盐沼地区潮周期内有机碳的动力输移与通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湿地生态系统碳循环在全球碳循环中起着重要的作用,并对全球气候变化有着巨大的影响。长江口潮滩面向开阔海域,受潮汐作用、波浪作用等特殊水动力因子影响深刻,且淤涨迅速,这些独特的条件使得长江口潮滩盐沼地区中有机碳的浓度、通量等特征有别于世界其它河口盐沼湿地。因此,盐沼地区有机碳的动力输移与通量研究在湿地生态系统碳循环中起着关键性作用,也是全球碳循环研究在海岸带比较薄弱的一环。正确认识盐沼地区和特殊动力条件(潮汐、波浪)下有机碳的浓度和通量变化,对于揭示目前尚不清楚的海岸带碳循环研究在全球碳循环中的重要性有着重要的意义。
     以长江口崇明东滩的高潮滩盐沼为主要研究区域,研究盐沼地区有机碳短期内的动力输移与通量变化。揭示潮周期内有机碳的浓度变化,计算潮周期内有机碳通量的结果,并分析影响有机碳短期变化的因子,以期揭示潮滩湿地碳的排放通量变化,得出主要结论如下:
     1.夏季(7、8月)草滩平均有机碳浓度为18.2 mg g -1,光滩平均有机碳浓度为10.8 mg g -1。潮周期内草滩有机碳浓度是光滩的1.7倍,夏季(7、8月)草滩有机碳浓度约为春季的1. 5倍。沉积物有机碳浓度变化总体趋势较为平稳,平均有机碳浓度为1.6 mg g -1。沉积物有机碳浓度呈现草滩内部>草滩边缘>光滩的变化趋势。
     2.潮周期内春夏两季草滩和光滩地区悬浮物有机碳浓度变化大致分为两种:涨潮初期、落潮中后期分别出现峰值,有机碳浓度变化较大;全潮只在落潮的中后期出现一次峰值,有机碳浓度呈现出涨潮初期逐渐上升,落潮中后期出现震荡的趋势。
     3.盐沼地区有机碳总通量值变化范围在1676 g/m~15114 g/m之间,有机碳净通量多为正值,该测点的有机碳通量呈现稳定向岸输移积累。光滩地区(测点BF)有机碳总通量值变化范围在1787 g/m~50391 g/m之间,有机碳向岸和离岸输移交替变化频繁,但光滩测点有机碳总体以累积为主。两测点的有机碳输移率fPOCx的过程线形状均如同正弦曲线,均表现为涨潮初期向岸输移、涨落潮后期离岸输移的变化规律,且向岸有机碳输移率均明显大于离岸的。
     4.平静天气条件下潮汐作用的大小控制着盐沼和光滩有机碳输移水平和输移量。平静天气条件下最大水深(hmax)与各断面有机碳总通量(FPOCx)之间有显著正相关的幂函数关系,各潮次有机碳总通量与最大水深的三次方呈显著正相关,相关系数为0.94。所测潮次最大水深与潮次平均流速之间有显著线性正相关,相关系数为0.74。实测潮次的有机碳浓度与最大水深之间也存在显著线性正相关,相关系数为0.61。
     5.通过机制分解法得出盐沼测点所实测的三个潮次中,平流输移对有机碳输移的贡献率在45﹪~81﹪之间;潮泵输移作用对有机碳输移的贡献率在18﹪~54﹪之间。光滩测点所实测的四个潮次中,平流输移对有机碳输移的贡献率在22﹪~61﹪之间;潮泵输移作用对有机碳输移的贡献率在38﹪~77﹪之间。平流输移(T1 + T2)和潮泵输移(T3 + T4 + T5)是对长江口有机碳输移影响最大的动力因素。
Carbon cycle in marsh areas is playing an important role in global carbon cycle. The tidal flat of Yangtze Estuary is facing the open sea, and is influenced by profound special hydrodynamic factors such as tidal effect, wave effect and rapid silting, which make organic carbon concentration, flux and other characteristics different from those in other estuarine marsh areas of the world. Therefore, the study of dynamic transport and flux of organic carbon in salt marsh areas is the key role in ecosystem of salt marsh areas, which is also a neglecting part of global carbon cycle research in coastal zone. The correct understanding of organic carbon concentration changes and flux changes under special dynamic forces like tides and waves in salt marsh areas is meaningful in unveiling the vital significance of costal carbon cycle in global carbon cycle.
