高活性水分散纳米二氧化钛制备、表征及光催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米TiO2光催化氧化技术可在常温常压下通过氧化还原反应将有机难降解污染物彻底氧化成H2O, CO2和无机盐类。相比于目前常用的生物法和物化法等降解技术,光催化氧化技术因其所用纳米TiO2具有氧化性强、耐酸碱性好、化学性质稳定、对生物无毒、来源丰富等优点在处理难降解有机物方面受到广泛重视。然而,由于纳米TiO2颗粒细微,在光催化过程中易失活、分散不均匀、易团聚、难以分离回收;以及锐钛矿型TiO2是宽禁带半导体,仅能响应短波长的紫外光,以太阳光做光源时,在室外只能吸收太阳光中不到5%的紫外光部分,能源利用效率低,光催化的过程以人工紫外光为主,技术适应性差、成本高,在工业应用过程中受到很大限制。因此,提高纳米TiO2的光催化活性、增强其在水溶液中的分散性和稳定性、解决纳米颗粒分离回收的问题并实现纳米TiO2的高可见光催化活性是Ti02光催化氧化技术工业化应用过程中最具挑战性的课题。本课题以高活性、高水分散纳米TiO2光催化剂的设计、制备及结构与性能研究为基础,以降解氮杂环化合物喹啉的反应为应用平台,研究了纳米TiO2光催化剂的物化特性与其相应的光催化特性、喹啉光催化降解的途径和方式。主要结果和结论如下:
     (1)表面Zeta电位-40mV,粒径为9.8±0.6nm的高水分散锐钛矿型纳米Ti02的低温制备。以静电位阻理论为指导,在促进钛醇盐水解的思路引导下,不添加表面活性剂在低温(80℃)制备得到水分散良好的锐钛矿型纳米Ti02;采用透射电镜(Transmission Electron Microscope, TEM), X-射线衍射仪(X-ray diffractometer, XRD),X-射线光电子能谱(X-ray photoelectron spectroscopy, XPS),傅里叶红外(Fourier Transform Infrared Microscope, FTIR)和动态光散射(Dynamic Light Scattering, DLS)等表征手段对其形貌、结构、表面特性及稳定性进行分析,得知该纳米TiO2的高水分散性源于其表面形成的双电层;通过对不同制备方法得到的纳米TiO2结构及其水分散性的比较,发现不同制备方法得到的纳米TiO2因其表面特性的差异最终导致水分散性的不同,进一步验证了不添加表面活性剂低温合成水分散纳米TiO2颗粒的优越性。
     (2)粒径5-30nm水分散超顺磁性纳米Fe304颗粒的可控制备。采用高温热解羧酸盐结合相转移的方法及一步反向沉淀法成功制备了一系列水分散性好、形貌粒径可控、表面官能团可调、化学性质和晶型稳定的纳米Fe3O4颗粒。其中一步反向沉淀法因其所用原料便宜易得、无污染,提供了一种环境友好型制备水分散性纳米Fe3O4颗粒的方法。所制备的纳米Fe3O4颗粒不仅在催化剂分离回收方面有重要作用,而且由于对纳米Fe3O4颗粒表面官能团进行了可控合成,对其在核酸分析、临床诊断、靶向药物、酶固定化等方面的应用也具有极大的推动作用。
     (3)可磁分离回收磁载纳米Ti02光催化剂的低温制备。基于一步反向沉淀法制备得到的纳米Fe304颗粒,结合制备水分散纯纳米Ti02的方法,以静电位阻理论为指导,在低温下制备得到可磁分离回收的磁载纳米Ti02光催化剂。该法避免了传统制备过程中·热处理带来的颗粒长大、比表面积下降及团聚问题。制备过程中通过调节Fe3O4/TiO2摩尔比可实现对产物形貌、晶型、表面特性及磁性能的调控。
     (4)可见光响应TiO2/氧化石墨烯复合光催化剂的低温制备。采用改进的Hummers了法结合超声波辅助制备得到氧化石墨烯,结合不添加表面活性剂制备水分散纯纳米TiO2颗粒的方法,在低温下制备了TiO2/氧化石墨烯复合光催化剂。氧化石墨烯的添加对TiO2的可见光化有很大影响。随着氧化石墨烯含量的增加,TiO2/氧化石墨烯复合光催化剂的吸收边带发生明显红移,拓展了其可见光响应范围。TiO2/氧化石墨烯复合光催化剂中Ti以Ti4+形式存在,且TiO2/氧化石墨烯复合物中氧化石墨烯和TiO2之间没有形成Ti-C键。
     (5)不同纳米TiO2光催化剂光催化活性评价。以TiO2光催化降解氮杂环化合物喹啉的反应为应用平台,研究了所制备水分散纯纳米TiO2光催化剂、磁载TiO2光催化剂和可见光响应TiO2光催化剂的光催化活性与结构之间的关系。在水分散纯纳米TiO2光催化剂体系中发现:制备方法的不同会导致催化剂物化性质的差异,进而影响纳米TiO2光催化剂的活性;实验发现在紫外光照射下,TiO2以·O2为主要活性自由基物种光催化降解喹啉,而非通常认为的“有机物降解一般以·OH为主要自由基”。在磁载纳米TiO2光催化剂体系中发现:Fe3O4与TiO2相对含量(即催化剂的组成)对磁载TiO2光催化剂的光催化活性有较大影响,通过调节Fe3O4与TiO2相对含量可实现对其光催化活性的调控。在可见光响应TiO2光催化剂体系中发现:氧化石墨烯的添加对纳米TiO2的可见光响应活性具有重要影响,光催化反应过程中氧化石墨烯可作为电子受体,抑制光生电子-空穴的复合,而且其大的比表面积有利于喹啉在催化剂表面的吸附,从而使得TiO2/氧化石墨烯复合光催化剂的可见光催化活性及稳定性较高。
Photocatalytic oxidation can be carried out under ambient conditions using atmospheric oxygen as the oxidant and leads to complete mineralization of pollutants to CO2, water and mineral acids. It is a promising alternative to biological and physical methods because the used nanocrystalline titanium dioxide (TiO2) in photocatalytic oxidation not only possesses high chemical and biological inertness, non-toxicity and relative low cost, but also has other distinctive properties of nanoparticles such as quantum effect and superior catalytic performances, etc. However, TiO2nanoparticles are prone to lose activity and aggregate in photocatalytic process due to its small size, and the difficulty in separating TiO2nanoparticles from the treated water is also ascribed to the fine TiO2nanoparticles. Moreover, anatase TiO2absorbs only around5%ultraviolet part of solar light because of its wide band gap, and artificial light sources are expensive and unstable. All of them are the main barriers to marketing TiO2photocatalytic oxidation.
