环境干扰对滩涂湿地大型底栖动物群落结构的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
底栖动物是湿地生态系统中的一个重要组成部分,在物质循环和能量流动中起着承上启下的作用。其群落结构能反映出底质条件、水质状况、水温等非生物因子以及植被、物种间的影响、捕食压力等生物因子的情况。本文在综述中概括了底栖动物的概念、生活型和功能群的划分,探讨了底栖动物群落生态学研究的特点及目前我国底栖动物的研究重点和主要研究成果,重点讨论了底栖动物群落分布的时空差异、底栖动物与环境因子之间的关系以及底栖动物的生物指示作用,并展望了底栖动物研究的未来发展趋势。
     为了研究生境干扰对大型底栖动物群落的影响,本文以列入中国重要湿地名录的温州灵昆东滩湿地为研究基地,通过2005年11月至2007年11月取样调查,分析了围垦滩涂潮沟秋季大型底栖动物群落和生态位,比较了围垦区内外滩涂湿地大型底栖动物多样性、功能群及季节变化,并对互花米草(Spartina alterniflora)入侵过程中大型底栖动物群落生态学进行了研究。主要结果如下:
     (1)2005年11月,在浙江温州灵昆东滩湿地选取了3个不同年份围垦的潮沟断面,进行了潮沟秋季大型底栖动物群落和物种生态位研究。结果如下:共发现大型底栖动物31种,隶属于6门7纲19科,主要是软体动物腹足类和瓣鳃类、节肢动物甲壳类和环节动物的多毛类。在潮沟的不同生境即草滩(GF)、边滩(BaC)和潮沟底(BoC),物种的组成和数量有所不同,草滩发现的大型底栖动物为16种,边滩21种,潮沟底13种。3个不同生境大型底栖动物的群落结构和种群生活型表现出一定的差异性,反映了潮沟中各生境大型底栖动物随着环境因子梯度变化而呈现出有规律的变化。总体上,生物多样性的大小顺序为Margalef物种多样性指数S:BaC>BoC>GF;Shannon-Wiener多样性指数H':BaC>Boc>GF:Pielou均匀度指数J:BoC>BaC>GF;Simpson优势度指数D:GF>BaC>BoC。对定量取样中获得的20个物种进行了生态位宽度、生态位重叠值分析,结果表明物种生态位宽度、物种之间的生态位重叠值与物种的分布及数量密切相关,反映了物种对各种生境资源的利用能力的强弱,以及对环境的适应性,并结合系统聚类和非度量多维标度2维排序分析将这些生物分成一定类群。
     (2)在灵昆岛东滩湿地选择了1997年围垦区以及围垦区外的自然滩涂作为样地,于2006年2月至2006年11月开展了围垦区内外滩涂湿地大型底栖动物多样性比较的调查研究。分析了围垦区内和自然滩涂上大型底栖动物群落结构的差异,并探讨了造成差异的原因。主要研究结果如下:共发现大型底栖动物36种,隶属7门8纲22科,这些物种中软体动物、节肢动物和环节动物共占物种总数的83.33%。其中在围垦区内的4个样点共发现大型底栖动物27种,在自然滩涂上的4个样点共发现大型底栖动物32种。同时通过对定量取样得到的各群落大型底栖动物密度数据进行计算,得到了各种大型底栖动物的生态位宽度和围垦区内外不同生境的大型底栖动物群落生物多样性指数(Shannon-Weiner指数H′、Pielou指数J、Simpson指数D),结果显示围垦区内的光滩(A2)和边滩(A3)以及自然滩涂上的高潮带(B2)和中潮带(B3)滩涂的Shannon-Weiner多样性指数H′较高,Simpson优势度指数D则相对较低,表明了这些位点的大型底栖动物的多样性程度较高,而长满互花米草的位点(A1)和(B1)的Shannon-Weiner多样性指数H′和Pielou均匀度指数J都要小于受潮水作用相似的邻近滩涂,Simpson优势度指数D却相对较高,这表明了互花米草(Spartinaalterniflora)入侵已改变了原来的大型底栖动物群落结构。同时运用相似度指数Jc、成对t检验以及聚类和排序等多种统计学方法对围垦区内和自然滩涂上的各个位点进、行了群落相似性分析,结果表明潮位是影响自然滩涂上大型底栖动物分布的一个重要因素,不同潮位之间的大型底栖动物群落差异比较明显。相对而言,围垦区内各生境之间的大型底栖动物群落分化程度较低,使得潮位因素对大型底栖动物的分布的影响降低。
     (3)在灵昆岛东滩湿地选择1997年围垦区以及围垦区外的自然滩涂作为样地,开展围垦区内、外大型底栖动物季节变化和功能群比较的研究。分析围垦内、外大型底栖动物功能群组成的差异,并探讨造成差异的原因。主要研究结果如下:本次调查共发现大型底栖动物36种,在围垦区外的中潮带发现的物种数量最多,为26种。在这些物种中,占绝大多数的是软体动物(12种),节肢动物甲壳纲种类(13种)以及环节动物门的沙蚕类(5种),分别为总物种数的33.3%、36.1%、13.9%。定量调查共发现大型底栖动物24种。利用取样得到的数据,分别对围垦区内、外的密度、物种数以及各站点不同季节的物种多样性指数Margalef S、Shannon-weiner H′、PielouJ、Simpson D进行站点—季节间无重复双因素方差分析,并对大型底栖动物进行了功能群划分及多元统计分析。结果表明围垦区内、外滩涂湿地大型底栖动物群落结构和功能群组成存在一定的差别;生境与大型底栖动物功能群的组成结构有一定的关系;围垦区内大型底栖动物的群落结构和功能群组成的季节变化大于围垦区外的自然滩涂。
     (4)2006-2007年在灵昆东滩湿地选择了不同入侵程度互花米草滩地作为样地,以高潮带和中潮带的光滩作为对照,进行了大型底栖动物群落对互花米草入侵过程响应的研究,分析了互花米草入侵过程中滩涂湿地大型底栖动物的群落结构和季节变化。本次调查共发现大型底栖动物29种,隶属7门8纲21科,其中定量取样得到大型底栖动物为26种,物种数最多的类群为甲壳纲,而个体数最多的类群为腹足纲动物。同时利用取样得到的数据进行样地—季节间无重复双因素方差分析各位点不同季节的物种多样性指数(Margalef S、Shannon-weiner H′),结果表明2种生物多样性指数在季节间和各样地间都达到了显著或极显著水平上的差异,说明互花米草入侵后生境中大型底栖动物群落在一定程度上与周围的光滩生境有了分化,并具有一定的季节动态。通过种间欧氏距离统计结果对各群落进行系统聚类分析和物种非度量多维标度排序后发现,成熟草滩上的大型底栖动物群落与其他生境差异较大,初期草滩上的大型底栖动物群落与其附近高潮带上的大型底栖动物群落结构比较接近,而中期草滩界于2者之间,说明了不同入侵程度的互花米草会对大型底栖动物群落结构产生不同的影响。在总体上,无论从物种数,大型底栖动物群落密度还是生物多样性指数来看,成熟草滩的群落数据相对都较小,这说明,互花米草的成功入侵,特别是大面积的连片之后,会对当地的大型底栖动物群落产生一定的影响。