     This article took the upsurge beach salt marsh marginal zone of Chongming Dongtan along Yangtze River as the main study area. The main purposes of this article were to study the short-term organic carbon dynamic transport and flux changes in salt marsh areas, to reveal the changes of short-term organic carbon concentration, to calculate organic carbon flux in every single tidal cycle and to analysis the impact factors to the short-term organic carbon, thus, unveiling the organic carbon flux changes in tidal flats. The main conclusions could be listed as follows.
     1. The average value of organic carbon concentration in salt marsh area was 18.2 mg g -1, and the average value of organic carbon concentration in bald field was 10.8 mg g -1. The average organic carbon concentration value in salt marsh area during neap and spring tidal cycles was 1.7 times as that of bald field. The average organic carbon concentration value in summer was 1.5 times than that in spring in salt marsh area. The sediment organic carbon concentration in spring showed a steady trend with an average value of 1.6 mg g -1. The sediment organic carbon concentration value in internal salt marsh was higher than that of marsh edge, which was higher than that of bald field.
     2. The basic rule of tidal-cycle sediment organic carbon concentration changes in suspended sediments in spring and summer seasons could be roughly divided into two types. Peak value occurred during young flood and latter half ebb flood respectively with fairly large changes in organic carbon concentration during the whole tide. Only one peak value occurred in the latter half ebb flood during the whole tide. In this type, organic carbon concentration showed a gradual increase in the young flood and concussion of increasing and decreasing in latter half ebb flood.
     3. The range of total organic carbon flux values in salt marsh area were between 1676 g/m and 15114 g/m. Most net carbon flux values in salt marsh area were positive, indicating organic carbon flux in salt marsh area was in a stable state of onshore accumulation. The range of total organic carbon flux values in bald field were between 1787 g/m and 50391 g/m. Frequent onshore and offshore alternating changes were obvious in bald field, but organic carbon flux in bald field was accumulating onshore overall. The process line of organic carbon transportation rate ( fPOCx) in these two measuring points were both shaped sine curves, which presented onshore transportation in high tides and offshore transportation in ebb tides. Onshore transport was dominant.
     4. Under calm weather conditions, tidal effects mainly controlled the organic carbon transport capacity and quantity in both bald field and salt marsh measuring points. Under calm weather conditions, there was significant positive correlation of power function between the maximum water depth (hmax) and total organic carbon flux (FPOCx) in each cross-section, with coefficient of 0.94. There was remarkable linear positive correlation between the maximum water depth and the mean water velocity, and between particle organic carbon concentration and the maximum water depth, with coefficient of 0.74 and 0.61 respectively.
     5. By means of mechanism analyses method, during the three tides experimented in salt marsh area, the contribution rate of advective sediment flux was between 45﹪and 81﹪.The contribution rate of tidal pumping effect was between 18﹪and 54﹪. During the four tides experimented in bald field, the contribution rate of advective sediment flux was between 22﹪and 61﹪.The contribution rate of tidal pumping effect was between 38﹪and 77﹪.Advective sediment flux and tidal pumping effect were the most important items to the total organic carbon discharge.
引文
[1] Andersen T J,Pejeup M. Suspended sediment transport on a temperate microtidal mudflat the Danish Wadden Sea [J]. Marine Geology,2001,173(1-4):69-85.
    [2] Andrews J E,Greenaway A M and Dennis P F. Combined carbon isotope and C/N ratios as indicators of source and fate of organic matter in a poorly flushed, tropical estuary Hunts Bay, Kingston Harbour, Jamaica. Estuarine Coastal and Shelf Science [J]. 1998,46:743-756.
    [3] Bennett A,Bianchi T S,Means JC. The effects of PAH contamination and grazing on the abundance and composition of microphytobenthos in alt marsh sediments (Pass Fourchon, LA, U.S.A.): II: The use of plant pigments as biomarkers. Estuarine Costal and Shelf Science [J]. 2000,50:425-439.
    [4] Berhane I,et al. The variability of suspended aggregates on the Amazon Continental Shelf. Continental Shelf Research [J].1997,17(3):267-285.
    [5] Botch M S,Kobak K I,Vinson T S,Kolchugina T P. Carbon pools and accumulation in peatlands of the former Soviet Union. Global Biogeochemical Cycles [J]. 1995,9:37-46.
    [6] Chalmers A G,Weigert RG,Wolf PL. Carbon balance in a salt marsh: Interactions of diffusive export, tidal deposition and rainfall-caused erosion. Estuarine Coastal and Shelf Science [J]. 1985,21:757-771.