     This dissertation focuses on the synthesis, characterization and photocatalytic application of highly water-dispersible TiO2nanoparticles. On one hand, in order to overcome the barriers in TiO2practical application, many efforts were made to exploit new synthetic strategies to obtain TiO2nanoparticles with desirable property. On the other hand, in order to achieve industrial photocatalytic application of TiO2nanoparticles, valuable investigations have been conducted on the relationship among preparation approach, crystal structure, size and photocatalytic performance. The photocatalytic performance of the as-synthesized TiO2nanoparticles were evaluated for the degradation of quinoline as a model pollutant. The photodegradation mechanism of quinoline was also studied. The main findings are as follows:
     (1) Low-temperature synthesis of water-dispersible anatase TiO2with zeta potential-40mV and average size of9.8±0.6nm. According to the classical theory of Derjaguin, Landau, Verwey and Overbeek (DLVO), water-dispersible anatase TiO2nanoparticles were synthesized at a low temperature (80℃) without any organic surfactants via the mechanism of electrostatic repulsion between nanoparticles. TEM (Transmission Electron Microscope), XRD (X-ray diffractometer), XPS (X-ray photoelectron spectroscopy), FTIR (Fourier Transform Infrared Microscope) and DLS (Dynamic Light Scattering) were used to characterize its morphology, crystallographic structure, surface property and stability etc. By comparing the structure and water-dispersibility of TiO2nanoparticles synthesized by different approaches, it is found that preparation approach would lead to variation in the surface property of TiO2nanoparticles, which finally resulted in the different water-dispersibility of TiO2nanoparticles. This result further proves the advantage of low temperature synthesis of anatase TiO2nanoparticles without any organic surfactants.
     (2) Controllable synthesis of water-dispersible magnetite nanoparticles with size range from5to30nm. Ligand-exchange approaches and one-step reverse precipitation method were developed to synthesize monodisperse, water-dispersible and carboxylate/amino-functionalized superparamagnetic magnetite nanoparticles. Hereinto, one-step reverse precipitation method uses commercial available, inexpensive, and environmentally acceptable raw reaction materials (water is the solvent), obviously, it provides an economic and green approach for the controlled synthesis of magnetite nanoparticles. The as-synthesized magnetite nanoparticles not only play a vital role in catalyst recycle, but also accelerate its biomedical applications, such as magnetic resonance imaging, drug delivery and bioseparation because of their tunable surface functional group.
     (3) Low temperature synthesis of magnetically separable Fe3O4/TiO2composite photocatalysts. Based on the coulomb electrostatic forces between Fe3O4and TiO2, magnetically separable Fe3O4/TiO2composite photocatalysts with different molar ratios of Fe3O4to TiO2were synthesized via a modified sol-gel method at low temperature of80℃. This approach avoids the high temperature calcination involved in traditional methods, which usually results in the grain growth and aggregation of the resultant products and therefore the loss of surface area. The morphology, crystal structure, surface property and magnetic performance of the as-synthesized magnetically separable Fe3O4/TiO2composite photocatalysts could be controlled by changing the molar ratios of Fe3O4to TiO2.
     (4) Low temperature synthesis of visible light responsed TiO2photocatalyst. Graphene oxide (GO) was synthesized via improved Hummers method with the help of ultrasonic treatment. TiO2/GO composite photocatalyst were synthesized based on the synthetic procedure of water-dispersible TiO2nanoparticles without any organic surfactants. GO greatly contributes to its visible-light response. With the increase of GO quantity, the absorption band of TiO2/GO composite presents obvious red shift, correspondingly, the band gap become narrower, and finally the absorption range of visible-light was extended. In TiO2/GO composite photocatalyst, Ti was existed in the form of Ti4+, and there is no formation of Ti-C bond.
     (5) The photocatalytic application of the as-synthesized TiO2nanoparticles were investigated for the degradation of quinoline as a model pollutant. For the pure water-dispersible TiO2nanoparticles, it is found that different preparation approach could lead to the change in the physical and chemical properties of TiO2nanoparticles, and finally influence the photocatalytic activity of nanoparticles. In this work, we found that the superoxide radical (·O2) played an important role in the photodegradation of quinoline, which is greatly different from most of other publication. For magnetically separable Fe3O4/TiO2composite photocatalysts, it is found that the relative quantity of Fe3O4to TiO2can greatly affect the photocatalytic activity. The Fe3O4/TiO2composites could be easily recovered from the reaction solution by using a permanent magnetic bar and their photocatalytic activity changed little after repetitive uses. For TiO2/GO composite photocatalyst, GO greatly contributes to its visible-light response. GO can be acted as electron-acceptor and inhibit the recombination between photogenerated electron-hole. Its large specific surface area is beneficial to the adsorption of quinoline on the catalyst surface. These factors endow the TiO2/GO composite photocatalyst high and stable photocatalytic activity.
引文
[1]Carp O., Huisman C. L., Reller A. Photoinduced reactivity of titanium dioxide [J]. Progress in Solid State Chemistry,2004,32(1-2):33-177.
    [2]Chen X. B., Mao S. S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications [J]. Chemical Reviews.2007.107(7):2891-2959.
    [3]Gay a U. I., Abdullah A. H. Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide:A review of fundamentals, progress and problems [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2008, 9(1):1-12.
    [4]Panagiotopoulou P., Kondarides D. I. Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts [J]. Journal of Catalysis,2008,260(1):141-149.