Zoobenthos play an important part in wetland ecosystem and its community structure can reflect the conditions of bottom sediment, water quality, water temperature and some other biological factors. The research on the concept of zoobenthos and the function of zoobenthos in natural wetlands ecosystem were overviewed in this paper. Features of zoobenthos community ecology research, methods and some results (such as the difference disturbance of zoobenthos, the relationship with environmental factors and bio-indicators of water health) were summarized. Authors made several suggestions on the principal aspects of further strengthening and promoting ecological researches on the Zoobenthos in China.
     With development of human activity such as reclamation and the process of biological invasion, habitat disturbance has strong effect on the macrobenthic community. In order to research the impact and effect of habitat disturbance on macrobenthic community, we studied at Lingkun Island, Wenzhou City, Zhejiang Province during Nov. 2005 to Nov. 2006. Based on the data collected, the macrobenthic community and niche analysis of creek at autumn in diked tidal flat, biodiversity comparison of macrobenthic community in diked tidal flat and natural tidal flat, seasonal variation and functional groups of macrobenthic communities at diked and natural tidal flat and the ecological impact of introduced Spartina alterniflora invasion on macrobenthic communities were analyzed in this paper. The main results were as follows:
     (1) In Nov. 2005, the macrobenthic community and niche analysis at creeks in three diked tidal flats were studied at Lingkun Island, Wenzhou City, Zhejiang Province. The result showed: Altogether 31 species belonging to 19 families, 7 classes and 6 phyla were collected, most of which were gastropoda, lamellibranchia, crustacea and polychaeta. In the different habitats of the creeks (the grass flat, the bank of creek and the bottom of the creek), the composition and abundance of the macrobenthic were different from one other. There were 16 species in the grass flat, 21 species in the bank of the creek and 13 species at the bottom of creek. The macrobenthic structure and life forms of the creeks were different in these three habitats, and showed that the creeks were changed regularly with the environment factors. In general, the Margalef's species diversity index: BaC > BoC > GF; the Shannon-Wiener's index: BaC > Boc > GF; the Pielou's index: BoC > BaC > GF; the Simpson's index: GF > BaC > BoC. The analysis of the niche breadth and niche overlap showed that these two were closed related to the distribution and density of the species, which revealed that the niche breadth and the niche overlaps reflect the species distribution, the abundance and the species ability of utilizing the environmental resource. Combined with the data of the four times extraction of the density of macrobenthic species, using the Hierarchical Cluster of between-groups linkage method and the Non-matric Multidimentional Scaling method, these species could classify into some groups.
