桂经,王冬,孙彩云等.芽孢杆菌074碱性纤维素酶的研究:菌种分离、筛选及发酵条件.微生物学报.1995,35:38
    49.宋向阳,余世袁.纤维素酶制备过程中不同底物、菌种的研究[J].生物学杂志.2001,18(1):20-21
    50.孙剑秋,周东坡.微生物原生质体技术[J].生物学通报.2002,37(7):9-11
    51.谭宏,刘淑欢.长梗木霉纤维素酶的产生及提取[J].微生物通报.1993,20(2):90-93
    52.宛晓春,汤坚,丁霄霖.β-萄糖着酶菌种选育[J].安徽农业大学学报.1997,24(1):77-80
    53.汪多仁.纤维素酶在纺织工业中的应用[J].四川化工与腐蚀控制.2000,5(3):52-53
    54.王建平.纤维素酶的研究概况[J].浙江水产学院学报.1996,15(2):140-144
    55.王景林,尹清强,吴东林等.高活力纤维素酶菌株康氏木霉B-7的选育与产酶条件的研究.生笏技术.1996,6:14
    56.王祖农.纤维素酶研究工作进展[J].山东大学微生物.1985,6(1):1-3
    57.王祖农,高培基,宋荣祥.好氧性分解纤维素细菌的薄层成沉淀纤维素计数法.微生物学报.1964,10:228
    58.吴剑波主编.微生物制药[M].北京工业出版社.2002:46-55
    59.吴显容,穆小民.纤维素酶分子生物学研究进展及趋势[J].生物工程进展.1994,14(4):25-27
    60.肖春玲,徐常新.微生物纤维素酶的应用研究[J].微生物学杂志.2002,22(2):33-35
    61.阎伯旭,高培基.纤维素酶分子结构与功能研究进展[J].生命科学.1995,7(5):22-26
    62.阎伯旭,曲音波.纤维素酶分子结构与功能研究进展[J].生物化学与分子生物学进展.1999,26(3):233-236
    63.尹清强,陈侠甫.纤维素酶对兔日增重、肠绒毛结构、胃内容物及肝、睾丸内无机元素含量的影响[J].黑龙江畜牧兽医.1992,(1):14-15
    64.曾家豫,冯克宽,马永录等.木霉4131菌株纤维素酶的分离纯化和部分性质研究[J].兰州大学学报.1999,35(1):190-193
    65.章冬春主编.工业微生物诱变育种[M].科学出版社.1984:41-163
    66.张礼星,石贵阳,徐柔等.里氏木霉利用麦糟生产纤维素酶[J].食品与发酵工业.1999,25(3):23-25
    67.张玉臻,马桂荣,高培基.斜卧青霉Penicillium decumbens原生质体的形成和再生因素的研究[J].山东大学学报.1989,24(2):78-84
    68.赵小蓉,林启美,孙众鑫等.纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志.2000,20(3):12-14
    69.赵昕,曲音波,高培基.抗黑液毒性的纤维素酶产生菌株的探讨[J].纤维素科学与技术.1993,1(2):28-32
    70.赵昕,曲音波,高培基,王祖农.利用亚硫酸铵法制浆废液废渣生产纤维素酶的研究[J].工业微生物.1989,5:15-19
    71.张志光,李东屏,方芳.丝状真菌原生质体技术研究(Ⅴ)——原生质体融合的形态学观察[J].湖南师范大学自然科学学报.1994,17(3):41-48
    72.植内特J H著.刘锡进,白金铠译.[M].北京:科学出版社.1989,55:180-397
    73.朱国生,李中利.添加纤维素酶制作玉米秸青贮料饲喂奶山羊的试验效果[J].饲料博览.2002,9:42
    74.朱知难.纤维素酶生产与应用[J].广东科技.1995:9-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700