    [5]何明.用于液相光催化体系的高比表面积氧化钛晶须的研制[D].南京:南京工业大学,2005.
    [6]Elmolla E. S., Chaudhuri M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis [J]. Desalination,2010,252(1-3):46-52.
    [7]Eng Y. Y., Sharma V. K., Ray A. K. Photocatalytic degradation of nonionic surfactant, brij 35 in aqueous TiO2 suspensions [J]. Chemosphere,2010,79(2):205-209.
    [8]Rengifo-Herrera J. A., Pulgarin C. Photocatalytic activity of N, S co-doped and N-doped commercial anatase TiO2 powders towards phenol oxidation and ecoli inactivation under simulated solar light irradiation [J]. Solar Energy 2010,84(1): 37-43.
    [9]Zhao B. X., Mele G., Pio I., et al. Degradation of 4-nitrophenol (4-NP) using Fe-TiO2 as a heterogeneous photo-fenton catalyst [J]. Journal of Hazardous Materials,2010, 176(1-3):569-574.
    [10]Jiang J., Long M., Wu D., et al. Alkoxyl-derived visible light activity of TiO2 synthesized at low temperature [J]. Journal of Molecular Catalysis A:Chemical,2011, 335(1-2):97-104.
    [11]Tariq M. A., Faisal M., Muneer M., et al. Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide [J]. Journal of Molecular Catalysis A:Chemical,2007.2665(1-2): 231-236.
    [12]杨祝红.二氧化钛晶须的制备及光催化处理废水研究[D].南京:南京工业大学2003.
    [13]Hoskins J. A. Health effects due to indoor air pollution [J]. Survival and Sustainability, 2011,5:665-676.
    [14]Cooke T. F. Indoor air pollutants:A literature review [J]. Reviews on Environmental Health,2011,9(3):137-160.
    [15]Wang Y., Zuo J. L., Jiang A. X., et al. Preliminary research on the detection and control technology of indoor air pollution [J]. Advanced Materials Research,2011, 183-185:1238-1241.
    [16]Su S., Li B., Cui S., et al. Sulfur dioxide emissions from combustion in china:From 1990 to 2007 [J]. Environmental Science and Technology,2011,45(19):8403-8410.
    [17]Fan W., Sun Y., Zhu T., et al. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in china in 2010 [J]. Atmospheric Environment,2012,56:52-57.
    [18]Srisitthiratkul C, Pongsorrarith V., Intasanta N. The potential use of nano silver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties [J]. Applied Surface Science,2011.257(21): 8850-8856.
    [19]Fu G, Vary P. S., Lin C.-T. Anatase TiO2 nanocomposites for antimicrobial coatings [J]. The Journal of Physical Chemistry B,2005,109(18):8889-8898.
    [20]Chung C.-J., Lin H.-I., Tsou H.-K., et al. An antimicrobial TiO2 coating for reducing hospital-acquired infection [J]. Journal of Biomedical Materials Research,2008, 85B(1):220-224.
    [21]Fateh R., Ismail A. A.. Dillert R., et al. Highly active crystalline mesoporous TiO2 films coated onto polycarbonate substrates for self-cleaning applications [J]. The Journal of Physical Chemistry C,2011,115(21):10405-10411.
    [22]Nakata K., Sakai M., Ochiai T., et al. Antireflection and self-cleaning properties of a moth-eye-like surface coated with TiO2 particles [J]. Langmuir,2011,27(7): 3275-3278.
    [23]Montazer M., Seifollahzadeh S. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment [J]. Photochemistry and Photobiology,2011.87(4):877-883.
    [24]Yu J., Qi L., Jaroniec M. Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets [J]. The Journal of Physical Chemistry C.2010,114(30):13118-13125.
    [25]Cho I. S., Chen Z., Forman A. J., et al. Branched TiO2 nanorods for photoelectrochemical hydrogen production [J]. Nano Letters,2011,11(11): 4978-4984.
    [26]Corazzari I., Livraghi S., Ferrero S., et al. Inactivation of TiO2 nano-powders for the preparation of photo-stable sunscreens via carbon-based surface modification [J]. Journal of Materials Chemistry,2012,22(36):19105-19112.
    [27]刘于民.二氧化钛表面功能化及应用研究[D].江苏:江苏大学,2011.
    [28]王兴雪.二氧化钛光催化性能研究及纳米复合材料的制备[D].上海:复旦大学,2008.
    [29]沈晓军.二氧化钛纳米材料的晶型与形貌调控及光催化活性研究[D].上海:华东理工大学,2012.
    [30]Etgar L., Zhang W., Gabriel S., et al. High efficiency quantum dot heterojunction solar cell using anatase (001) TiO2 nanosheets [J]. Advanced Materials,2012,24(16): 2202-2206.
    [31]Ali I., Gupta V. K. Advances in water treatment by adsorption technology [J]. Nature Protocols,2007,1(6):2661-2667.
    [32]Ferrarisa M., Innella C., Spagni A. Start-up of a pilot-scale membrane bioreactor to treat municipal wastewater [J]. Desalination,2009,237(1-3):190-200.
    [33]Humbert H., Gallard H., Suty H., et al. Natural organic matter (NOM) and pesticides removal using a combination of ion exchange resin and powdered activated carbon (PAC) [J]. Water Research,2008,42(6-7):1635-1643.
    [34]Cheng H., Sabatini D. A. Separation of organic compounds from surfactant solutions: A review [J]. Separation Science and Technology.2007.42(3):453-475.
    [35]Barakat M. A., Chen Y.T., Huang C. P. Removal of toxic cyanide and cu(Ⅱ) ions from water by illuminated TiO2 catalyst [J]. Applied Catalysis B:Environmental,2004, 53(1):13-20.
    [36]Browski B. D., Zaleska A., Janczarek M., et al. Photo-oxidation of dissolved cyanide using TiO2 catalyst [J]. Journal of Photochemistry and Photobiology A:Chemistry, 2002,151(1-3):201-205.
