近50余年洞庭湖水文环境演变及其成因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
洞庭湖为我国第二大淡水湖泊及国际重要湿地,具有物质生产、蓄水防洪、沟通航运及生物多样性保护等多种生态服务功能,是长江中下游地区社会经济可持续发展的重要生态屏障。水文情势是湿地生态学的重要内容,对水文情势研究有助于正确认识洞庭湖水沙变化规律,探明湿地演变趋势以及调蓄功能的水文成因,为洞庭湖湿地的保护及管理提供一定的理论依据。本文以典型水文站点50余年来的长时间序列资料为基础,运用多年平均值法、移动平均值法、Mann-Kendall趋势突变法(简称M-K法)、双累积曲线法、最佳模型拟合分析、遥感影像分析等方法对洞庭湖水文环境演变及其成因进行了详细研究,结果如下:
     (1)阐明了洞庭湖水沙平衡特征。洞庭湖年径流量、年输沙量、泥沙输出量及泥沙淤积量和淤积比近50余年来整体呈不断减少的趋势,其中2006—2009年间,洞庭湖淤积量和淤积比为负值,表现为冲刷状态。排沙比逐渐增加。进一步分析表明,径流量的减少主要是三口入湖径流量不断减少引起,而四水径流量年际变化不大。输沙量的减少是三口和四水输沙量均不断减少的结果。近50余年来,三口径流输入量和泥沙输入量占洞庭湖径流和泥沙输入总量的比例逐渐减少,而四水的不断增加。
     (2)揭示了湖南四水水沙演变规律及其成因。近50余年来,四水年径流量变化比较复杂,存在多个上升-下降过程,但总体上无明显上升或下降趋势。年输沙量总体上呈明显下降趋势,且突变时间存在差异,湘水是1996年,资水是1973—1974年,沅水是1997—1998年,澧水是1998年。年输沙量趋势性改变与该河流最大水库的建设密切相关。年径流量的减少、植被覆盖增加以及大中型水库的建设等综合作用是2001年后年输沙量较大幅度减少的主要原因。
     (3)探明了荆江三口水沙演变规律及其成因。三口年径流量和年输沙量在近50余年呈不断减少的趋势,以藕池口变化最为显著,突变时间最早。松滋口年径流量和年输沙量趋势性改变的时间分别为1980年和2003年,太平口趋势性改变的时间为1972年和1986年(年径流量)以及1998年和2003年(年输沙量),藕池口趋势性改变的时间为1967年,1972年和1989年(年径流量)以及1998年和2003年(年输沙量)。年径流量和年输沙量趋势性改变由上游径流量的不断减少及诸多人为工程共同作用的结果,其中裁弯和三峡工程的影响最为重要,但其对年输沙量的影响方式存在差异,裁弯主要是通过径流量的大幅减少而减少输沙量,而三峡工程主要是通过拦截泥沙于库、减少悬浮泥沙浓度而减少输沙量。
     (4)分析了洞庭湖水文情势变化规律并探讨了三峡工程对水文情势的影响。近50余年来,城陵矶年平均水位和最低水位呈上升趋势,月平均水位在1—3月份整体呈上升趋势,其他月份相对稳定。三峡水库运行后,1—4月水位略高于三峡运行前的平均水位,但5—12月份的明显偏低,以7、10和11月尤为显著。三峡出库流量对城陵矶水位具有决定性作用。三峡运行后洞庭湖水位的大幅下降主要是由于降雨减少、荆江河段冲刷作用改变水位-流量关系以及三峡蓄水导致出库流量减少等所引起,因为出库流量的减少大幅增加了湖内水位差,尤其在7—12月明显,加快了洞庭湖水泄入长江,起到了拉空效应。同时,荆江河段冲刷作用使荆江河道下切,三峡水库运行后相同的出库流量所对应的洞庭湖水位降低,需更高的三峡出库流量才能起到相同的对洞庭湖水位的顶托效应。
     (5)探明了近30余年来洞庭湖草洲变化规律并分析了机理。1982—2010年期间草洲面积持续扩张,累计增加497.76km2。1982—1995年期间草洲面积扩张较快,1995-2010年期间扩张速度放缓。在东洞庭湖,草洲主要扩张区域为长洲、新生洲、飘尾洲沿湖盆边缘部分、牛头洲大面积区域、武光洲—柴下洲区域、中洲—团洲部分;草洲面积减少仅发生在风车拐、北洲、物港子、六港子等少数区域。1995年前,草洲增加的区域与泥沙淤积区域基本一致,说明草洲扩张主要受泥沙淤积驱动;2005年后,草洲扩张主要是部分区域泥沙淤积和水位快速下降引起的。自1981年以来,22—24m高程的淹水时间持续下降。因此,泥沙淤积和水位下降引起的植物淹水时间减少可能是草洲扩张的主要原因。
     (6)揭示了洞庭湖蓄水能力演变过程并结合重大人类活动重点分析了面积和泥沙淤积对蓄水能力影响的数量关系。近50余年来,湖泊面积和湖泊蓄水能力可分为3个时期。1951—1958年和1960—1989年呈不断减少的趋势,而1995—2002年呈不断增加的趋势。湖泊容积和面积、面积及围垦面积间均存在明显的相关性,早期的围垦和大量的泥沙淤积对洞庭湖湖容的减少作用明显。三峡运行后,洞庭湖累积淤积量不断减小,其中三口输入的减少是湖泊累积淤积量减少的最主要原因,减少的泥沙淤积使洞庭湖年均增加了0.31×108m3的湖容。湖泊面积和累积泥沙淤积量与湖泊容积间存在极显著的相关性,拟合方程式为:湖泊容积=0.115×面积-0.987x累积淤积量-1.119E-5×面积2(R2=0.9984)。可见,随着泥沙淤积量的不断增加和湖泊面积的不断减少,洞庭湖蓄水能力呈不断下降的趋势。按照推算,1998年的退田还湖工程对增加湖容效果显著,但“4350”工程难以达到预期的大幅提高湖泊容积的效果。
Dongting Lake, the second largest freshwater lake in China, is one of the most important wetlands in the world, with various ecological functions such as material production, water storage and regulation, as well as biodiversity conservation. Therefore, the Dongting Lake is an important ecological barrier of the Yangtze River for social and economic sustainable development. Hydrological regime is one of the most important contents in the study of wetland ecology. The research on the hydrological regime in the Dongting Lake is beneficial for us to understand the changing rhythms of runoff and sediment, to reveal the trend of wetland successions and the underlying hydrological mechanisms of water regulation function, and to provide theoretical basis for management and conservation of Dongting Lake wetlands. In this thesis, the characteristics of water and sediment balance in the Dongting Lake, the succession of hydrological regime of four rivers and three channels, the changes of hydrological regime and its responses to major projects (take Three Gorges Reservoir as a example), landscape changes and underlying reasons in the Dongting Lake, and the succession of the functions of water regulation and storage of Dongting Lake were studied based on more than50years of hydrological data with various statistical methods such as multi-year average values, moving average values, Mann-Kendall test, double mass analysis, and interpretation of remote sensing images. The results are as following:
     (1) The amount of annual runoff, annual sediment input and output, the amount of sedimentation and the ratio of total sedimentation to total sediment input decreased significantly along with the time in the recent50years. During1951-2009, the amount of sedimentation and the ratio of total sedimentation to total sediment input was negative, indicating the increase of the ratio of sediment output and the status of erosion. Further analysis indicated that the decrease of annual runoff was mainly caused by the decrease of the runoff from three channels. The inter-annual changes of runoff from four rivers had no significant changes. The decrease of sediment input was mainly caused by the decrease of the sediment input both from three channels and four rivers. The ratio of the runoff and sediment input from three channels to the total runoff and sediment input of Dongting Lake decreased significantly along with time, while that of from four rivers increased continuously.