    [7] Chrzanowski T H,Stevenson L H,Spurrier JD. Transport of particulate organie carbon through the North Inlet ecosystem. Marine Ecology Progress Series [J]. 1982,7:231-245.
    [8] Cifuentes L A,Coffins R B,Slolrzano L,et al. Isotopic and elemental variations of carbon and nitrogen in a mangrove Estuary. Estuarine Coastal and Shelf Science [J]. 1996,43, 781-800.
    [9] Dyer K R. Fine Sediment Particle Transport in Estuaries. Physical Processes in Estuaries [C]. New York. Dronkers J,Leussen W van,1988:295– 310.
    [10] Edmond J M,Spivack Grant,et al. Chemical dynamics of the Changjiang Estuary. Continental Shelf Research [J].1985,4:17-36.
    [11] Eisma D. Flocculation and de-flocculation of suspended matter in estuaries.Neth. J. Sea. Res [J]. 1986,(20):183-199.
    [12] Eisma D. Suspended-matter particle size in some West-European estuaries. Part I: Particlesize distribution. Netherlands Institute for Sea Research. [J]. 1991,28(3):193-214.
    [13] Fischer H B. Mixing and Dispersion in Estuaries. Annual Review of Fluid Mechanics [J].1976,8:107-133.
    [14] Fontugne M R,Jouanneau,J M. Modulation of the particulate organic carbon flux to the ocean by a macrotidal estuary– evidence from measurements of carbon isotopes in organic matter from the Gironde system. Estuarine Coastal and Shelf Science [J]. 1987,24:377-387.
    [15] Gonneea M E,Paytan A, Herrera-Silveira J A. Tracing organic matter sources and carbon burial in mangrove sediments over the past 160 years. Estuarine Coastal and Shelf Science [J]. 2004,61:211-227.
    [16] Happ G,Gosselink J G,Day J R. The seasonal distribution of organic carbon in a Louisiana estuary. Estuarine Coastal and Shelf Science [J]. 1977, 5: 695-705.
    [17] Heinlie D R,Flemer D A. Flows of materials between poorly flooded tidal marshes and an estuary. Marine Biology[J]. 1976,35:359-373.
    [18] Hemminga M A,Klap V A,Soelen J V,Boon J J. Effect of salt marsh inundation on estuarine particulate organic matter characteristics. Marine Ecology Progress Series [J]. 1993,99:153-161.
    [19] Hemminga M A,Cattrijsse A,Wielemaker A. Bedload and nearbed detrituss transport in a tidal salt marsh creek. Estuarine, Coastal and Shelf Science[J]. 1996,42:55-62.
    [20] Hope D,Billet M F,Cresser M S.A review of the export of carbon in river water: fluxes and processes. Environmental Pollution [J]. 1994,84:301-324.
    [21] JafféR,Mead R,Hernandez M E,et al. Origin and transport of sedimentary organic matter in two subtropical estuaries: a comparative, biomarker-based study. Organic Geochemistry [J]. 2001,32:507-526.
    [22] Jahnke R A. The global ocean of flux of particulate organic carbon: a real distribution and magnitude. Global Biogeochemical Cycles[J]. 1996,10:71-88.
    [23] Kranenburg C. Effects of floc strength on viscosity and deposition of cohesive suspensions. Continental Shelf Research [J]. 1999,19:1665-1680.
    [24] Kranenburg C. The fractal structures of cohesive sediment aggregates. Estuarine Continental Shelf Research [J]. 1994,39:451-460.
    [25] Ludwig W,Probst J,Kempe S. Predicting the oceanic inpit of organic carbon by continental erosion. Global Biogechemical Cycles [J].1996,10(1):23-41.
    [26] Meziane T,Bodinean L,Retiere C,Thouomelin G. The use of lipid markers o define sources of organic matter in sediment and food web of the intertidal salt-marsh-flat ecosystem of Mont-Saint-Michel Bay, France. Journal of Sea Research. [J]. 1997,38:47-58.
    [27] Middelburg J J and Herman P M J. Organic matter processing in tidal estuaries. Marine Chemistry [J]. 2007,106:127-147.
    [28] Milligan T G et al. A laboratory assessment of the relative importance of turbulence, particle composition, and concentration in limiting maximum floc size and settling behaviour. J. Sea. Res [J]. 1998,39:227-241.