    [37]Fujishima A., Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature.1972,238(5):37-38.
    [38]向全军.二氧化钛基光催化材料的微结构调控与性能增强[D].武汉:武汉理工大学,2012.
    [39]童海霞.光解水用改性金红石型Ti02析氧催化剂的制备与光催化性能研究[D].长沙:中南大学,2008.
    [40]Khan S. U. M., Al-Shahry M., Jr. W. B. I. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science,2002,297(5590):2243-2245.
    [41]Maeda K., Domen K. Photocatalytic water splitting:Recent progress and future challenges [J]. The Journal of Physical Chemistry Letters,2010,1(18):2655-2661.
    [42]Kudo A., Miseki Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews,2009,38:253-278.
    [43]Chiou C. H., Wu C. Y., Juang R. S. Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process [J]. Chemical Engineering Journal,2008,139(2):322-329.
    [44]D'oliveira J. C., Sayyed G. A., Pichat P. Photodegradation of 2- and 3-chlorophenol in titanium dioxide aqueous suspensions [J]. Environmental Science and Technology, 1990,24(7):990-996.
    [45]Konstantinou I. K., Albanis T. A. Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light:Intermediates and degradation pathways [J]. Applied Catalysis B:Environmental.2003,42(4): 319-335.
    [46]Priya M. H., Madras G. Kinetics of photocatalytic degradation of phenols with multiple substituent groups [J]. Journal of Photochemistry and Photobiology A: Chemistry,2006,179(3):256-262.
    [47]Sleiman M., Conchon P., Ferronato C., et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv):Towards a better assessment of conversion, reaction intermediates and mineralization [J]. Applied Catalysis B:Environmental,2009, 86(3-4):159-165.
    [48]Turchi C. S., Ollis D. F. Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack [J]. Journal of Catalysis,1990,122(1): 178-192.
    [49]Yang J. J., Li D. X., Zhang Z. J., et al. A study of the photocatalytic oxidation of formaldehyde on Pt/Fe2O3/TiO2 [J]. Journal of Photochemistry and Photobiology A: Chemistry,2000,137(2-3):197-202.
    [50]Muneer M., Qamar M., Bahnemann D. Photoinduced electron transfer reaction of few selected organic systems in presence of titanium dioxide [J]. Journal of Molecular Catalysis A:Chemical,2005,234(1-2):151-157.
    [51]Mills A., Hunte S. L. An overview of semiconductor photocatalysis [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,108(1):1-35.
    [52]Pelizzetti E., Minero C. Mechanism of the photo-oxidative degradation of organic pollutants over TiO2 particles [J]. Electrochimica Acta,1993,38(1):47-55.
    [53]Stapleton D. R., Konstantinou I. K., Mantzavinos D., et al. On the kinetics and mechanisms of photolytic/TiO2-photocatalytic degradation of substituted pyridines in aqueous solutions [J]. Applied Catalysis B:Environmental,2010,95(1-2):100-109.
    [54]Carraway E. R., Hoffman A. J., Hoffmann M. R. Photocatalytic oxidation of organic acids on quantum-sized semiconductor colloids [J]. Environmental Science and Technology,1994,28(5):786-793.
    [55]Mao Y., Schoeneich C., Asmus K. D. Identification of organic acids and other intermediates in oxidative degradation of chlorinated ethanes on titania surfaces en route to mineralization:A combined photocatalytic and radiation chemical study [J]. The Journal of Physical Chemistry,1991,95(24):10080-10089.
    [56]Goldstein S., Czapski G., Rabani J. Oxidation of phenol by radiolytically generated OH and chemically generated SO4-:A distinction between OH transfer and hole oxidation in the photolysis of TiO2 colloid solution [J]. The Journal of Physical Chemistry,1994,98(26):6586-6591.
    [57]Assabane A., Ichou Y. A., Tahiri H., et al. Photocatalytic degradation of polycarboxylic benzoic acids in uv-irradiated aqueous suspensions of titania.:Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1,2,4-benzene tricarboxylic acid) [J]. Applied Catalysis B:Environmental,2000, 24(2):71-87.
    [58]Jaeger C. D., Bard A. J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems [J]. The Journal of Physical Chemistry,1979,82(24):3146-3152.
    [59]Bielski B. H. J., Arudi R. L., Sutherland M. W. A study of the reactivity of HO2/O2-with unsaturated fatty acids [J]. The Journal of Biological Chemistry,1983,258(8): 4759-4761.
    [60]Tanaka K., Murata S., Harada K. Oxygen evolution by the photo-oxidation of water [J]. Solar Energy,1985,34(4-5):303-308.
    [61]Jing J., Liu M., Colvin V. L., et al. Photocatalytic degradation of nitrogen-containing organic compounds over TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2011, 351:17-28.
    [62]Henderson M. A. A surface science perspective on TiO2 photocatalysis [J]. Surface Science Reports.2011.66(6-7):185-297.
    [63]Gupta S. M., Tripathi M. A review of TiO? nanoparticles [J]. Chinese Science Bulletin, 2011,56(16):1639-1657.
    [64]Macwan D. P., Dave P. N., Chaturvedi S. A review on nano-TiO2 sol-gel type syntheses and its applications [J]. Journal of Materials Science,2011,46(11): 3669-3686.
    [65]Jiang H., Cuan Q., Wen C., et al. Anatase TiO2 crystals with exposed high-index facets [J]. Angewandte Chemie International Edition,2011,50(16):3764-3768.
    [66]Pan X., Ma X. Study on the milling-induced transformation in TiO2 powder with different grain sizes [J]. Materials Letters,2004,58(3-4):513-515.
    [67]盖国胜.超微粉体技术[M].化学工业出版社:北京,2004.5.
    [68]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].化学工业出版社:北京,2002.
    [69]Burda C., Chen X. B., Narayanan R., et al. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews,2005,105(4):1025-1102.
    [70]Konstantinou I. K., Albanis T. A. TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution:Kinetic and mechanistic investigations:A review [J]. Applied Catalysis B:Environmental,2004,49(1):1-14.