     (2) The annual runoff of the four rivers had insignificant changes during1951-2009 years, even though there were several up-down processes. The volumes of annual sediment load from the Four Rivers showed a significantly decreasing trend generally. Moreover, the time of abrupt change was different among the four rivers, with Xiang River in1996, Zi River in1973-1974, Yuan River in1997-1998and Li River in1998. The trending changes of annual sediment input were related to the construction of the largest reservoir in the river. The comprehensive impacts of the reduction of annual runoff, increase of vegetation cover and construction of medium-and large-sized reservoirs were the main reasons accounting for the great reduction of annual sediment load after2001.
     (3) The annual runoff and the volumes of annual sediment load of the three channels decreased significantly during1956-2009. Among them, the change of the Ouchi Channel was most significant and time of abrupt change was the earliest. In Songzi Channel, the time of tendency change of annual runoff and sediment discharge was1980and2003respectively. In Taiping Channel, the time of tendency change was1972and1986for annual runoff, and1998and2003for annual sediment discharge. In Ouchi Channel, the time of tendency change was1967,1972and1989for annual runoff, and1998and2003for annual sediment discharge. The reduction of annual runoff and the volumes of annual sediment load were mainly caused by the decrement of runoff from upper mainstream and various hydrological project, especially the cutoff of Jingjiang River and the Three George Reservoir. However, the way that the two projects impacted the annual sediment input was different. The cutoffs deceased the sediment input was mainly through the reduction of runoff, while the Three Gorges Reservoir was mainly through the deposition of sediment in the reservoir and therefore decrease the concentration of suspended sediment.
     (4) During1955-2008, the annual mean water level and the annual lowest water level in Chenglingi increased apparently. The mean monthly water level increased during Jan.-Mar., while was relative stable in other months. After the operation of the Three Gorges Reservoir, the mean monthly water level was slightly higher during Jan.-April, and was lower during May-Dec, especially in July, Oct. and November. The runoff from Three Gorges Reservoir has decisive roles on water levels of Chenglingji. The significant decrease of water level of Dongting Lake was induced by the decrease of precipitation, the change of water level-runoff relationship due to the erosion of Jingjiang section, and the reduction of runoff from the reservoir due to the water storage of Three Gorges Reservoir. The large decease of runoff from the reservoir enlarged the water level difference inside and outside the lake, which has an "empty effect'. Therefore, the speed of water discharging from Dongting Lake into Yangtze River increased. Meanwhile, the erosion of Jingjiang section deepened the river channel. The same volume of runoff from reservoir maintained a lower water level of Dongting Lake, which means only a higher runoff from the Three Gorges Reservoir can has the same effect of "backup" to water level of Dongting Lake.
     (5) The grassland area increased continuously during1982-2010, which increased497.76km2totally. The speed of expansion was fast during1995-2010, and was relatively slow during1995-2010. The grassland area increased mainly in the following area, including the margins of the lake basin of Changzhou, Xinshengzhou and Piaoweizhou, large areas of Niutouzhou, Wuguang-Chaixiazhou and zhongzhou-tuanzhou. The grassland decreased only in the following area, Fengchengguai, Beizhou, Wugangzi and Liugangzi. The area of grassland that was increasing was consistent with the area where sedimentation occurred before1995and the expansion of grassland was driven by sedimentation. After2005, the expansion of grassland was caused by rapid decrease of water level and sedimentation in some regions. Since1981, the submergence time of areas between altitude of22-24m decreased continuously. Therefore, sand deposition and the decrease of submergence time caused by water level were the main reasons for expansion of grasslands.