    [29] Millima J D,Q C Xie and Z Yang. Transfer of particulate organic carbon and nitrogen from the Yangtze River to the Ocean. American Journal of Science [J]. 1984,284:824-834.
    [30] Odum E P,De La Cruz A. A. Particulate organic detritus in a Georgia salt marsh-estuarine ecosystem in Estuaries[C]. Washington. Edited by G.H. Lauff. 1967. 383-388.
    [31] Roman C T,Daiber F C F. Aboveground and underground primary production dynamics of two Delware Bay tidal marshes. Bulletin of the Torrey Botanical Club [J]. 1984,111:34-41.
    [32] Roman C T,Daiber F C. Organic carbon flux through a Delaware Bay salt marsh: tidal exchange, particle size distribution, and storms. Marine Ecology Progress Series [J]. 1989,54:149-156.
    [33] Smith C J,Delaune R D,Patrick W H. Carbon dioxide emission and carbon accumulation in coastal wetlands. Estuarine Coastal and Shelf Science [J]. 1983,17:21-30.
    [34] Sugai S F and Henrichs S M. Rates of amino acid uptake and minaralization in Resurreaction Bay (Alaska) sediments. Marine Ecology Progress Series [J]. 1992,88:129-141.
    [35] Tam N F,Guo Y,Yau C L,Wong W Y. Preliminary study on biodegradation of phenanthrene by bacteria isolated from mangrove sediments in Hong Kong. Marine Pollution Bulletin [J]. 2002,45:316-324.
    [36] Tan F C,Cai D L and Edmond J M.Carbon isotope geochemistry of the Changjiang Estuary. Estuarine Coastal and Shelf Science [J]. 1991,32:395-403.
    [37] Thornton S.F and McManus J. Application of organic carbon and nitrogen stable isotopes and C/N ratios as source indicators of organic matter provenance in estuarine system:Evidence from the Tay Estuary, Scotland. Estuarine Coastal and Shelf Science[J]. 1994,38:219-233.
    [38] Volkman J K.A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry [J]. 1986,9:83-99.
    [39] Volkman J K,Barrette S M,Blackburn S I ,et al. Microalgal biomarkers: a review of recent research developments. Organic Geochemistry [J]. 1998,29:1163-1179.
    [40] Wang X C,Chen R F,Berry A. Sources and preservation of organic matter in Plum Island salt marsh sediments (MA, USA): long-chain n-alkanes and stable carbon isotope compositions. Estuarine Coastal and Shelf Science [J]. 2003,58:917-928.
    [41] Wang X.C and Lee C. Adsorption and desorption of aliphatic amines, amino acids and acetate by clay minerals and marine sediments. Marine Chemistry [J]. 1993,44(1-2):1-3.
    [42] Wolaver T G,Spurrier J D. Carbon transport between a euhaline vegetated marsh in South Carolina and the adjacent tidal creek: contributions via tidal inundation, runoff and seepage. Marine Ecology Progress Series [J].1989,42:52-63.
    [43] Wu Y,Dittmar T,Ludwichowski K-U,et al. Tracing suspended organic nitrogen from the Yangtze River catchments into the East China Sea. Marine Chemistry [J].2007 ,doi:10.1016/j.marchem.2007.01.022.
    [44] Yamamuro M. Chemical tracers of sediment organic matter origins in two coastal lagoons. Journal of Marine Systems [J]. 2000,26:127-134.
    [45] Zhang J,Wu Y,Jennerjahn T C,et al. Distribution of organic matter in the Changjiang (Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics. Marine Chemistry[J].2007 , doi: 10.1016/j.marchem. 2007.02.003.
    [46]蔡德陵,Tan F C,Edmond J M.长江口区有机碳同位素地球化学.地球化学[J]. 1992,3:305-312.
    [47]陈洪松,邵明安.有机质、CaCl2和MgCl2对细颗粒泥沙絮凝沉降的影响.中国环境科学[J].2001,21(5):395-398.
    [48]陈吉余.长江河口的自然适应和人工控制.华东师范大学学报(长江河口最大浑浊带和河口锋研究论文选集[J].1995,1-14.
    [49]陈吉余,杨启伦,赵传絪.上海市滨岸带和海涂资源综合调查[R].上海.上海科学技术出版社,1988. 390.
    [50]陈沈良,张国安,杨世伦等.长江口水域悬沙浓度时空变化与泥沙再悬浮.地理学报[J]. 2004,59(2):260-266.