    [71]Gogate P. R., Pandit A. B. A review of imperative technologies for wastewater treatment i:Oxidation technologies at ambient conditions [J]. Advances in Environmental Research,2004,8(3-4):501-551.
    [72]Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [73]李春燕,李憋强.Ti02的溶胶凝胶过程研究[J].硅酸盐学报,1996,24(3):338-341.
    [74]胡安正,唐超群.Sol-gel法制备纳米Ti02的原料配比和胶凝过程机理探研[J].功能材料,2002,33(4):394-397.
    [75]谷科成,胡相红,陈逸,等.Sol-gel法制备纳米TiO2凝胶过程的控制[J].后勤工程学院学报,2009,26(1):66-70.
    [76]赵力,蒋慧,姚红,等.纳米光催化剂TiO2制备过程中的影响因素分析[J].辽宁化工,2008.37(2):85-88.
    [77]Venkatachalam N., Palanichamy M., Murugesan V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2:Efficient photocatalytic degradation of 4-chlorophenol [J]. Journal of Molecular Catalysis A:Chemical,2007, 273(1-2):177-185.
    [78]董祥.纯钛水热法制备低维纳米结构TiO2及其光电化学性能研究[D].南京:南京航空航天大学,2009.
    [79]杨晓华.(001)晶面主导的锐钛型二氧化钛单晶的制备、稳定性和应用研究[D]. 上海:华东理工大学,2011.
    [80]Tian H., Ma J. F., Li K., et al. I lydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytie ability for degradation of methyl orange [J]. Ceramics International,2009,35(3):1289-1292.
    [81]Pavasupree S., Jitputti J., Ngamsinlapasathian S., et al. Hydrothermal synthesis, characterization, photocatalytie activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopowders [J]. Materials Research Bulletin,2008,43(1): 149-157.
    [82]张雄飞.纳米二氧化钛复合粉体的电化学合成[D].昆明:昆明理工大学,2003.
    [83]李雪冰.纳米二氧化钛及其复合物的制备和性质研究[D].合肥:中国科学技术大学,2007.
    [84]Shen X., Zhang J., Tian B. Microemulsion-mediated solvothermal synthesis and photocatalytie properties of crystalline titania with controllable phases of anatase and rutile [J]. Journal of Hazardous Materials,2011,192(2):651-657.
    [85]Watson S., Beydoun D., Scott J., et al. Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis [J]. Journal of Nanoparticle Research, 2004,6(2):193-207.
    [86]李红.二氧化钛纳米晶的溶胶法低温制备机理及掺杂研究[D].浙江:浙江大学,2009.
    [87]Li H., Zhao G., Chen Z., et al. Tio2-ag nanocomposites by low-temperature sol-gel processing [J]. Journal of the American Ceramic Society,2010,93(2):445-449.
    [88]王雅文.纳米TiO2的低温合成及光催化性能研究[D].武汉:华中师范大学.2011.
    [89]Liu A. R., Wang S. M., Zhao Y. R., et al. Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area [J]. Materials Chemistry and Physics,2006,99(1):131-134.
    [90]Horikoshi S., Hidaka H. Photodegradation mechanism of heterocyclic two-nitrogen containing compounds in aqueous TiO2 dispersions by computer simulation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2001,141(2-3):201-208.
    [91]Irie H., Watanabe Y., Hashimoto K. Nitrogen-concentration dependence on photocatalytic activity of tio2-xnx powders [J]. The Journal of Physical Chemistry B, 2003,107(23):5483-5486.
    [92]Mare M., Waldner G., Bauer R., et al. Degradation of nitrogen containing organic compounds by combined photocatalysis and ozonation [J]. Chemosphere,1999,38(9): 2013-2027.
    [93]Waki K., Wang L., Nohara K., et al. Photocatalyzed mineralization of nitrogen-containing compounds at TiO2/H2O interfaces [J]. Journal of Molecular Catalysis A:Chemical,1995,95(1):53-59.
    [94]Waki K., Zhao J., Horikoshi S., et al. Photooxidation mechanism of nitrogen-containing compounds at TiO2/H2O interfaces:An experimental and theoretical examination of hydrazine derivatives [J]. Chemosphere,2000,41(3): 337-343.
    [95]Khataee A. R., Kasiri M. B. Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide:Influence of the chemical structure of dyes [J]. Journal of Molecular Catalysis A:Chemical,2010,328(1-2):8-26.
    [96]Ou Y., Lin J.-D., Zou H.-M., et al. Effects of surface modification of TiO2 with ascorbic acid on photocatalytic decolorization of an azo dye reactions and mechanisms [J]. Journal of Molecular Catalysis A:Chemical,2005,241(1-2):59-64.
    [97]Augugliaro V., Kisch H., Loddo V., et al. Photocatalytic oxidation of aromatic alcohols to aldehydes in aqueous suspension of home prepared titanium dioxide:2. Intrinsic and surface features of catalysts [J]. Applied Catalysis A:General,2008,349(1-2): 189-197.
    [98]Gassim F. a. Z. G., Alkhateeb A. N., Hussein F. H. Photocatalytic oxidation of benzyl alcohol using pure and sensitized anatase [J]. Desalination,2007,209(1-3):342-349.
    [99]Hurum D. C., Agrios A. G., Gray K. A. Explaining the enhanced photocatalytic activity of degussa P25 mixed-phase TiO2 using EPR [J]. Journal of Physical Chemistry B,2003,107(19):4545-4549.
    [100]Hurum D. C., Gray K. A. Recombination pathways in the degussa P25 formulation of TiO2:Surface versus lattice mechanisms [J]. Journal of Physical Chemistry B,2005, 109(2):977-980.
    [101]Kitayama T., Sano Y., Matsumoto M., et al. Degradation of waste water from TNT manufacturing [J]Science and Technology of Energetic Materials.2006.67(2): 62-67.
    [102]Liu H., Liang Y. G., Hu H. J., et al. Hydrothermal synthesis of mesostructured nanocrystalline TiO2 in an ionic liquid-water mixture and its photocatalytic performance [J]. Solid State Sciences,2009.11(9):1655-1660.