     (6) For the51years, the changes of lake area and water storage capacity of Dongting Lake could be divided into three phases. Lake area and water storage capacity sharply decreased significantly from1951to1958and from1960-1989. However, lake area and water storage capacity increased sharply from1995to2002. Significant correlation between water storage capacity and lake area, lake area and impoldering area were found. After the operation of Three Gorges Reservoir, the accumulation of sand deposition decreased seriously, and which was mainly due to the decrement of sand deposition in three channels. The decreased sedimentation enlarged the lake volume by0.31×10m. Both lake area and accumulated volume of sand deposition are significantly correlated with lake volume. The formula was:lake volume=0.115×area-0.987×accumulated sedimentation-1.119E-5×area2. Therefore, water storage capacity decreased along with increasing sand deposition and with decreasing lake area.
引文
[1]卞鸿翔,龚循礼.洞庭湖区围垦问题的初步研究[J].地理学报,1985,40(2):131-141.
    [2]蔡其华.健康长江与洞庭湖治理[J].水利水电快报,2007,28(9):1-4.
    [3]蔡凯平,左家铮,贺宏斌,等.三峡建坝后对洞庭湖区血吸虫病传播影响的研究[J].中国血吸虫病防止杂志,1998,10(5):257-261.
    [4]陈玲飞,王红亚.中国小流域径流对气候变化的敏感性分析[J].资源科学,2004,26(6):62-68.
    [5]陈亚宁,赵红莉,蒋云钟.汉江上游不同气候情景下土地利用变化对径流的影响研究[J].北京师范大学学报(自然科学版),2010,46(3):366-370.
    [6]陈绍金.浅析三峡工程建成后对洞庭湖水环境的影响[J].水资源保护,2004,5:33-37.
    [7]陈晓宏,王兆礼.东江流域土地利用变化对水资源的影响[J].北京师范大学学报(自然科学版),2012,46(3):311-316.
    [8]陈攀攀,常宏涛,毕华兴,等.黄土高塬沟壑区典型小流域土地利用变化及其对水土流失的影响[J].中国水土保持科学,2011,9(2):57-63.
    [9]陈亚宁,李卫红.天山北坡降水对河流水沙情势影响[J].山地研究,1997,15(1):47-52.
    [10]陈莹,许有鹏,尹义星.土地利用/覆被变化下的暴雨径流过程模拟分析——以太湖上游西苕溪流域为例[J].地理科学,2009,29(1):117-123.
    [11]成遣,王铁良.辽河三角洲湿地景观动态变化及其驱动力研究[J].人民黄河.2010,32(2):8-9.
    [12]褚忠信.三峡水库一期蓄水对长江泥沙的影响[D].青岛:中国海洋大学.2006.
    [13]刁承泰,刘树人,穆桂春.三峡水库建成后对长江河床演变的影响[J].西南师范大学学报(自然科学版),2004,(1):119-122.
    [14]戴乐平.湖南统计年鉴-2009[M].北京:中国统计出版社.2009.
    [15]段文忠,等.江湖关系综合报告(R).武汉水利电力学院.1990.
    [16]段文忠,郑亚慧,刘建军.长江城陵矶—螺山河段水位抬高及原因分析[J].水利学报,2001,(2):29-34.
    [17]方春明,曹文洪,鲁文,等.荆江裁弯造成藕池河急剧淤积与分流分沙减少分析[J].泥沙研究,2002,(2):40-45.
    [18]方春明,毛继新,鲁文.长江中游与洞庭湖泥沙问题研究[M].北京:中国水利水电出版社.2004.
    [19]方春明,毛继新,陈绪坚.三峡工程蓄水运行后荆江三口分流河道冲淤变化模拟[J].中国水利水电科学研究院学报,2007,(5):181-185.
    [20]方春明,钟正琴.洞庭湖容积减小对洞庭湖和长江洪水位的影响[J].水利科学,2001,(11):70-74.
    [21]符宗斌,王强.气候突变的定义和检验方法[J].大气科学,1992,16(6):482-493.
    [22]龚碧凯,邓良基,胡玉福,等.水库淹没区耕地生态服务功能价值估算研究—以黄金坪水电站为例[J].资源开发与市场,2007,(12):1085-1088.
    [23]高俊峰,张琛,姜加虎,等.洞庭湖的冲淤变化和空间分布[J].地理学报,2001,56(6):269-277.
    [24]宫平,杨文俊.三峡水库建成后对长江中下游江湖水沙关系变化趋势初探П江湖关系及槽蓄影响初步研究[J].水力发电学报,2009,28(6):121-125.
    [25]葛守西,王俊,熊明.1998年长江中游干流高水位成因分析[J].人民长江1999,30(2):29-31.
    [26]郭小虎,姚仕明,晏黎明.荆江三口分流分沙及洞庭湖出口水沙输移的变化规律[J].2011,28(8):80-86.
    [27]郭跃东,何岩,张明祥,等.洮儿河中下游流域湿地景观演变及驱动力分析[J].水土保持学报.2004,18(2):118-121.
    [28]黄桂林,何平,侯盟.中国河口湿地研究现状及展望[J].应用生态学报,2006,17(9):1751-1756.
    [29]黄金国.洞庭湖区湿地退化现状及保护对策[J].水土保持研究,2005,12(4):261-263.