     (2) We addressed the influence of reclamation on community structure by comparing macrobenthic communities in a natural tidal flat and creek of a tidal flat diked in 1997. Sampling was conducted during Feb. to Nov. 2006 near Lingkun Island, Wenzhou Bay. Eight sampling plots (4 each in natural and diked systems) represented different macrobenthic habitats, including two invaded by Spartina alterniflora. In the investigation, a total of 36 species were found, belonging to 22 families, 8 classes, and 7 phyla, most of them being arthropods, mollusks and annelidas. Results indicate that after diking, species richness decreased and the composition of species also had changed. There were 32 species in the natural tidal flat, but only 27 macrobenthic species could be found in the diked tidal flat. The species composition of various macrobenthic communities, life groups and life forms on species of the macrobenthic community in various habitats, the density characters of quantitative sampling exhibited the structure of macrobenthic communities were highly related to the condition of habitats. The niche breadths of the macrobenthos species and biodiversity indices were also analyzed in the paper. Shannon-Weiner index H' was much higher in 2(high tide level and middle tide level) of the 4 habitats within in diked and natural tidal flats. Plots with Spartina alterniflora exhibited lower H' and J than other plots nearby which were unvegetated and similarly influenced by tidewater. Thus, invasion by Spartina alterniflora has already influenced and changed the macrobenthic community in these habitats. The similarity index Jc, paired t-tests, the hierarchical cluster of between-groups linkage method and the Non-metric Multidimentional Scaling (MDS) method reveal that the influence of tidal level on macrobenthos distribution is much stronger in the natural flat than in the diked tidal flat.
     (3) We addressed the influence of reclamation on seasonal variation of community structure and functional groups by comparing macrobenthic communities in a natural tidal flat and creek of a tidal flat diked in 1997. Sampling was conducted during Feb. to Nov. 2006 near Lingkun Island, Wenzhou Bay. Eight sampling plots (4 each in natural and diked systems) represented different macrobenthic habitats, including two invaded by Spartina alterniflora. In the investigation, a total of 36 species were found, including 24 species found in quantitative sampling, belonging to 22 families, 8 classes, and 7 phyla, most of them being arthropods(13 species), mollusks(12 species) and annelidas(5 species). Based on the data collected, the Two-way ANOVA analyze between season and tide level on the density of macrobenthic communities, the number of species and the biodiversity indices(Margalef S, Pielou J, Simpson D) were analyzed in the paper. Results indicate that the structure of functional groups and communities were highly related to the condition of habitats. The number of species, the density of communities, Margalef S, and Shannon-weiner H'differ significantly among seasons in the diked tidal flat, and this result reveal that the influence of season variation on macrobenthos distribution is much stronger in the diked tidal flat than in the natural flat. Combined with the data of the four times extraction of the density of functional groups, using the Hierarchical Cluster of between-groups linkage method and the Non-matric Multidimentional Scaling method(MDS), these macrobenthic communities could classify into some groups. The communities in the diked tidal flat were different from these in the natural tidal flat which similarly influenced by tidewater.
     (4) During 2006 to 2007, the authors studied the macrobenthic community at east tidal flat of Lingkun Island, Wenzhou Bay. We addressed the influence of Spartina alterniflora invasion by comparing seasonal variation, biodiversity indices of different macrobenthic communties and using other analysis methods. Five sampling plots(TH, TM, G1, G2, G3) were set in the research places, three of them representative for different invasion level of Spartina alterniflora and the other two used to contrast. We found a total of 29 in the investigation, belonging to 21 families, 8 classes and 7 phyla, most of them being the arthropods and the mollusks. The result of Paired Samples T Test of Margalef's species richness index S and Shannon-weiner's index H showed that the difference had achieved to the distinct level among seasons and various plots. The value of biodiversity indices and the result of Hierarchical Cluster of between groups linkage method and Non-matric Multidimentional Scaling method showed that the structure of G3 communtiy (completely invasion of Spartina alterniflora ) was obviously distinct from other plots and more simple , for the lowest value of S and H, less number of species and density. These results indicate the structure of macrobenthic community has changed by Spartina alterniflora successfully being invaded.
引文
[1]颜玲,赵颖,韩翠香,等.粤北地区溪流中的树叶分解及大型底栖动物功能摄食群[J].应用生态学报,2007,18(11):2573-2579.
    [2]龚志军,谢平,阎去君.底栖动物次级生产力研究的理论与方法[J].湖泊科学,2001,13(1):79-88.
    [3]寿鹿,高爱根,曾江宁,等.底质环境对浙江衢山岛潮间带大型底栖动物分布的影响[J].动物学杂志,2007,42(3):79-83.
    [4]类彦立,孙瑞平.黄海多毛环节动物多样性及区系的初步研究[J].海洋科学,2008,32(4):40-51.
    [5]赵文,董双林,张美昭,等.盐碱池塘底栖动物的初步研究[J].应用与环境生物学报,2001,7(3):239-243.
    [6]谢祚浑,周一兵.中国北方盐碱水域中的底栖动物[J].大连水产学院学报,2002,17(3):176-186.
    [7]张艳,张志南,邓可,等.青岛岩礁附植小型底栖动物ATP含量的研究[J].中国海洋大学学报(自然科学版),2005,35(5):799-806.
    [8]禹娜,李云凯,孙新瑾,等.洋山深水港海域小型底栖动物丰度和生物量分布[J].华东师范大学学报(自然科学版),2008,(2):22-29.
    [9]杨德渐,王永良,马绣同,等.中国北部海洋无脊椎动物[M].北京:高等教育出版社.1996.
    [10]范航清,何斌源,韦受庆.海岸红树红地沙丘移动对林内大型底栖动物的影响[J].生态学报,2000,20(5):722-727.
    [11]杨泽华,童春富,陆健健.盐沼植物对大型底栖动物群落的影响[J].生态学报,2007,27(11):4387-4393.
    [12]杨泽华,童春富,陆健健.长江口湿地三个演替阶段大型底栖动物群落特征[J].动物学研究,2006,27(4):411-418.
    [13]Fauchald K,Jumars PA.The diet of worms:A study of polychaete feeding guilds[J].Oceanography and Marine Biology:An Annual Review,1979,17:193-284.
    [14]Anderson AN.A classification of Australian ant communities based cn functional groups which parallel plant life-forms in relation to stress and disturbance[J].Journal of Biogeography,1995,22:15-29.
    [15]Hector A,Schmid B,Beierkuhnlein C,et al.Plant diversity and productivity experiments in European grasslands[J].Science,1999,286:1123-1127.
    [16]Hooper DU.The role of complementary and competition in ecosystem responses to variation in plant diversity[J].Ecology,1998,79:704-719.
    [17]Iives AR,Gross K,Klug JL.Stability and variability in competitive cormmunities[J].Science,1999,286:542-544.
    [18]Grime JP.Biodiversity and ecosystem function:The debate deepens[J].Science,1997,277:1260-1261.
    [19]Tilman D,Knops J,Wedin D,et al.The influence of functional diversity and composition on ecosystem processes[J].Science,1997,277:1300-1302.
    [20]袁兴中,陆健健,刘红.长江口底栖动物功能群分布格局及其变化[J].生态学报,2002,22(12):2054-2062.
    [21]朱晓君,陆健健.长江口九段沙潮间带底栖动物的功能群[J].动物学研究,2003,24(5):355-361.
    [22]王备新,杨莲芳,胡本进,等.应用底栖动物完整性指数B-IBI评价溪(?)健康[J].生态学报,2005,25(6):1481-1490.
    [23]Douglas JS,Mitsch WJ.A model of macroinvertebratc trophic structure and oxygen demand in freshwater wetlands[J].Ecological Modelling,2003,161:183-194.
    [24]Thrush SF,Hewitt JE,Gibbs M,et al.Functional role of large organisms in intertidal communities:Community effects and ecosystem function[J].Ecosystems,2006,9:1029-1040.
    [25]Wieking G,Kr(o|¨)ncke I.Is benthic trophic structure affected by food quality? The Dogger Bank example[J].Marine Biology,2005,146:387-400.
    [26]李欢欢,鲍毅新,胡知渊,等.杭州湾南岸大桥建设区域潮间带大型底栖动物功能群及营养等级的季节动态[J].动物学报,2007,53(6):1011-1023.
    [27]鲍毅新,胡知渊,李欢欢,等.灵昆东滩围垦区内外大型底栖动物季节变化和功能群的比较[J].动物学报,2008.54(3):416-427.
    [28]张青田,胡桂坤,倪蕊,等.塘沽潮间带大型底栖动物营养结构的初步分析[J].海洋湖沼通报,2005,(3):73-78.
    [29]韩洁,张志南,于子山.渤海中、南部大型底栖动物物种多样性的研究[J].生物多样性,2003,11(1):20-27.
    [30]韩洁,张志南,于子山.渤海中、南部大型底栖动物的群落结构[J].生态学报,2004,24(3):531-537.
    [31]刘录三,李新正.南黄海春秋季大型底栖动物分布现状[J].海洋与湖沼,2003,34(1):26-32.
    [32]刘录三,李新正.东海春秋季大型底栖动物分布现状[J].生物多样性,2002,10(4):351-358.
    [33]廖一波,曾江宁,陈全震,等.嵊泗海岛不同底质潮间带春秋季大型底栖动物的群落格局[J].动物学报,2007,53(6):1000-1010.
    [34]李新正,李宝泉,王洪法,等.南沙群岛渚碧礁大型底栖动物群落特征[J].动物学报,2007,53(1):83-94.
    [35]李宝泉,李新正,王洪法,等.长江口附近海域大型底栖动物群落特征[J].动物学报,2007,53(1):76-82.
    [36]黄洪辉,林燕棠,李纯厚,等.珠江口底栖动物生态学研究[J].生态学报,2002,22(4):603-607.
    [37]郑荣泉,张永普,李灿阳,等.乐清湾滩涂大型底栖动物群落结构的时空变化[J].动物学报,2007,53(2):390-398.
    [38]葛宝明,鲍毅新,郑祥,等.灵昆岛潮间带大型底栖动物群落结构与生态位分析[J].生态学报,2005,25(11):3037-3042.
    [39]鲍毅新,葛宝明,郑祥,等.温州湾灵昆岛东滩潮间带大型底栖动物群落的季节动态[J].水生生物学报,2007,31(3):437-444.
    [40]王洪法,李宝泉,张宝琳,等.胶州湾红石崖潮间带大型底栖动物群落生态学研究[J].海洋科学,2006,30(9):52-57.
    [41]袁伟,张志南,于子山.胶州湾西部海域大型底栖动物多样性的研究[J].生物多样性,2007,15(1):53-60.
    [42]张宝琳,王洪法,李宝泉,等..胶州湾辛岛潮间带大型底栖动物生态学调查[J].海洋科学,2007,31(1):60-64.
    [43]吴振斌,贺锋,付贵萍,等.深圳湾浮游生物和底栖动物现状调查研究[J].海洋科学,2002,26(8):58-64.
    [44]厉红梅,孟海涛.深圳湾底栖动物群落结构时空变化环境影响因素分杌[J].海洋环境科学,2004,23(1):37-40.
    [45]熊飞,李文朝,潘继征.高原深水湖泊扰仙湖大型底栖动物群落结构及多样性[J].生物多样性,2008,16(3):288-297.
    [46]杨明生,熊邦喜,杨学芬.武汉市南湖大型底栖动物的时空分布和氮磷评价[J].湖泊科学,2007,19(6):658-663.
    [47]武国正,李畅游.内蒙古乌梁素海浮游动物与底栖动物调查[J].湖泊科学,2008,20(4):538-543.
    [48]杜飞雁,王雪辉,李纯厚,等.大亚湾大型底栖动物生产力变化特征[J].应用生态学报,2008,19(4):873-880.
    [49]万成炎,吴晓辉,胡传林,等.江苏省水库底栖动物调查及其综合评价[J].湖泊科学,2004,16(1):43-48.
    [50]袁兴中,陆健健..长江口岛屿湿地的底栖动物资源研究[J].自然资源学报,2001,16(1):35-41.
    [51]张青田,胡桂坤.塘沽潮间带大型底栖动物调查及群落结构分析[J].浙江海洋学院学报(自然科学版),2005,24(1):16-21.
    [52]李蓉,叶勇,陈光程,等..九龙江口桐花树红树林恢复对大型底栖动物的影响[J].厦门大学学报(自然科学版),2007,46(1):109-114.
    [53]邹发生,宋晓军,陈伟,等.海南东寨港红树林滩涂大型底栖动物多样性的初步研究[J].生物多样性,1999,7(3):175-180.
    [54]张海生,陆斗定,朱小萤,等.UK37沉积地层记录:三门湾海表温度(SST)和EI Ni(?)o 现象及其对大型底栖动物生命活动的影响[J].生态学报,2007,27(12):4935-4943.
    [55]彭逸生,孙红斌,谢荣如,等.海丰鸟类自然保护区大型底栖动物群落特征[J].生态环境,2008,17(3):1163-1169.
    [56]段波,李斌峰,刘若思,等.广东横石水河流域溪流大型底栖动物漂流的昼夜节律[J].应用生态学报,2008,19(5):1084-1090.
    [57]齐红,王红宇..地表水体中藻类、底栖动物和微生物分布的空间演化及其对流域生态水文格局的响应——以辽河中下游流域为例[J].哈尔滨师范大学自然科学学报,2002,18(6):99-104.
    [58]王延明,李道季,方涛,等.长江口及邻近海域底栖生物分布及与低氧区的关系研究[J].海洋环境科学,2008,27(2):139-144.
    [59]吴桂汉,陈品健,江瑞胜,等.贝虾混养池底栖动物调查及有机污染评估[J].厦门大学学报(自然科学版),2002,41(1):94-98.
    [60]毕春娟,陈振楼,许世远,等.长江口潮滩大型底栖动物对重金属的累积特征[J].应用生态学报,2006,17(2):309-314.
    [61]章飞军,童春富,张衡,等.长江口潮下带春季大型底栖动物的群落结构[J].动物学研究,2007,28(1):47-52.
    [62]Rhoads DC,Young DK.The influence of deposit-feeding organism on sediment stability and community tropic structure[J].Journal of Marine Research,1970,28:150-178.
    [63]曹正光,蒋忻坡..几种环境因子对梨形环棱螺的影响[J].上海水产大学学报,1998,7(3):200-205.
    [64]熊金林,梅兴国,胡传林.不同污染程度湖泊底栖动物群落结构及多样性比较[J].湖泊科学,2003,15(2):160-168.
    [65]杨丽,蔡立哲,童玉贵,等.深圳湾福田潮滩重金属含量及对大型底栖动物的影响[J].台湾海峡,2005,24(2):157-164.
    [66]Blackmore G.Field evidence of metal transfer from invertebrate prey to an intertidal predator,Thaisclavigera(Gastropoda:Muricidae)[J].Estuarine,Coastal and Shelf Science,2000,51:127-139.
    [67]Wang WX,Ke C.Dominance of dietary intake of cadmium and zinc by two marine predatory gastropods[J].Aquatic Toxicology,2002,56:153-165.
    [68]黄勃,张本,陆健健,等.东寨港红树林区大型底栖动物生态与滩涂养殖容量的研究Ⅰ.潮间带表层底栖动物数量的初步研究[J].海洋科学,2002,26(3):65-68.
    [69]郑荣泉,葛宝明,张永普,等.乐清湾红树林和光滩大型底栖动物群落比较研究[J].生态科学,2006,25(4):299-302.
    [70]童春富,章飞军,陆健健.长江口海三棱藨草带生长季大型底栖动物群落变化特征[J].动物学研究,2007,28(6):640-646.
    [71]Chung CH.Thirty years of ecological engineering with Spartina plantations in China [J].Ecological Engineering,1993,2:555-558.
    [72]朱晓佳,钦佩.外来种互花米草及米草生态工程[J].海洋科学,2003,27(12):14-19.
    [73]陈中义,付萃长,王海毅,等.互花米草入侵东滩盐沼对大型底栖无脊椎动物群落的影响[J].湿地科学,2005,3(1):1-7.
    [74]谢志发,何文珊,刘文亮,等.不同发育时间的互花米草盐沼对大型底栖动物群落的影响[J].生态学杂志,2008,27(1):63-67.
    [75]王仁卿,刘纯慧,晁敏.从第五届国际湿地会议看湿地保护与研究趋势[J].生态学杂志,1997,16(5):72-76.
    [76]唐以杰,余世孝.广东湛江红树林保护区大型底栖动物群落的空间分带[J].生念学报,2007,27(5):1703-1714.
    [77]厉红梅,李适宇,蔡立哲..深圳湾潮间带底栖动物群落与环境因子的关系[J].中山大学学报(自然科学版),2003,42(5):93-96.
    [78]闫云君,李晓宇,梁彦龄.草型湖泊和藻型湖泊中大型底栖动物群落结构的比较[J].湖泊科学,2005,17(2):176-182.
    [79]陈立婧,彭自然,孙家平,等.安徽南漪湖大型底栖动物群落结构[J].动物学杂志,2008,43(1):63-68.
    [80]毕远溥,董婧,王文波,等..小窑湾海水养殖环境现状的研究[J].海洋环境科学,2001,20(4):30-33.
    [81]许巧情,王洪铸,张世萍.河蟹过度放养对湖泊底栖动物群落的影响[J].水生生物学报,2003,27(1):41-46.
    [82]赵云龙,安传光,林凌,等..放牧对滩涂底栖动物的影响[J].应用生态学报,2007,18(5):1086-1090.
    [83]何斌源,邓朝亮,罗砚..环境扰动对钦州港潮间带大型底柄动物群落的影响[J].广西科学,2004,11(2):143-147.
    [84]葛宝明,鲍毅新,郑祥.灵昆岛围垦滩涂潮沟大型底栖动物群落生态学研究[J].生念学报,2005,25(3):446-453.
    [85]袁兴中,陆健健.围垦对长江口南岸底栖动物群落结构及多样性的影响[J].生态学报,2001,21(10):1642-1647.
    [86]王丽珍,刘永定,陈亮,等.滇池底栖无脊椎动物群落结构及水质评价[J].水生生物学报,2007,31(4):590-593.
    [87]Rosenberg DM,Resh H.Freshwater Biomonitoring and Benthic Macroinvertebrates [M].New York:Chapmann & Hall.1993.
    [88]刘玉,Vermaat JE,de Ruyter ED,等.ISO-BMWP底栖动物监测法在中国河流有机污染评价中的修正及应用[J].中山大学学报(自然科学版),2004,43(4):102-105.
    [89]刘玉,Vermaat JE,de Ruyter ED,等.用大型底栖动物和ODP系统评价珠江的有机污染[J].应用与环境生物学报,2003,9(2):154-157.
    [90]邬红娟,崔博,吕晋,等.武汉湖泊底栖动物群落结构及水质生态评价[J].华中科技大学学报(自然科学版),2005,33(10):96-98.
    [91]蔡立哲.大型底栖动物污染指数(MPI)[J].环境科学学报,2003,23(5):625-629.
    [92]马陶武,黄清辉,王海,等.太湖水质评价中底栖动物综合生物指数的筛选及生物基准的确立[J].生态学报,2008,28(3):1192-1200.
    [93]章飞军,童春富,谢志发,等.长江口潮间带大型底栖动物群落演替[J].生态学报,2007,27(12):4944-4952.
    [94]吕绍生.七里海湿地的生态修复[J].城市环境与城市生态,2003,16(5):45-47.
    [95]陈荷生.太湖生态修复治理工程[J].长江流域资源与环境,2001,10(2):173-178.
    [96]欧伏平,黄艳芳,田琪,等.洞庭湖区内湖生态环境现状及修复对策[J].内陆水产,2003,28(12):36-38.
    [97]钟非,刘保元,贺锋,等.水生态修复对莲花湖底栖动物群落的影响[J].应用与环境生物学报,2007,13(1):55-60.
    [98]沈新强,陈亚瞿,全为民,等.底栖动物对长江口水域生态环境的修复作用[J].水产学报,2007,31(2):199-203.
    [99]安传光,赵云龙,林凌,等.崇明岛潮间带夏季大型底栖动物多样性[J].生态学报,2008,28(2):577-586.
    [100]陈光程,叶勇,卢昌义.九龙江口秋茄红树林恢复对大型底栖动物群落的影响[J].厦门大学学报(自然科学版),2008,47(2):260-264.
    [101]刘杰,陈振楼,许世远,等.蟹类底栖动物对河口潮滩无机氮界面交换的影响[J].海洋科学,2008,32(2):10-16.
    [102]李丽娜,陈振楼,许世远,等.铜锌铅铬镍重金属在长江口滨岸带软体动物体内的富集[J].华东师范大学学报(自然科学版),2005,(3):65-70.
    [103]高爱根,陈全震,胡锡钢,等.象山港网箱养鱼区大型底栖生物生态特征[J].海洋学报(中文版),2005,27(4):108-113.
    [104]黄洪辉,林钦,林燕棠,等.大亚湾网箱养殖海域大型底栖动物的时空变化[J].中国环境科学,2005,25(4):412-416.
    [105]Alongi DM,Chong VC,Dixon P,et al.The influence of fish cage aquaculture on pelagic carbon flow and water chemistry in tidally dominated mangrove estuaries of peninsular Malaysia[J].Marine Environmental Research,2003,55:313-333.
    [106]Karakassis I,Tsapakis M,Hatxiyanni E,et al.Impact of cage farming of fish on the seabed in three Mediterranean coastal areas.[J]ICES Journal of Marine Science,2000,57:1462-1471.
    [107]何悦强,郑庆华,温伟英,等.大亚湾海水网箱养殖与海洋环境相互影响研究[J].热带海洋,1996,15(2):22-27.
    [108]王肇鼎,彭云辉,孙丽华,等.大鹏澳网箱养鱼水体自身污染及富营养化研究[J].海洋科学,2003,27(2):77-81.
    [109]高爱根,杨俊毅,陈全震,等.象山港养殖区与非养殖区大型底栖生牧生态比较研究[J].水产学报,2003,27(1):25-31.
    [110]纪炳纯,王新华,罗阳,等.引滦工程上游底栖动物及其水质评价[J].南开大学学报(自然科学版),2005,38(1):18-24.
    [111]罗民波,陆健健,沈新强,等.大型海洋工程对洋山岛周围海域大型底栖动物生态分布的影响[J].农业环境科学学报,2007,26(1):97-102.
    [112]Talley TS,Levin I,A.Modification of sediments and macrofauna by an invasive marsh plant[J].Biological Invasions,2001,3:51-68.
    [113]Alpert P,Bone E,Holzapfel C.Invasiveness,invisibility and the role of environmental stress in the spread of non-native plants[J].Perspectives in Plant Ecology,Evolution and Systematics,2000,3:52-56.
    [114]Ayres DR,Strong DR.The Spartina invasion of San Francisco Bay[J].Aquatic Nuisance Species Digest,2002,4:37-39.
    [115]Rice D,Rooth J,Stevenson JC.Colonization and expansion of Phrarnites austrails in upper Chesapeake Bay tidal marshes[J].Wetlands,2000,20:280-299.
    [116]Wainright SC,Weinstein MP,Able KW,et al.Relative importance of benthic microalgae,phytoplankton and the detritus of smooth cordgrass(Spartina) and the common reed(Phragmites) to brackish marsh food webs[J].Journal of Experimental Marine Biology and Ecology,2000,200:77-91.
    [117]Windham L,Lathrop RG.Effects of Phragmites australis(common reed) on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River,New Jersey[J].Estuaries,1999,22:927-935.
    [118]周晓,葛振鸣,施文或,等.长江口新生湿地大型底栖动物群落时空变化格局[J].生态学杂志,2007,26(3):372-377.
    [119]Lana P,Guiss C.Influence of Spartina alterniflora on structure and temporal variability of macrobenthic associations in a tidal flat of Paranagua Bay,Brazil[J].Marine Ecology Progress Series,1991,73:231-234.
    [120]Daehler CC,Strong DR.Status,prediction and prevention of introduced cordgrass Spartina spp.invasions in Pacific estuaries,USA[J].Biological Conservation,1996,78:51-58.
    [121]Leibold MA.The niche concept revisited:mechanistic models and community context[J].Ecology,1995,76(5):1371-1382.
    [122]Cody ML.Niche theory and plant growth form[J].Vegetatio,1991,97:39-55.
    [123]Hardy O J,Sonk(?) B.Spatial pattern analysis of tree species distribution in a tropical rain forest of Cameroon:assessing the role of limited dispersal and niche differentiation[J].Forest Ecology and Management,2004,97(1-3):191-202
    [124]L(u|¨)ttge U,Fetene M,Liebig M,et al.Ecophysiology of Niche Occupation by Two Giant Rosette Plants,Lobelia gibberoa Hemsl and Solanecio gigas(Vatke) C.Jeffrey,in an Afromontane Forest Valley[J].Annals of Botany,2001,88(2) 267-278
    [125]Potts MD,Davies SJ,Bossert WH,et al.Habitat heterogeneity and niche structure of trees in two tropical rain forests[J].Oecologia,2004,139:446-453.
    [126]马宗仁,阳承胜,常向前,等.高尔夫球场草坪-杂草群落中主要杂草种类年消长动态及时间生态位[J].生态学报,2004.24(10):2230-2237.
    [127]Albrecht M,Gotelli NJ.Spatial and temporal niche partitioning in grassland ants[J].Oecologia,2001,126(1):134-141
    [128]刘新民,陈海燕,乌宁,等.腾格里沙漠生念系统不同固沙方式下昆虫群落的生念位分异研究[J].中国沙漠,2002,22(6):566-570.
    [129]刘安兴,陈征海,丁平,等.浙江湿地水鸟种群数量研究[J].浙江大学学报(农业与生命科学版),2001,27(3):325-329.
    [130]周时强,郭丰,吴荔生,等.福建海岛潮间带底栖生物群落生态的研究[J].海洋学报,2001,23(5):104-109.
    [131]杨俊毅,高爱根,陈全震,等.拟建宁海电厂附近潮间带底栖生物群落生态[J].东海海洋,2004,22(3):48-55
    [132]全国海岸带和海涂资源综合调查简明规程编写组.全国海岸带和海涂资源综合调查简明规程[M].北京:海洋出版社,1986.
    [133]袁兴中,陆健健.长江口潮沟大型底栖动物群落的初步研究[J].动物学研究,2001,22(3):211-215.
    [134]谭永钦,张国安,郭尔祥.草坪杂草生态位研究[J].生态学报,2004,24(6):1300-1305
    [135]Lin Lu.Seasonal variation of macrobenthic infauna in the Johor Strait,Singapore[J].Aquatic Ecology,2005,39:107-111
    [136]Bell SS,Watzin MC,Coull BC.Biogenic structure and its effect on the spatial heterogeneity of meiofauna in a salt marsh[J].J.Exp.Mar.Biol.Ecol,1978.35:99-107.
    [137]Webster P J,Rowden A A,At-trill M J.Effect of shoot density on the infaunal macro-invertberate community with in a Zostera marina seagrass bed.Estuarine[J].Coastland Shelf Science,1998,47:351-357
    [138]Kvalseth TO.Note on biological diversity,evenness,and homogeneity easures[J].Oikos,1991,62(1):123-127.
    [139]Magurran AE,Ecological Diversity and Its Measurement Sydeny[M]:Croom Helm,1998,7-46.
    [140]葛宝明,鲍毅新,郑祥.围垦滩涂不同生境冬季大型底栖动物群落结构[J].动物学研究,2005,26(1):47-54.
    [141]袁兴中,陆健健,刘红.长江口新生沙洲底栖动物群落组成及多样性特征[J].海洋学报(中文版),2002,24(2):133-139.
    [142]Ma ZJ,Li B,Zhao B,et al.Are artificial wetlands good alternatives to natural wetlands for waterbirds?-a case study on Chongming Island[J].China Biodiversity and Conservation,2004,13:333-350.
    [143]Reise K.Tidal flat ecology:An experiment approach to species interactions[M].Berlin:springer-Verlag,1985.
    [144]冯利华,鲍毅新.滩涂围垦的负面影响与可持续发展策略[J].海洋科学,2004,28(4):76-77.
    [145]Pielou EC.Ecological Diversity[M].New York:John Wiley,1975 16-51.
    [146]马克平.生物多样性的测度方法[M].见钱迎倩,马克平.生物多样性研究的原理与方法.北京:中国科学技术出版社.1994.141-165.
    [147]马克平,刘玉明.生物群落多样性的测度方法I.α多样性的测度方法(下)[J].生物多样性,1994.2(4):231-239.
    [148]Costanza R,Kemp W M,Boynton W R.Predictability scale and biodiversity in coastal and estuarine ecosystem:implications for management[J].Ambiology,1993,22:88-96.
    [149]Peter R T,Wookdridge T H.What limits the distribution of subtidal macrobenthos in permanently open and temporarily open/closed South African estuaries? Salinity vs.sediment paricle size.Estuarine[J].Coastal and Shelf Science,2003,57:225-238
    [150]Webster P J,Rowden A A,Attrill M J.Effect of shoot density on the infaunal macro-invertberate community with in a Zostera marina seagrass bed.Estuarine[J].Coastland Shelf Science,1998,47:351-357
    [151]李新正,王洪法,张宝琳.胶州湾大型底栖动物次级生产力初探[J].海洋与湖沼,2005,36(6):527-533.
    [152]于子山,张志南,韩洁.渤海大型底栖动物次级生产力的初步研究[J].青岛海洋大学学报(自然科学版),2001,31(6):867-871.
    [153]胡知渊,鲍毅新,葛宝明,等.围垦滩涂潮沟秋季大型底栖动物群落和生态位分析[J].动物学报,2006,54(4):800-809.
    [154]Naeem S,Li S.Biodiversity enhances ecosystem reliability[J].Nature,1997,390:5O7-509.
    [155]Vitousek PM,D'Antonio CM,Loope,et al.Introduced species:A significant component of human-caused global change[J].Newzealand Journal of Ecology,1997,21:1-16.
    [156]Primentel DL,Lach L,Zuniga R,et al.Environmental and econoraic costs of non-indigenous species in the Unitde States[J].BioScience,2000,50:53-65.
    [157]Walker LR and Smith SD.Impacts of invasive plants on community and ecosystem properties.In:Luken JO and Thieret JW Assessment and Management of Plant Invasions[M].Springer-Verlag,New York,Inc.1997,69-94.
    [158]Mooney HA and Cleland EE.The evolutionary impacts of invasive species[J].Proceedings of the Natonal Academy of Science,2001,98:5446-5451.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700