    [103]Ohko Y., Ando I., Niwa C., et al. Degradation of bisphenol a in water by TiO2 photocatalyst [J]. Environmental Science and Technology,2001.35(11):2365-2368.
    [104]Sasai R., Hotta Y. J., Itoh H. Preparation of orqanoclay havinq titania nano-crystals in interlayer hydrophobic field and its characterization [J]. Journal of the Ceramic Society of Japan,2008,116(1350):205-211.
    [105]Sclafani A., Herrmann J. M. Comparison of the photoelectronic and photocatalytic activities of various anatase and rutile forms of titania in pure liquid organic phases and in aqueous solutions [J]. Journal of Physical Chemistry,1996,100(32): 13655-13661.
    [106]Torres R. A., Nieto J. I., Combet E., et al. Influence of TiO2 concentration on the synergistic effect between photocatalysis and high-frequency ultrasound for organic pollutant mineralization in water [J]. Applied Catalysis B:Environmental,2008, 80(1-2):168-175.
    [107]Yan W., Chen B., Mahurin S. M., et al. Preparation and comparison of supported gold nanocatalysts on anatase. brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of co [J]. Journal of Physical Chemistry B.2005,109(21):10676-10685.
    [108]Yamazaki S., Matsunaga S., Hori K. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets [J]. Water Research,2001,35(4):1022-1028.
    [109]Chen Y. X., Wang K., Lou L. P. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation [J]. Jounal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):281-287.
    [110]Karuppuchamy S., Suzuki N., Ito S., et al. A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature [J]. Current Applied Physics,2009.9(1):243-248.
    [111]Saadoun L., Ayllon J. A., Jimenez-Becerril J., et al.1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania [J]. Applied Catalysis B:Environmental,1999,21(4):269-277.
    [112]Watson S. S., Beydoun D., Scott J. A., et al. The effect of preparation method on the photoactivity of crystalline titanium dioxide particles [J]. Chemical Engineering Journal,2003,95(1-3):213-220.
    [113]Wu X. H., Ding X. B., Qin W., et al. Enhanced photo-catalytic activity of TiO2 films with doped la prepared by micro-plasma oxidation method [J]. Journal of Hazardous Materials,2006,137(1):192-197.
    [114]Almquist C. B., Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity [J]. Journal of Catalysis,2002,212(2): 145-156.
    [115]Chae S. Y., Park M. K., Lee S. K., et al. Preparation of size-controlled TiO2 nanoparticles and derivation of optically transparent photocatalytic films [J]. Chemisry of Materials,2003,15(17):3326-3331.
    [116]Fernandez-Ibanez P., Malato S., Nieves F. J. D. L. Relationship between TiO2 particle size and reactor diameter in solar photoreactors efficiency [J]. Catalysis Today,1999, 54(2-3):195-204.
    [117]Grieken R. V., Aguado J., Lopez-Munoz M. J., et al. Synthesis of size-controlled silica-supported TiO2 photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):315-322.
    [118]Koci K., Obalova L., Matejova L., et al. Effect of TiO2 particle size on the photocatalytic reduction of CO2 [J]. Applied Catalysis B:Environmental,2009, 89(3-4):494-502.
    [119]Lin H., Huang C. P., Li W., et al. Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol [J]. Applied Catalysis B:Environmental,2006,68(1-2):1-11.
    [120]Liu S., Jaffrezic N., Guillard C. Size effects in liquid-phase photo-oxidation of phenol using nanometer-sized TiO2 catalysts [J]. Applied Surface Science,2008,255(5): 2704-2709.
    [121]Maira A. J., Yeung K. L., Lee C. Y., et al. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts[J].Journal of Catalysis,2000. 192(1):185-196.
    [122]Gerischer H. Photocatalysis in aqueous solution with small TiO2 particles and the dependence of the quantum yield on particle size and light intensity [J]. Electrochimica Acta,1995.40(10):1277-1281.
    [123]Grcla M. A., Colussi A. J. Kinetics of stochastic charge transfer and recombination events in semiconductor colloids. Relevance to photocatalysis efficiency [J]. The Journal of Physical Chemistry,1996,100(46):18214-18221.
    [124]曹茂盛,关长斌,徐甲强.纳米材料导论[M].北京:哈尔滨工业大学出版社,2001.8(2007.8重印).
    [125]Zhang D. Q., Li G. S., Wang H. B., et al. Biocompatible anatase single-crystal photocatalysts with tunable percentage of reactive facets [J]. Crystal Growth Design, 2010,10(3):1130-1137.
    [126]Aarik J., Aidla A., Kiisler A. A., et al. Effect of crystal structure on optical properties of TiO2 films grown by atomic layer deposition [J]. Thin Solid Films,1997,305(1-2): 270-273.
    [127]Aarik J., Aidla A., Uustare T., et al. Morphology and structure of TiO2 thin films grown by atomic layer deposition [J]. Journal of Crystal Growth,1995,148(3): 268-275.
    [128]Echavia G. R. M., Matzusawa F., Negishi N. Photocatalytic degradation of organophosphate and phosphonoglycine pesticides using TiO2 immobilized on silica gel [J]. Chemosphere,2009,76(5):595-600.
    [129]Burrows H. D., Ernestova L. S., Kemp T. J., et al. Kinetics and mechanism of photodegradation of chloriphenols [J]. Progress in Reaction Kinetics and Mechanism, 1998,23:145-207.
    [130]Krijgsheld K. R., Vandergen A. Assessment of the impact of the emission of certain organochlorine compounds on the aquatic environment:Part I:Monochlorophenols and 2,4-dichlorophcnol [J]. Chemosphere,1986,15(7):825-860.
    [131]Fox M. A., Kim Y. S., Abdel-Wahab A. A., et al. Photocatalytic decontamination of sulfur-containing alkyl halides on irradiated semiconductor suspensions [J]. Catalysis Letters,1990.5(4-6):369-376.