    [51]段毅.甘南沼泽泥炭中五环三萜酮系列化合物的检出.科学通报[J].2001,46 (11):960-962.
    [52]段毅.甘南沼泽沉积脂类生物标志化合物的组成特征.地球化学[J].2002,31(6):525-531.
    [53]段毅,文启斌,罗斌杰.沼泽沉积物中单体正构烷烃碳同位素研究.科学通报[J].1995,40(19):1791-1794.
    [54]高建华,杨桂山,欧维新.苏北潮滩湿地不同生态带有机质来源辨析与定量估算.环境科学[J].2005,26(6):51-56.
    [55]侯立军.长江口滨岸潮滩营业盐环境地球化学过程及生态效应[D].华东师范大学,2004.
    [56]黄长红,关许为.长江口泥沙絮凝问题研究综述.水利科技[J]. 2001,(4):4-5.
    [57]林晶.长江口及其毗邻海区溶解有机碳和颗粒有机碳的分布[D].华东师范大学,2007.
    [58]林庆华,洪业汤,朱咏煊等.中国典型泥炭区现代植物的碳、氧同位素组成及在古环境研究中的意义.矿物岩石地球化学通报[J].2001,20(2):93-97.
    [59]林以安,唐仁友,李炎等.长江口生源元素的生物地球化学特征与絮凝沉降的关系.海洋学报[J].1995,(5):15-21.
    [60]林以安,唐仁友,李炎.长江口区C、N、P的生物地球化学变化对悬浮体絮凝沉降的影响.中国主要河口的生物地球化学研究[C].北京.海洋出版社,1996.133-145.
    [61]刘敏,侯立军,许世远等.长江口潮滩有机质来源的C、N稳定同位素示踪.地理学报[J]. 2004,59(6):918-926.
    [62]刘敏,许世远,侯立军.长江口潮滩沉积物-水界面营养盐环境生物地球化学过程.北京.科学出版社,2007. 30-40.
    [63]刘新成,沈焕庭,黄清辉.长江入河口区生源要素的浓度变化及通量估算.海洋与湖沼[J].2002,33(5):332-340.
    [64]沈志良,陆家平,刘兴俊,刁焕祥.长江口营养盐的分布特征及三峡工程对其的影响.海洋科学集刊[J].33:109-129.
    [65]施光春.长江口悬浮颗粒物有机碳的稳定同位素.海洋通报[J]. 1993,12(1):49-52.
    [66]时钟,陈伟民.长江口北槽最大混浊带泥沙过程.泥沙研究[J].2000(2):28-39.
    [67]宋金明.海洋沉积物中的生物种群在生源物质循环中的功能.海洋科学[J].2000a,24(4):22-26.
    [68]汤奇成.中国河流水文[M].北京.科学出版社,1998.20-25.
    [69]仝川,曾从盛.湿地生态系统碳循环过程及碳动态模型.亚热带资源与环境学报[J].2006,9.
    [70]万新宁,李九发,沈焕庭.长江口外海滨典型断面悬沙通量计算.泥沙研究[J]. 2004,(6):64-70.
    [71]王东启.长江口及其滨岸沉积物-水界面N的交换通量与影响机质研究[D].华东师范大学,2002.
    [72]王康墡,苏纪兰.长江口南港环流及悬移物质输运的计算分析.海洋学报[J].1987,9(5):627-637.
    [73]闫芊,陆健健,何文珊.崇明东滩湿地高等植物演替特征.应用生态学报[J]. 2007,18(5):1098-1101.
    [74]杨世伦,姚炎明,贺松林.长江口冲积岛岸滩剖面形态和冲淤规律.海洋与湖沼[J].1999,30(6):764-769.
    [75]余婕.河口潮滩湿地有机质来源、组成与食物链传递研究[D].华东师范大学,2008.
    [76]张龙军,宫萍,张向上.河口有机碳研究综述.中国海洋大学学报[J].2005,(35):737-734.
    [77]张志忠,王允菊,徐志刚.长江口细颗粒泥沙絮凝若干特性探讨.第二届河流泥沙国家学术讨论会论文集[C].北京.水利电力出版社,1983. 274-285.
    [78]赵保仁.长江口外的上升流现象.海洋学报[J].1993,15(2):108-114.
    [80]周俊丽.长江口湿地生态系统中有机质的生物地球化学过程——以崇明东滩为例[D].华东师范大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700