    [30]贺建林.三峡工程对洞庭湖鱼类资源的影响分析[J].武陵学刊,1997,(5):95-98.
    [31]黄进良.1999.洞庭湖湿地的面积变化与演替[J].地理研究,18(3):297-304.
    [32]黄莉.2008.监利河段水沙变化及其对该河段河床横断面形态影响机理研究[D].武汉:长江科学院.
    [33]胡旭跃.洞庭湖湖泊环境系统的演变及驱动因子研究[D].长沙:湖南大学.2007.
    [34]洪林,董磊华,李文哲.三峡工程建库后对洞庭湖水位、泥沙和水质的影响分析[J].中国水利,2007,(6):13-14.
    [35]侯鹏,蒋卫国,陈自力,等.降水对洞庭湖湿地水文补给效应[J].地理研究,2009,28(2):371-378.
    [36]韩其为,杨小庆.我国水库泥沙淤积研究综述[J].中国水利水电科学研究院学报,2003,1(3):169-178
    [37]黄群,孙占东,姜家虎.三峡水库运行对洞庭湖水位影响分析[J].湖泊科学,2011,23(3):424-428.
    [38]洪笑天,马绍嘉,郭庆伍.弯曲河流形成条件的实验研究[J].地理科学,1987,(1):35-43.
    [39]何用.水沙过程与河流生态环境作用初步研究[D].武汉:武汉大学.2005.
    [40]贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,39(1):52-58
    [41]姜加虎,黄群,孙占东.洞庭湖泥沙淤积与洲滩变化研究[J].人民长江,2009,14:74-75.
    [42]姜家虎,黄群.三峡工程对洞庭湖水位影响研究[J].长江流域资源与环境,1996,5(4):367-374.
    [43]邝凡荣.2001.浅析长江三峡工程对洞庭湖区生态环境的影响[J].湖南农业科学,1:11-12.
    [44]李彬原.1966年至2006年洞庭湖区血吸虫病流行趋势与湖区社会[D].长沙:湖南科技大学,2009:1-30.
    [45]林承坤.洞庭湖水沙变化对洪涝灾害的影响[J].南京大学学报,1994,30(1):133-144.
    [46]刘春蓁,刘志雨,谢正辉.近50a海河流域径流的变化趋势研究[J].应用气象学报,2004,15(4):385-393.
    [47]刘淳,刘明,王克林,等.湘江流域中上游景观格局及其变化[J].生态学杂志,2007,26(11):1822-1827.
    [48]刘海江.渭河流域水沙演变情势分析[D].西安:西安理工大学.2003.
    [49]刘明,王克林.洞庭湖流域中上游地区景观格局变化的水文响应[J].生态学报,2008,28(12):5970-5979.
    [50]陆健健,何文珊,童春富,等.湿地生态学[M].北京:高等教育出版社,2006.
    [51]李海彬.三峡工程运行对洞庭湖湿地资源影响研究[D].长沙:长沙理工大学.2008.
    [52]李景保,刘晓清,潘安敏.荆江南岸主要河流入湖水沙及其对洞庭湖的影响[J].热带地理,1995,15(4):313-320.
    [53]李景保,吴桂生,刘晓清.近数十年湘江流域河流水文变化规律[J].热带地理,1997,17(3):295-302.
    [54]李景保,王克林,秦建新,等.2005.洞庭湖年径流泥沙的演变特征及其动因[J].地理学报,50(3):503-510.
    [55]李景保,王克林,杨燕,等.洞庭湖区2000-2007年农业干旱灾害特点及成因分析[J].水资源与水工程学报,2008,19(6):1-5.
    [56]李景保,常疆,李杨,等.洞庭湖流域水生态系统服务功能经济价值研究[J].热带地理,2007,(4):311-316.
    [57]李景保,尹辉,卢承志,等.洞庭湖区的泥沙淤积效应[J].地理学报,2008,63(5):514-523.
    [58]李景保,常疆,吕殿青,等.三峡水库调度运行初期荆江与洞庭湖区的水文效应[J].地理学报,2009,64(11):1342-1352.
    [59]李景保,代勇,欧朝敏,等.长江三峡水库蓄水运用对洞庭湖水沙特性的影响[J].水土保持学报,2011,25(3):215-219.
    [60]李景保,张照庆,欧朝敏,等.三峡水库不同调度方式运行期洞庭湖区的水情响应[J].地理学报,2011,66(9):1251-1260.
    [61]李奇虎.西北干旱区气候变化及其对水文过程的影响[D].上海:华东师范大学.2012.
    [62]李子君,李秀彬.近45年来降水变化和人类活动对潮河流域年径流量的影响[J].地理科学,2008,28(6):809-813.
    [63]李正最,谢悦波,徐冬梅.洞庭湖水沙变化分析及影响初探[J].水文,2011,31(1):45-53.
    [64]李胜乐,严尊国,薛军蓉,等.长江三峡水库蓄水后的首发微震群活动[J].大地测量与地球动力学,2003,(4):75-79.
    [65]李香萍,杨吉山,陈中原.长江流域水沙输移特性[J].华东师范大学学报(自然科学版),2001,12(4):88-95.
    [66]李胜男,王根绪,邓伟,等.水沙变化对黄河三角洲湿地景观格局演变的影响.水科学进展.2009,20(3):325-331.
    [67]李胜男.黄河三角洲水文过程对湿地系统格局的影响研究[D].北京:中国科学院研究生院.2009.
    [68]廖小永,卢金友,黎礼刚.三峡水库蓄水运行后荆江河道特性变化研究[J].人民长江,2007,38(11):88-91.