    [132]Konstantinou I. K., Sakellarides T. M., Sakkas V. A., et al. Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions [J]. Environmental Science and Technology,2001,35(2):398-405.
    [133]Low G. K. C., Mcevoy S. R., Matthews R. W. Formation of nitrate and ammonium ions in titanium dioxide mediated photocatalytic degradation of organic compounds containing nitrogen atoms [J]. Environmental Science and Technology,1991,25(3): 460-467.
    [134]Matsuzawa S., Tanaka J., Sato S., et al. Photocatalytic oxidation of dibenzothiophenes in acetonitrile using TiO2:Effect of hydrogen peroxide and ultrasound irradiation [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,149(1-3):183-189.
    [135]Nohara K., Hidaka H., Pelizzetti E., et al. Dependence on chemical-structure of the production of NH4+and/or NO3- ions during the photocatalyzed oxidation of nitrogen-containing substances at the titania water interface [J]. Catalysis Letters, 1996,36(1-2):115-118.
    [136]Pelizzetti E., Minero C., Piccinini P., et al. Phototransformations of nitrogen containing organic compounds over irradiated semiconductor metal oxides: Nitrobenzene and atrazine over TiO2 and ZnO [J]. Coordination Chemistry Reviews, 1993,125(1-2):183-193.
    [137]Nohara K., Hidaka H., Pelizzetti E., et al. Processes of formation of NH4+ and NO3-ions during the photocatalyzed oxidation of N-containing compounds at the titania/water interface [J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997,102(2-3):265-272.
    [138]Maurino V., Minero C., Pelizzetti E., et al. The fate of organic nitrogen under photocatalytic conditions:Degradation of nitrophenols and aminophenols on irradiated TiO2 [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,109(2): 171-176.
    [139]Minero C., Pelizzetti E., Piccinini P., et al. Photocatalyzed transformation of nitrobenzene on TiO2 and ZnO [J]. Chemosphere,1994,28(6):1229-1244.
    [140]Palmisano G. Addamo M., Augugliaro V., et al. Selectivity ofhydroxyl radical in the partial oxidation of aromatic compounds in heterogeneous photocatalysis[J]. Catalysis Today,2007,122(1-2):118-127.
    [141]Piccinini P., Minero C., Vincenti M., et al. Photocatalytic mineralization of nitrogen-containing benzene derivatives [J]. Catalysis Today.1997,39(3):187-195.
    [142]D'oliveira J. C., Guillarda C., Maillard C., et al. Photocatalytic destruction of hazardous chlorine- or nitrogen-containing aromatics in water [J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances & Environmental Engineering,1993,28(4):941-962.
    [143]Chen J., Eberlein L., Langford C. H. Pathways of phenol and benzene photooxidation using TiO2 supported on a zeolite [J]. Journal of Photochemistry and Photobiology A: Chemistry,2002,148(1-3):183-189.
    [144]Park H., Choi W. Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates [J]. Catalysis Today,2005,101(3-4):291-297.
    [145]Lhomme L., Brosillon S., Wolbert D., et al. Photocatalytic degradation of a phenylurea, chlortoluron, in water using an industrial titanium dioxide coated media [J]. Applied Catalysis B:Environmental,2005,61(3-4):227-235.
    [146]Ahmed S., Rasul M. G., Brown R., et al. Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater:A short review [J]. Journal of Environmental Management,2011,92(3):311-330.
    [147]Ahmed S., Rasul M. G. Martens W. N., et al. Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater:A review [J]. Water, Air & Soil pollution,2011,215(1-4):3-29.
    [148]Marugan J., Grieken R. V., Cassano A. E., et al. Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions [J]. Applied Catalysis B:Environmental, 2008,85(1-2):48-60.
    [149]Orozco S. L., Arancibia-Bulnes C. A., Suarez-Parra R. Radiation absorption and degradation of an azo dye in a hybrid photocatalytic reactor [J]. Chemical Engineering Science,2009,64(9):2173-2185.
    [150]Pareek V., Chong S., Tade M., et al. Light intensity distribution in heterogenous photocatalytic reactors [J]. Asia-Pacific Journal of Chemical Engineering,2008.3(2): 171-201.
    [151]Alfano O. M., Bahnemann D., Cassano A. E., et al. Photocatalysis in water environments using artificial and solar light [J]. Catalysis Today,2000,58(2-3): 199-230.
    [152]Chiou C. H., Wu C. Y., Juang R. S. Photocatalytic degradation of phenol and m-nitrophenol using irradiated TiO2 in aqueous solutions [J]. Separation and Purification Technology,2008,62(3):559-564.
    [153]Kaneco S., Rahman M. A., Suzuki T., et al. Optimization of solar photocatalytic degradation conditions of bisphenol a in water using titanium dioxide [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,163(3):419-424.
    [154]Puma G. L., Yue P. L. Effect of the radiation wavelength on the rate of photocatalytic oxidation of organic pollutants [J]. Industrial & Engineering Chemistry Research, 2002,41(23):5594-5600.
    [155]Stylidi M., Kondarides D. I., Verykios X. E. Visible light-induced photocatalytic degradation of acid orange 7 in aqueous TiO2 suspensions [J]. Applied Catalysis B: Environmental,2004,47(3):189-201.
    [156]Tariq M. A., Faisal M., Muneer M., et al. Photochemical reactions of a few selected pesticide derivatives and other priority organic pollutants in aqueous suspensions of titanium dioxide [J]. Journal of Molecular Catalysis A:Chemical,2007,265(1-2): 231-236.
    [157]Chiou C. H., Juang R. S. Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles [J]. Journal of Hazardous Materials,2007,149(1):1-7.
    [158]Evgenidou E., Bizani E., Christophoridis C., et al. Heterogeneous photocatalytic degradation of prometryn in aqueous solutions under UV-Vis irradiation [J]. Chemosphere,2007,68(10):1877-1882.
    [159]Rao R. N., Venkateswarlu N. The photocatalytic degradation of amino and nitro substituted stilbenesulfonic acids by TiO2/UV and Fe2+/H2O2/UV under aqueous conditions [J]. Dyes and Pigments,2008,77(3):590-597.
    [160]Bhatkhande D. S., Kamble S. P., Sawant S.B., et al. Photocatalytic and photochemical degradation of nitrobenzene using artificial ultraviolet light [J]. Chemical Engineering Journal.2004,102(3):283-290.
    [161]Gautam S., Kamble S. P., Sawant S. B., et al. Photocatalytic degradation of 4-nitroaniline using solar and artificial uv radiation [J]. Chemical Engineering Journal. 2005.110(1-3):129-137.
    [1621 San N., Hatipolu A., Kocturk G., et al. Photocatalytic degradation of 4-nitrophenol in aqueous TiO2 suspensions:Theoretical prediction of the intermediates [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002.146(3):189-197.
    [163]Silva C. G., Faria J. L. Effect of key operational parameters on the photocatalytic oxidation of phenol by nanocrystalline sol-gel TiO2 under uv irradiation [J]. Journal of Molecular Catalysis A:Chemical,2009,305(1-2):147-154.
    [164]Arana J., Nieto J. L. M., Melian J. a. H., et al. Photocatalytic degradation of formaldehyde containing wastewater from veterinarian laboratories [J]. Chemosphere, 2004,55(6):893-904.
    [165]Friesen D. A., Morello L., Headley J. V., et al. Factors influencing relative efficiency in photo-oxidations of organic molecules by CS3PW12O40 and TiO2 colloidal photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2000, 133(3):213-220.
    [166]Li G., Qu J., Zhang X., et al. Electrochemically assisted photocatalytic degradation of orange ii:Influence of initial ph values [J]. Journal of Molecular Catalysis A: Chemical.2006.259(1-2):238-244.
    [167]Dominguez J. R., Beltran J., Rodriguez O. Vis and uv photocatalytic detoxification methods (using TiO2, TiO2/H2O2, TiO2/O3, TiO2/S2OO82-, O3, H2O2, S2O82-,Fe3+/H2O2 and Fe3+/H2O2/C2O42-) for dyes treatment [J]. Catalysis Today,2005,101(3-4): 389-395.
    [168]Harir M., Gaspar A., Kanawati B., et al. Photocatalytic reactions of imazamox at TiO2, H2O2 and TiO2/H2O2 in water interfaces:Kinetic and photoproducts study [J]. Applied Catalysis B:Environmental,2008,84(3-4):524-532.
    [169]Kitsiou V., Filippidis N., Mantzavinos D., et al. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions [J]. Applied Catalysis B:Environmental,2009,86(1-2):27-35.
    [170]Sakkas V. A., Calza P., Islam M. A., et al. Tio2/h2O2 mediated photocatalytic transformation of UV filter 4-methylbenzylidene camphor (4-MBC) in aqueous phase: Statistical optimization and photoproduct analysis [J]. Applied Catalysis B: Environmental,2009,90(3-4):526-534.
    [171]Saquib M, Tariq M. A., Haque M. M., et al. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process [J]. Journal of Environmental Management,2008, 88(2):300-306.
    [172]Martin S. T., Lee A. T., Hoffmann M. R. Chemical mechanism of inorganic oxidants in the TiO2/UV process:Increased rates of degradation of chlorinated hydrocarbons [J]. Environmental Science and Technology,1995,29(10):2567-2573.
    [173]Perez M. H., Penuela G., Maldonado M. I., et al. Degradation of pesticides in water using solar advanced oxidation processes [J]. Applied Catalysis B:Environmental, 2006,64(3-4):272-281.
    [174]Ananpattarachai J., Kajitvichyanukul P., Seraphin S. Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants [J]. Journal of Hazardous Materials,2009,168(1): 253-261.
    [175]Qourzal S., Barka N., Tamimi M., et al. Photodegradation of 2-naphthol in water by artificial light illumination using TiO2 photocatalyst:Identification of intermediates and the reaction pathway [J]. Applied Catalysis A:General,2008,334(1-2):386-393.
    [176]Irawaty W., Friedmann D., Scott J., et al. Relationship between mineralization kinetics and mechanistic pathway during malic acid photodegradation [J]. Journal of Molecular Catalysis A:Chemical,2011,335(1-2):151-157.
    [177]Sauer T., Neto G. C., Jose H. J., et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,149(1-3):147-154.
    [178]Friedmann D., Mendive C., Bahnemann D. TiO2 for water treatment:Parameters affecting the kinetics and mechanisms of photocatalysis [J]. Applied Catalysis B: Environmental 2010,99(3-4):398-406.
    [1]Zhang Q.. Lima D. Q., Lee I., et al. A highly active titanium dioxide based visible-light photocatalyst with nonmetal doping and plasmonic metal decoration [J]. Angewandte Chemie,2011,123(31):7226-7230.
    [2]Joo J. B., Zhang Q., Dahl M., et al. Control of the nanoscale crystallinity in mesoporous TiO2 shells for enhanced photocatalytic activity [J]. Energy & Environmental Science,2012,5(4):6321-6327.
    [3]Friedmann D., Mendive C., Bahnemann D. TiO2 for water treatment:Parameters affecting the kinetics and mechanisms of photocatalysis [J]. Applied Catalysis B: Environmental 2010,99(3-4):398-406.
    [4]Kitsiou V., Filippidis N., Mantzavinos D., et al. Heterogeneous and homogeneous photocatalytic degradation of the insecticide imidacloprid in aqueous solutions [J]. Applied Catalysis B:Environmental,2009,86(1-2):27-35.
    [5]Henderson M. A. A surface science perspective on TiO2 photocatalysis [J]. Surface Science Reports,2011,66(6-7):185-297.
    [6]Gupta S. M., Tripathi M. A review of TiO2 nanoparticles [J]. Chinese Science Bulletin, 2011,56(16):1639-1657.
    [7]Macwan D. P., Dave P. N., Chaturvedi S. A review on nano- TiO2 sol-gel type syntheses and its applications [J]. Journal of Materials Science,2011,46(11): 3669-3686.
    [8]Jing J., Liu M., