内切酶催化反应及非水溶液中胶束性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着各种蛋白质纯化技术的发展,纤维素酶的分离纯化研究也取得了很大进步。纤维素酶来源广泛,组成复杂,具有高度的底物专一性,其对纤维素的降解需要三种主要成份的协同作用才能有效地进行。对纤维素酶进一步的分离提纯并系统研究它的酶催化反应可为研究纤维素酶的协同作用提供理论基础,从而提高酶解效率,使纤维素资源得到有效利用,缓解日益严重的环境和能源问题。
     非水溶液中表面活性剂性质的研究可以为进一步研究纤维素酶的胶束酶催化奠定理论基础。一些纤维素不溶于水而溶于某些有机溶剂,在非水环境中研究纤维素酶对纤维素的降解是酶催化反应新的研究方向。
     具体研究内容如下:
     1.内切葡聚糖酶的分离纯化
     利用凝胶层析的方法对纤维素酶的C_x酶组分进行了分离提纯,用SDS-聚丙烯酰胺凝胶电泳法和DNS显色法对分离所得的C_x酶组分的纯度和酶活进行了检验得到活性较高的C_x酶组分。
     2.内切葡聚糖酶最佳酶解条件的研究
     用微量量热仪测出C_x酶降解纤维素在不同酸度和不同温度下的热功率—时间曲线,按照热动力学理论和对比进度法解析出反应的米氏常数(K_m)和表观最大速率(V_(max)),建立最大速率与酸度和温度的关系式,从而得到C_x酶催化反应的最佳酸度(pH=5.20)和最佳温度(322.9K)。
     3.常见离子对C_x酶催化反应的影响
     测定了在不同浓度的离子存在时的热功率—时间曲线并进行解析,通过比较得出相同浓度的不同离子以及同一离子在不同浓度时对C_x酶催化反应的抑制与激活作用的规律。得到了Na~+,Li~+,Cd~(2+),K~+,Ca~(2+)对C_x酶催化反应有激活作用,并且激活作用由Na~+到Ca~(2+)逐渐减弱;Co~(2+),Cu~(2+),Mg~(2+),Ba~(2+)对C_x酶催化反应有抑制作用,其抑制作用由Co~(2+)到Ba~(2+)逐渐增强:Cl~-,Si_2O_8~(2-),NO_3~-对C_x酶催化反应有激活作用,其激活作用由Cl~-到NO_3~-逐渐减弱;SO_4~(2-)和SO_3~(2-)对C_x酶催化反应有抑制作用,其抑制作用为SO_4~(2-)小于SO_3~(2-)。在所选浓度范围内,激活或抑制作用均随离子浓度的增加而增强。
     5.SLA和SDS在DMF体系中胶束类型的确定
     十二烷基羧酸钠(SLA)和十二烷基硫酸钠(SDS)在N,N-二甲基甲酰胺(DMF)体系中的胶束均属于O/W型胶束。
     6.CMC及热力学函数的确定及规律性
     用微量量热仪测定了SLA和SDS在DMF体系中,在不同温度下和不同浓度的各种醇存在时胶束形成过程的热功率-时间曲线。根据曲线转折点所对应的体积,获得临界胶束浓度(CMC);从曲线上的面积,求得热效应,从而得到标准形成焓(△H_m~θ);根据△H_m~θ和CMC的数据,运用表面活性剂作用原理及热力学理论计算出△G_m~θ和△S_m~θ。结果表明:SLA和SDS在DMF体系中,在含有相同浓度、相同碳原子数的醇时,CMC、△H_m~θ和△S_m~θ的值随着温度的升高而增加,△G_m~θ的值随着温度的升高而降低;在相同温度及相同浓度的醇存在时,CMC、△H_m~θ、△G_m~θ和△S_m~θ的值都随着醇中碳原子数目的增加而降低;在相同温度下、相同碳原子数的醇存在时,CMC和△G_m~θ的值随着醇的浓度的增加而增大,而△H_m~θ和△S_m~θ的值随着醇的浓度的增加而减小。
     本文的创新之处
     1.将纤维素酶的内切葡聚糖酶组分进行分离提纯并单独研究其酶催化反应为系统研究纤维素酶的协同作用及寻找三种主要成分之间的最佳酶配比奠定理论基础。利用微量量热法,根据热动力学理论获得热动力学参数并用来表征C_x酶催化反应的特征及规律,确定酶催化降解纤维素的最佳条件的研究是酶催化反应研究的新课题。
     2.利用微量量热法研究非水溶液中表面活性剂,助表面活性剂及溶剂的相互作用,用测得的CMC及胶束形成过程的热效应,得到胶束形成焓△H_m~θ,进而计算出△G_m~θ和△S_m~θ。这是获得CMC和热力学函数的新方法。
With the development of purification technology of protein, the separation and purification of cellulase has been advanced greatly. Cellulase's source is widespread, its composition is complex and its effect on substrate is highly specificity. Cellulose's degradation by cellulase is effectively done only when the three main constituents of cellulase cooperate with each other. Further separation and purification of cellulase and systematic study of its enzyme catalysis can offer theoretical basis to the research of cellulase's cooperation. So, the efficiency of enzyme catalysis can be improved, the cellulose resource can be effectively used and the more and more severe problems of environment and energy can be relaxed.
    The property research of surfactant in non-aqueous solution can provide theoretical basis for the research of micelle enzyme catalysis of cellulase. Some cellulose is not water miscible, but it can be dissolved in certain organic solvent. The study of cellulose's degradation by cellulase in non-aqueous environment is a new research subject.
    The main contents are as follows:
    1. the separation and purification of endoglucanase
    The endoglucanase of cellulase was separated and purified by gel chromatography. The purity and enzyme activity of endoglucanase were determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and DNS development process. The endoglucanase with high activity was got.
    2. the study of optimum condition of endoglucanase's enzyme catalysis
    The power-time curves of cellulose's degradation by endoglucanase at different acidities and different temperatures were determined by microcalorimetry. Using thermodynamic theory and reduced extent method, the Michaelis constant (K_m) and the maximum velocity (V_(max)) of the reaction were obtained. The relationships between maximum velocity and acidity or temperature were established and the optimal acidity (pH=5.20) and the optimal temperature (322.9K) of enzyme catalysis were got.
    3. the influence of common ions on enzyme catalysis of endoglucanase
    The power - time curves of enzyme catalysis without ions and with the existence of ions of the same or different concentrations were determined and analyzed. By comparing, the regularities of activation or inhibition of different ions of the same concentration or of the same ion of different concentrations to enzyme catalysis were seen. It was found that Na~+, Li~+, Cd~(2+), K~+ and Ca~(2+) were active to the enzyme catalysis and the effect weaken from Na~+ to Ca~(2+); Co~(2+), Cu~(2+), Mg~(2+) and Ba~(2+) were inhibitory to the reaction and the effect reinforced from Co~(2+) to Ba~(2+); Cl~-, Si_2O_8~(2-) and NO_3~- were active to the enzyme catalysis and the effect weaken from Cl~- to NCV; SO_4~(2-) and SO_3~(2-) were inhibitory to the reaction and the effect of SO_4~(2-) was weaker than that of SO_3~(2-). The activation or inhibition increased with the increment of ion's concentration in the selected concentration range.
    5. the determination of micelle's type of SLA and SDS in DMF system
    The micelles of Sodium laurate (SLA) and Sodium dodecyl sulfate (SDS) in DMF system all belonged to O/W type.
    6. the determination and regularity of CMC and thermodynamic functions
    The power-time curves of the micelle formation process were determined for SLA and SDS in DMF system under different temperatures and different alcohols of different concentrations by titration microcalorimetry. From the corresponding volume of the lowest point of the curves, the critical micelle concentration (CMC) was determined; from the area up the curves, the thermal effect and ΔH~θ_m were measured; according to the action principle of surfactant and thermodynamic theory, the ΔG~θ_m and ΔS~θ_m were calculated. The conclusions were as follows: For SLA and SDS in DMF system, the CMC, ΔH~θ_m and ΔS~θ_m increased while the ΔG~θ_m decreased with the increment of temperature in the presence of same alcohol's concentration and carbon number; the CMC, ΔH~θ_m, ΔG~θ_m and ΔS~θ_m all decreased with the increment of alcohol's carbon number in the presence of same temperature and same alcohol's concentration; the CMC and ΔG~θ_m increased while the ΔH~θ_m and ΔS~θ_m decreased with the increment of alcohol's concentration in the presence of same temperature and alcohol's carbon number.
    The innovation of this paper:
    1. The separation and purification of endoglucanase of cellulase and exclusive study of its enzyme catalysis can provide theoretical basis for the research of cellulase's cooperation and for the optimum condition seeking of the three main constituents. Thermodynamic parameters which obtained by microcalorimetric method and thermodynamic theory are used to characterize endoglucanase's enzyme catalysis and to determine the. optimum condition of the enzyme catalysis. This is a new subject for enzyme catalysis research.
    2. microcalorimetric method is used to study the interactivity of surfactant, cosurfactants and solvents in non-aqueous solution. The CMC and thermal effect are determined and the ΔH~θ_m is obtained, then the ΔG~θ_m and ΔS~θ_m are calculated. This is a new method to gain CMC and thermodynamic function.
引文
[1] 张平平,刘宪华.纤维素生物降解的研究现状与进展.天津农学院学报,2004,11(3):48-54.
    [2] 刘翔,何国庆.利用木素纤维素生产燃料乙醇的微生物代谢工程.粮油加工与食品机械,2003,(8):67-69.
    [3] 史玉英,沈其荣,娄无忌,等.纤维素分解菌群的分离和筛选.南京农业大学学报,1996,19(3):59-62.
    [4] 孟雷,陈冠军,王怡,高培基.纤维素酶的多型性.纤维素科学与技术,2002,10(2):47-55.
    [5] 王建平,陈小娥.纤维素酶的研究概况.浙江水产学院学报,1996,15(2):140-144
    [6] Tilbeugh H V, Tomme P, Claeyssens M, et al. Limited proteolysis of the cellobiohydrolase Ⅰ from T. ressei [J]. FEBB Lett., 1986, 204 (2): 223-227.
    [7] 高培基,曲音波,汪天虹,等.微生物降解纤维素机制的分子生物学研究进展.纤维素科学与技术,1995,3(2):1-19.
    [8] 阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展.生物化学与生物物理进展,1999,26(3):233-235.
    [9] 余东游,冯杰.纤维素酶在动物营养上的研究进展[J].饲料研究,2000,(5):20,22.
    [10] 宋贤良,温其标,朱江.纤维素酶法水解的研究进展.郑州工程学院学报,2001,22(4):67-71.
    [11] Reese E T. Polysaccharases and the hydrolysis of insoluble substrates[J]. Proc Sess. 1976, 6: 9-12.
    [12] Linder M, Mattine M L, Kontteli M, et al. Identification of functionally important amino acids in the cellulose binding domain of Trichoderma reesei cellobiohydrolase I [J]. protein Sci, 1995, 4(6): 1056-1064.
    [13] 万年升,郭荣富.纤维素酶的作用因素和应用中应注意的问题.饲料工业,2002(23)7:41-42.
    [14] 宋波,邓晓泉,施雷霆.纤维素酶的研究进展.上海环境科学,2003,22(7): 491-494.
    [15] 洪迥,黄秀梨.生物学通报,1997,32(12):18-19.
    [16] 刘超纲.纤维素酶的工业应用展望.经济林研究,1996,14(1):30-31.
    [17] Nicoletta Curreli etal. Process Biochemistry, 2002, 37:937-941.
    [18] Sanjeev K. Sharma etal. Biomass and Bioenergy, 2002, 23: 237-243.
    [19] 康秋莲,闫双,吴照义.纤维素酶的综合利用.化学工程师,1995,(6):34-35.
    [20] J. P. H. Van Wyk, M. Mohulatsi. Bioresource Technology, 2003, 86: 21-23.
    [21] Jinwon Park, Kwinam Park. Bioresource Technology, 2001, 79:91-94.
    [22] 邱雁临.纤维素酶的研究和应用前景.粮食与饲料工业,2001(8):30-31.
    [23] 陈力宏.纤维素酶在食品发酵中的应用[J].中国酿造,1990,(5):2~5.
    [24] Humpheg AE. The Hydlolysis of Cellulosic Matelialo to Uletrl Products [J]. Adv. Chem Sel, 1979 (181): 25-53.
    [25] Wood T M, Maccpae S I. In Bioconversion of Cellulose Substance into Energy. Chemicals and Microbial Protein [M]. Edited by T K Ghose Gal India, 1978. 111~141.
    [26] 姜锡瑞.酶制剂应用手册[M].北京:中国轻工业出版社,1999.191~194.
    [27] Eunki Kim, et al. Factorial Optimization of a Six Cellulase Mixture [J]. Biotechnolog and Bioengineering, 1998, 58(5): 496~501.
    [28] Medve, etal. Adsorption and Synergism of Trichoderma Cellulase[J]. Biotechnolg and Bioengineering, 1998, 59 (5): 621~634.
    [29] 居乃琥.酶工程研究和酶工程产业的新进展(Ⅱ)[J].食品与发酵工业,2000,26(4):40~42.
    [30] 谭宏,刘淑欢等.长梗木霉纤维素酶的产生及提取[J].微生学通报,1993,20(2):90~93.
    [31] 崔福绵,刘菡,韩辉.康宁木霉C_p8829纤维素酶生产条件的研究[J].微生物通报,1995,22(2):72~75.
    [32] 余蓝斌,具润漠.分批与流加发酵法生产纤维素酶的研究[J].食品与发 酵工业,1999,25(1):16~19.
    [33] 梁霆,王毅,莫志忠等.纤维素酶液体深层发酵条件的研究[J].生物技术,1997,7(6):22~26.
    [34] 段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较.粮食与饲料工业,2000(3):24~26.
    [35] 陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究[J].工业微生物,2000,30(4):23~26.
    [36] 赵小蓉,林启美,孙焱鑫等.纤维素分解菌对不同纤维素类物质的分解作用[J].微生物学杂志,2000,20(3):12~4.
    [37] 宋向阳,余世袁.纤维素酶制备过程中不同底物、菌种的研究[J].生物学杂志,2001,18(1):20~21.
    [38] 管斌,谢来苏,丁友.里氏木霉纤维素酶高产菌株发酵特性的测试[J].中国酿造,2000(5):14~16.
    [39] 张礼星,石贵阳,徐柔等.里氏木霉利用麦糟生产纤维素酶[J].食品与发酵工业,1999,25(3):23~25.
    [40] 史小丽,潘锋,孙东平等.产纤维素菌株宇佐美曲霉Y-11产酶条件及酶性质的研究[J].生物学杂志,2000,17(5):22~23.
    [41] 阎伯旭,高培基.纤维素酶分子结构与功能研究进展.生命科学,1995,7(5):22-25.
    [42] 钱德玉.表面活性剂在我国发展现状及方向探讨.芜湖职业技术学院学报,2005,(7)2:58-60.
    [43] 刘瞻.表面活性剂的结构特点与应用.怀化学院学报,2004,10(23)5:33-37.
    [44] 纪卿,云喜玲.表面活性剂的分类、性能及其应用原理.集宁师专学报,2003,12(25)4:58-59.
    [45] 洗净技术.1994-2007 china Acadomic journal Electronic publishing House. All rights reserved, http://www.cnki.net, 2004, 6:79
    [46] 郑坚,陈保林,刁春友,张存政,傅华兴,周国民.表面活性剂9708在水溶性农药中的应用效果.江苏农业科学,2006,(1):62-63.
    [47] 王学川,任龙芳,强涛涛.表面活性剂及其在化妆品中的应用.日用化学品科学,2006,5(29)5:17-21.
    [48] 方纪,唐珲军.表面活性剂与废纸脱墨.黑龙江造纸,2006,(3):42-43.
    [49] 郭国才.表面活性剂在电镀中的应用.电镀与环保,2006,5(26)3:15-16.
    [50] 任石苟,李奠础.表面活性剂在发酵工业中的应用.化学与生物工程,2006,(23)6:50-52.
    [51] 刘旭峰.表面活性剂在纺织工业中的应用.日用化学工业,2006,4(36)2:99-102.
    [52] 马红梅,朱志良.表面活性剂在化学清洗中的应用及研究进展.清洗世界,2005,4(21)4:22-27.
    [53] 袁平夫,廖柏寒,卢明.表面活性剂在环境保护中的应用.环境保护科学,2005,2(31)127:38-41.
    [54] 马建中,高党鸽,储芸,刘凌云,胡静.表面活性剂在纳米技术制革中的应用,皮革科学与工程,2006,2(16)1:37-41.
    [55] 冯蕾,钱秀萍,赵凤生.表面活性剂在生物分离领域中的应用.化学工业与工程,2005,5(22)3:235-239.
    [56] 刘红霞.表面活性剂在药物制剂中的应用.北药学杂志,2005,12(20)6:282-284.
    [57] 吴英绵,丁颖.表面活性剂在医药中的应用.石家庄职业技术学院学报,2006,4(18)2:51-53.
    [58] 李干佐,徐军.表面活性剂在油田中的应用及其作用原理.精细石油化工进展,2004,2(5)2:1-6.
    [59] 马祯,张娴玲,张新胜,徐苹,袁渭康.表面活性剂在有机电合成中的应用.上海化工,2006,2(31)2:31-35.
    [60] Crime JK. Biochemical and Clinical Analysis by Enthalpimetrie Measurements-a Realistic Altermative Approach Anal Chem Acta 1980, 118: 191.
    [61] OehlsClager K, Huttl R, Wolf G, et al.. Thermochim. Acta. 1996, 271: 41.
    [62] Salieri G, Antonelli M L.. Anal. Chim. Acta. 1995,300:287.
    [63] Beran M, Paulicek V. J. Them. Anal. 1992, 38: 1979.
    [64] Aureliane M, Pedroso M C, Lima Det al.. Themochim Acta. 1995,258: 59.
    [65] 刘劲松,曾宪诚,邓郁军.化学学报,1994,15:1207.
    [66] 梁毅,汪存信,吴鼎泉等.高等学校化学学报,1995,16(6):924.
    [67] Liang Yi, Wang Cunxin, Wu Dingquan, etal.. Thermochim. Acta, 1995, 286: 17.
    [68] 梁毅,汪存信,屈松生等.高等学校化学学报,1997,18(4):86.
    [69] 熊亚,吴鼎泉,周兴明等.高等学校化学学报,1996,17(3):460.
    [70] Zhang Honglin, Yu Xiufang, Nie Yi, etal. Chinese Journal of Chemistry, 2003, 21: 1466.
    [71] 张洪林,于秀芳,张刚.物理化学学报,2002,11:1125.
    [72] 于秀芳,张洪林,张刚.应用化学,2002,8:812.
    [73] 刘华姬,于丽,张洪林.曲阜师范大学学报,2002,1(28)1:66-68.
    [74] 王毅琳,韩布兴,刘瑞麟,阎海科.微量量热法研究水溶液中表面活性剂与疏水改性聚合物之间的相互作用.化学世界,1996,增刊,132-133.
    [75] 王玢,袁方曜.凝胶过滤层析分离纯化纤维素酶的研究.山东教育学院学报,2003,(6):88-90.
    [76] 时祥柱,郭春腾,周建武,王中来,饶平凡.纤维素酶的二步分离纯化新工艺.色谱,2002,20(4):308-312.
    [77] 何忠效等.现代生物技术概论[M].北京:北京师范大学出版社,1999,168.
    [78] 王芯,赵学慧.微生物学通报,1993,20(1):13.
    [79] 孙东平,庞延军,李兆兰,等.徐州师范大学学报,1996,14(2):62.
    [80] Wood T M, Sheila I M. J Biochem, I972, 128: 1183.
    [81] 段明星,朱涛,徐文联,等.清华大学学报,1998,38(6):56.
    [82] Moser B, Gilkes N R, Kilburn D G, et al. Appl Environ Microbiol, 1989, 55(10): 2480.
    [83] 孙迎庆,曹淑桂,韩四平.β-葡萄糖苷酶的分离纯化和性质研究.生物学杂志,1997,14(5):12-15.
    [84] 杜娟,庄蕾,季明杰,陈冠军,高培基.棘孢曲霉SM-L22 a-葡萄糖苷酶的纯化与性质.菌物系统,2002,21(2):239~245.
    [85] 孙迎庆,曹淑桂,韩四平.β_葡萄糖苷酶的分离纯化和性质研究.中国生物化学与分子生物学报,1998,12(1):82-86.
    [86] 阎伯旭,高培基.外切葡聚糖纤维二糖水解酶的分离纯化和部分性质研究.生物化学杂志,1997,13(3):362-364.
    [87] 陈冠军,杜娟,庄蕾,高培基.脱墨用棘孢曲霉SM-L22纤维素酶系中内切酶的纯化及性质.微生物学报,2001,41(4):469-474.
    [88] 阎伯旭,高培基.纤维素酶的底物专一性.生命科学,2000,12(2):86-88.
    [89] 余冰宾.生物化学实验指导.第一版.北京:清华大学出版社,2004.
    [90] 汪家政,范明.蛋白质技术手册.第一版.北京:科技出版社,2000.
    [91] 郭晓君.蛋白质电泳实验技术(第二版).北京:科学出版社,2005.
    [92] Blachshear, P. J. 1984. System for Polyacrylarnide Gel Electrophoresis. Meth. Enzymol., 104: 234-255.
    [93] Lsemmli, U. K. 1970. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227: 680-685.
    [94] 罗长才,李莲,刘亚力,汪黛鹰,朱报常.琼脂扩散法测定加酶饲料中微量纤维素酶活力的研究.饲料工业,2003,24(10):39-41.
    [95] 李素芬,霍贵成.纤维素酶的分子结构组成及其功能.中国饲料,1997,(13):12-14.
    [96] W. U. Malik, S. P. Verma, P. chand, Indian. J. Chem, 1970, 8: 826.
    [97] M. Salim Akhter, Colloids and Surfaced A: Physicochemical and Engineering Aspects, 1999, 157: 203.
    [98] M. Salim Akhter, Sadeg M. Alawi, Colloids and Surfaces A: physicochemical and Engineering Aspects, 2000, 164: 247.
    [99] 于秀芳,吴莉莉,张洪林.应用化学,2002,19(3):263.
    [100] Li Gan-Zuo(李干佐), Rong Guo(郭荣), Theory of latex emulsion and application(微乳液理论及应用). Beijng(北京), Petroleum. Industry Press(石油工业出版社), 1995.
    [101] 赵国玺.表面活性剂物理化学.北京.北京大学出版社,1984.
    [102] A. Ray, J. Amer. Chem. Soc, 1969, 91, 6511.
    [103] M. S. Chauhan, G. Kumar, A. Kumar, S. Chauhan, Colloids Surf, 2000, 166, 51.
    [104] C. Carnero Ruiz et al., J. Colloid Interface Sci. 2006, doi: 10.1016/j.jcis, 2006.09.074.
    [105] 李干佐,林元,郭崇,郝树萱.物理化学学报,1986,2(2):183.
    [106] 陈宗琪,王光信,徐桂英.胶体与表面化学.北京.高等教育出版社,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700