    [69]刘金,陈立,周银军,等.三峡蓄水后宜昌河段河床演变分析[J].水运工程,2009.434:116-120.
    [70]刘明,王克林.洞庭湖流域中上游地区景观格局变化的水文响应[J].生态学报,2008,28(12):5970-5979.
    [71]刘娜.洞庭湖区景观格局变化及其调蓄功能影响研究[D].长沙:湖南农业大学.2011.
    [72]刘力.三峡流域径流特征分析及预测[D].武汉:华中科技大学.2009.
    [73]刘春蓁,刘志雨,谢正辉.近50年海河流域径流的变化趋势研究.应用气象学报.2004,15(4),385-393.
    [74]柳易林.洞庭湖湿地生态系统生态服务功能价值评估与生态功能区划[D].长沙:湖南师范大学.2005.
    [75]刘宇峰,孙虎,原志华.近60年来汾河入黄河水沙演变特征及驱动因素[J].山地学报,2010,29(6):668-673.
    [76]罗文辉,阳立群,许毅.三峡蓄水后城陵矶—武汉河段泥沙粒径变化分析[J].水利水电快报,2006,27(21):25-27.
    [77]卢金友.荆江三口分流分沙变化规律研究[J].泥沙研究,1996,15(4):54-61.
    [78]门宝辉,刘昌明,夏军,等.南水北调细线一期工程调水区径流量与影响因子关系分析——以达曲为例[J].地理科学,2006,26(6):674-681.
    [79]穆锦斌,张小峰,许全喜.荆江三口分流分沙变化研究[J].水利水运工程学报,2008,(3):22-28.
    [80]马元旭,来红州.荆江与洞庭湖区近50年水沙变化的研究[J].水土保持研究,2005,12(4):103-106.
    [81]牛存稳.华北地区降水时空变异及其典型流域水文响应[D].武汉:武汉大学.2004.
    [82]宁磊,仲志余.三峡水库2003年蓄水对长江中下游水情影响分析[J].人民长江, 2004,(12):9,24-25.
    [83]彭定志,徐高洪,胡彩虹,等.基于MODIS的洞庭湖面积变化对洪水位的影响[J].人民长江,2004,35(4):14-16.
    [84]皮健高.论三峡工程对洞庭湖区土壤潜育化和沼泽化的影响[J].湖南地质.1995,14(1):58-60.
    [85]彭佩钦,童成立,仇少君.洞庭湖洲滩地淹水天数和面积变化[J].长江流域资源与环境,2007,16(5):685-689.
    [86]渠庚,唐峰,刘小斌.荆江三口与洞庭湖水沙变化及影响[J].水资源与水工程学报,2007,18(3):94-100.
    [87]覃红燕,谢永宏,邹冬生.湖南省农业洪旱灾害演变趋势和成因及防灾减灾措施[J].农业现代化研究,2011,32(2):101-105.
    [88]秦年秀,姜彤,许崇育.长江流域径流趋势变化及突变分析[J].长江流域资源与环境,2005,14(5):499-514.
    [89]任磊,岳春芳,何训江.RBF神经网络模型在金沟河流域径流预测中的应用.水资源与水工程学报,2011,22(1):94-97.
    [90]邵慧芳.水文时空变异性分析方法及其在降水分析中的应用[D].北京:清华大学.2005.
    [91]水利部长江水利委员会.长江泥沙公报2003-2009[M].武汉:长江出版社.2003-2009.
    [92]孙鹏,张强,陈晓宏,等.鄱阳湖流域水沙时空演变特征及其机理[J].地理学报,2010,65(7):828-840.
    [93]盛前丽.香溪河流域土地利用变化径流效应研究[D].北京:北京林业大学.2008.
    [94]施修端,夏薇,杨彬.洞庭湖冲於变化分析(1956-1995年)[J].湖泊科学,1999,11(3):199-205.
    [95]施修端,夏薇.城陵矶站水沙及水位流量关系变化分析[J].人民长江,2000,31(3):35-47.
    [96]沈志良.三峡工程对长江口海区营养盐分布变化影响的研究[J].海洋与湖沼,1991,(6):540-546.
    [97]谭晓明.洞庭湖水位变化特性[J].湖南水利水电,2002,(2):25-26.
    [98]童潜明.洞庭湖近现代的演化与湿地生态系统演替[J].国土资源导论,2004,(1):38-44.
    [99]王飞,穆兴民,李锐,等.相似性降水条件下北洛河水沙变化特征[J].水资源与水工程学报,2009,19(6):36-40.
    [100]王国杰,姜彤,王艳君,等.洞庭湖流域气候变化特征.湖泊科学,2006,18(5):470-475.
    [101]王钧,蒙吉军.黑河流域近60年来径流量变化及影响因素[J].地理科学,2008,28(1):83-88.
    [102]王灵艳.洞庭湖区滩地植被特征及其演替规律研究[J].北京林业大学.2011.
    [103]汪恕诚.论大坝建设与生态环保的关系[J].中国三峡建设,2004,6:4-10.
    [104]王运辉.洞庭湖与下荆江裁弯[J].水利学报,1990,(7):36-42.
    [105]王艳君,姜彤,施雅风.长江上游流域1961—2000年气候及径流变化趋势[J].冰川冻土,2005,27(5):699-714.
    [106]王亚梅.基于GIS的洞庭湖区洪水灾害风险评价[D].长沙:湖南大学.2009.
    [107]王兆印,林秉南.中国泥沙研究的几个问题[J].泥沙研究,2003,(4):73-81.
    [108]王红娟,姜加虎,黄群.东洞庭湖湿地景观变化研究[J].长江流域资源与环境,2007,06:732-737.
    [109]吴昕,董磊华,李文哲,等.三峡水库建设对减轻洞庭湖洪灾作用分析[J].广东水利水电,2007,4:58-60.
    [110]徐海量,叶茂,宋郁东.塔里木河源流区气候变化和年径流量关系初探[J].地理科学,2007,27(2):219-224.
    [111]肖建红,施国庆,毛春梅,等.三峡工程对河流生态系统服务功能影响预评价[J].自然资源学报,2006,(3):424-431.
    [112]许炯心,孙季.长江上游重点产沙区产沙量对人类活动的响应[J].地理科学,2009,27(2):211-218.
    [113]谢永宏,王克林,任勃,等.洞庭湖生态环境的演变、问题及保护措施[J].农业现代化研究,2007,28(6):678-681.
    [114]谢永宏,陈心胜.三峡工程对洞庭湖湿地植被演替的影响[J].农业现代化研究,2008,29(6):684-687.
    [115]谢永宏,李峰,陈心胜.洞庭湖最小生态需水量研究[J].长江流域资源与环境,2012,21(1):64-70.
    [116]谢永宏,李峰,陈心胜,等.荆江三口入洞庭湖水沙演变及成因分析.农业现 代化研究,2012,33(2):203-206
    [117]谢永宏,黄群,王晓龙,等.长江保护与发展报告[M].武汉长江出版社,2011.
    [118]徐怡波,赖锡军,周春国.基于EVISAT ASAR数据的东洞庭湖湿地植被遥感监测研究[J].长江流域资源与环境,2010,19(4):452-459.
    [119]杨晓刚,杨朝云,彭玉明.荆江河床演变过程中环境影响初探[J].人民长江,2010,41(3):59-63.
    [120]杨永兴.国际湿地科学研究的主要特点、进展与展望[J].地理科学进展,2002,21(2):111-120.
    [121]姚敏,袁穗波,袁正科,等.洞庭湖湿地天然植被生态特征及分布规律探析[J].湖南林业科技,2005,32(5):29-31.
    [122]姚仕明,何广水,卢金友.三峡工程蓄水运用以来荆江河段河岸稳定性初步研究[J].泥沙研究,2009,(6):24-29.
    [123]叶泽纲.湖南省大型水库特点及防洪格局[J].中南水力发电,2003,(1):52-57.
    [124]易波琳,李晓斌,梅金华.洞庭湖面积容积与水位关系及调蓄能力评估[J].湖南地质,2000,19(4):267-270.
    [125]袁正科,李星照,田大伦,等.洞庭湖湿地景观破碎与生物多样性保护[J].中南林学院学报,2006,26(1):109-116.
    [126]曾小凡,苏布达,姜彤,等.21世纪前半叶长江流域气候趋势的一种预估[J].气候变化研究进展,2007,3(5):293-298.
    [127]张剑明,黎祖贤,章新平.1960-2005年湖南省降水的变化[J].气候变化研究进展,2008,4(2):101-105.
    [128]张美文,李波,王勇.2007.洞庭湖区东方田鼠2007年爆发成灾的原因剖析[J].农业现代化研究,28(5):601-605.
    [129]张欧阳,熊明.洞庭湖排沙比变化及影响因素分析[J].人民长江,2006,37(12):117-119.
    [130]张硕辅.第二届长江论坛论文集[J].洞庭湖论坛,2007:159.
    [131]张淑兰.土地利用和气候变化对流域水文过程影响的定量评价[D].北京:中国林业科学研究院.2011.
    [132]]张绪进,母德伟,陈贤炜.上游来水来沙变化及对三峡水库回水变动区泥沙淤积的影响[J].水运工程,2009,430(8):94-97.
    [133]张振全.洞庭湖区洪水模拟模型应用研究[D].武汉:武汉大学.2005.
    [134]赵娜.大伙房水库对河流生态系统服务功能影响评价研究[D].辽宁师范大学.2009.
    [135]郑璟,袁艺,冯文利,等.上地利用变化对地表径流深度影响的模拟研究-以深圳地区为例[J].自然灾害学报,2005,14(6):77-82.
    [136]钟福生,颜亨梅,李丽平,等.东洞庭湖湿地鸟类群落结构及其多样性[J].生态学杂志,2007,26(12):1959-1968.
    [137]仲志余,宁磊.三峡工程建成后长江中下游防洪形势及对策[J].人民长江,2006,37(9):8-9,23.
    [138]周国华,唐承丽,朱翔,等.三峡工程运行后对洞庭湖区土地利用的影响及对策研究[J].水土保持学报,2002,16(4):74-77.
    [139]周宏春.水将成为我国可持续发展的制约因素之一[J].中国水利,2000,(8):33-34.
    [140]庄大昌.洞庭湖湿地生态系统服务功能价值评估[J].经济地理,2004,(3):391-394.
    [141]邹邵林,郭聪,刘新平.环境演变及三峡工程对洞庭湖区东方田鼠种群影响的评估[J].应用生态学报,2002,13(5):585-588.
    [142]左太安,苏维词,张风太,等.三峡库区(重庆段)森林水土保持服务功能价值研究[J].林业经济研究(双月刊),2008,(5):410-413.
    [143]An, S.Q., H.B. Li, B.H. Guan et al. China's natural wetlands:past problems, current status, and future challenges[J]. AMBIO,2007,36:335-342.
    [144]Axel, B., N. Daniel & B. Gerd. Effects of climate and land-use change on storm runoff generation:present knowledge and modelling capabilities[J]. Hydrological Processes,2002,16:509.
    [145]Barbara, J. K.& J.N. Mast. Wetland change analysis of San Dieguito Lagoon, California, USA:1928-1994[J]. Wetlands,2005,5:780-787.
    [146]Begin, Z.B. The Relationship between flow-shear and stream pattern[J]. Journal of Hydrology,1981,52:307-319.
    [147]Bernt, M., R.L. Kirschbaum, I.A. Goodman, et al. Effects of land cover change on streamflow in the interior Columbia River Basin (USA and Canada) [J]. Hydrological Processes 2000,14:867.
    [148]Brace, N., R. Kemp & R. Snelgar. SPSS for Psychologists[J]. Palgrave.2003.
    [149]Bravard, J.P., C. Amoros, G. Pautou, et al. River incision in south-east France: morphological phenomena and ecological impacts[J]. Regulated Rivers,1997,13: 75-90.
    [150]Bronstert, A., N. Danid & B. Gerd. Effects of climate and landuse change on storm runoff generation:present knowledge and modeling capabilities[J]. Hydrological Processes,2002,16:509-529.
    [151]Carson, M.A. the Meandering-Braided River Threshold:A Reappraisal[J]. Journal of Hydrology,1984,315-334.
    [152]Chang, J., J.B. Li, D.Q. Lu, et al. The hydrological effect between Jingjiang River and Dongting Lake during the initial period of Three Gorges Project operation[J]. Journal of Geography Science,2010,5:771-786.
    [153]Chen, Z.Y., Z.H. Wang, B. Finlayson, et al. Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China[J]. Geology,2010,38:1043-1046.
    [154]EEA. Impacts of Europe's changing climate-An indicator based assessment. EEA Technical Report No.2/2004[J], European Environment Agency,2004.
    [155]Fayez, A., E. Tamer & A. Hamed. Assessment of the impact of potential climate change on the water balance of a semi-arid watershed[J]. Water Resource Management,2009,23:2051-2068.
    [156]Fu B.J., B.F. Wu, Y.H. Lu, et al. Three Gorges Project:Efforts and challenges for the environment [J]. Progress in Physical Geography,2012,34:741-754.
    [157]Fujihara, M.& T. Kikuchi. Change in the landscape structure of the Nagara River Basin, Central Japan[J]. Landscape Urban Planet,2005,70:271-281.
    [158]Gilvear, D.J. Patterns of channel adjustment to impoundment of the upper river Spey, Scotland(1942-2000)[J]. River Research and Application,2004,20:151-165.
    [159]Graf, W.L. Damage Control:Restoring the Physical Integrity of America's Rivers[J]. Ann. Assoc. Amer. Geogr.,2001,1:1-27.
    [160]Heilig, G.K. Anthropogenic factors in land-use change in China[J]. Population and Devlopment Review,1997,23:139-168.
    [161]Hu B.Q., H.J. Wang, Z.S. Yang, et al. Temporal and spatial variations of sediment rating curves in the Changjiang (Yangtze River) basin and their implications [J]. Quarter Internation,2012,230:34-43.
    [162]IPCC, W.G. Technical guidelines for assessing climate change impacts and adapting. 1994.
    [163]Jacky, C. Sediment concentration changes in runoff pathways from a forest road network and the resultant spatial pattern of catchment connectivity[J]. Geomorphology,2005,68:257-268.
    [164]Jabbar, M.K., A. Shizhihu, T.W. Wang, et al. Vegetation change predicting with Geo-information techniques in the three Gorges area of China[J]. Pedosphere,2006, 16:457-467.
    [165]John, GE.& G. Stevan. Channel-Pattern Adjustments and Geomorphic Characte-ristics of Elkhead Creek, Colorado, U.S. Geological Survey Water-Resources Investigations Report.1937-1997.
    [166]Keshav, P.& C. J. Sharma. Vorosmarty, berrien moore III:Sensitivity of the himalayan hydrology to land-use and climatic changes[J]. Climate Change,2000,47: 117.
    [167]Kite, G.W.& U. Haberlandt. Atmospheric model data for macroscale hydrology[J]. Journal of Hydrology,1999,217:303-313.
    [168]Koneff, M.D.& J.A. Royle. Modeling wetland change along the United States Atlantic Coast [J]. Ecological Modelling,2004,177:41-59.
    [169]Kundzewicz, Z.W.& H.J. Schellnhuber. Floods in the IPCC TAR Perspective[J]. Natural Hazards,2004,31:111
    [170]Laurent, P., K. Jaap, M. Andre, et al. Climate change, land use change and runoff prediction in the Rhine-Meuse basins[J]. Climate Change,2004,20:229.
    [171]Lauterbach, D.& A. Leder. The influence of reservoir storage on statistical peak flows[J]. IASH Publication 1969,85:821-826.
    [172]Li, J.B., H. Yin, J. Chang, et al. Sedimentation effects of the Dongting lake area[J]. Journal of Geography Science,2009,19:287-298.
    [173]Li, Q.F., M.X. Yu, G.B. Lu, et al. The impacts of the Gezhouba and Three Gorges reservoirs on the sediment regime in the Yangtze River, China [J]. Journal of Hydrology,2011,403,224-233.
    [174]Liu F., S.L. Chen, P. Dong. Spatial and temporal variability of water discharge in the Yellow River Basin over the past 60 years [J]. Journal of Geography Science,2012, 22,1013-1033.
    [175]Mitsch, W. J.& J.G Gosselink. Welands,2nd ed. Van Nostrand Reinhlod Company, New York,1993.
    [176]Mitsch, W. J.& J. G Gosselink, Wetlands[M]. New York:John Wiley & Sons. Inc,2000.
    [177]Munyai, C. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing imagedataset[J]. International Journal of Remate Science.2000,21:1787-1806.
    [178]Nakavama, T.& M. Watanabe. Role of flood storage ability of lakes in the Yangtze River catchment[J]. Global Planet Change,2008,63:9-22.
    [179]Nicola, S. Channel changes due to river regulation:the case of the Plave River, Italy[J]. Earth Surface Processes and Landform,1999,24:1135-1151.
    [180]Nicola, S.& R. Massimo. Morphological response to river engineering and management in alluvial channels in Italy[J]. Geomorphology,2003,50:307-326.
    [181]Owen, N.W., M. Kent, M.P. Dale. Plant species and community responses to sand burial on the machair of the Outer Hebrides. Scotland [J]. Journal of Vegetation Science,2004,15:669-678.
    [182]Petts, G.E. Long-term consequences of upstream impoundment[J]. Environmental Conservation,1980,7:325-332.
    [183]Petts, G.E. Implications of the fluvial process-channel morphology interaction below British reservoirs for stream habitat[J]. Science of Total Environment,1980,16: 149-163.
    [184]Petts, G.E. Impounded Rivers. Wiley, Chichester.1984.
    [185]Petts, G.E. A perspective on the abiotic processes sustaining the ecological integrity of running waters[J]. Hydrobiologia,2000,422/423:15-27.
    [186]Randall, J.F.B., S.M. Cai, S.J. Chen, et al. Ecological engineering strategies to reduce flooding damage to wetland crops in central China[J]. Ecological Engineering 1998,11:231-259.
    [187]Raush, D.L.& H.G. Heinemann. Controlling trap efficiency [J]. Transactions of the American Society of Agricultural Engineers,1975,18:1105-1113.
    [188]Rebelo, L.M., Finlayson, C.M., Nagabhatla, N. Remote sensing and GIS for wetland inventory, mapping and change analysis[J]. Journal of Environmental Management, 2009,90:2144-2153.
    [189]Serra, P., X. Pons & D. Sauri. Land-cover and land-use change in a Mediterranean landscape:A spatial analysis of driving forces integrating biophysical and human factors [J]. Applied Geography,2008,59:189-209.
    [190]Shields, F.D., A. Simon & L.J. Steffen. Reservoir effects on downstream river channel migration [J]. Environmental Conservation,2000,1:54-66.
    [191]Wang, H., Z. Yang, Y. Saito, et al. Stepwise decreases of the Huanghe (Yellow River) sediment load (1950-2005):impacts of climate change and human activities[J]. Global Planet Change,2007,57:331-354.
    [192]Xu, K.H.& J.D. Milliman. Seasonal variations of sediment discharge from the Yangtze River before and after impoundment of the Three Gorges Dam[J]. Geomorphology,2009,104:276-283.
    [193]Yu, F.L., Z.Y. Chen, X.Y. Ren, et al. Analysis of historical floods on the Yangtze River, China:Characteristics and explanations [J]. Geomorphology,2009,113: 210-216.
    [194]Zhang, J.Q., K.Q. Xu, Y.H. Yang, et al. Watanabe M. Measuring water storage fluctuations in Lake Dongting, China, by Topex/Poseidon saterllite altimetry[J]. Environmental Monitering and Assessment,2006,115:23-37.
    [195]Zhang Q., V.P. Singh & Chen X.H. Influence of Three Gorges Dam on streamflow and sediment load of the middle Yangtze River, China [J]. Stochastic Environmental Research and Risk Assessment,2012,26,569-579.
    [196]Zhang Q., V.P. Singh, K. Li, et al. Trend, periodicity and abrupt change in streamflow of the East River, the Pearl River basin [J]. Hydrological Processes,2012, 27:236-242.
    [197]Zhang, Q., C. Xu, B. Stefan. Sediment and runoff changes in the Yangtze River basin during past 50 years [J]. Journal of Hydrology,2006,331:511-523.
    [198]Zhang, Q., C.Y. Xu, V.P. Singh, et al. Multiscale variability of sediment load and streamflow of the lower Yangtze River basin:possible causes and implications [J]. Journal of Hydrology,2009,368,96-104.
    [199]Zhang Q., Y. Zhou & V.P. Singh. The influence of dam and lakes on the Yangtze River streamflow:long-range correlation and complexity analyses [J]. Hydrological Processes,2012,26,436-444.
    [200]Zhao G.J., X.M. Mu, B.D. Su, et al. Analysis of streamflow and sediment flux changes in the Yangtze River basin [J].Water Intonation,2012,37,537-551.
    [201]Zhao, S.Q., J.Y. Fang, W. Ji, et al. Lake restoration from impoldering:impact of land conversion on riparian landscape in Honghu Lake area, Central Yangtze[J]. Agriculture, Ecosystem and Environment,2003,95:111-118.
    [202]Zhao, S.Q., J.Y. Fang & S.L. Miao. The 7-decade degradation of a large freshwater lake in Central Yangtze River, China[J]. Environmental Science and Technology, 2005,39:431-436.
    [203]Zhao, S.Q.& J.Y. Fang. Impact of impoldering and lake restoration on land-cover changes in Dongting Lake area, Central Yangtze[J]. AMBIO,2006,33:311-315.
    [204]Zhou, D.M., H.L. Gong, Y.Y. Wang, et al. Study of driving forces of wetland degradation in the Honghe National Nature Reserve in the Sanjiang Floodplain, Northeast China [J]. Environmental Modeling and Assessment,2009,14:101-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700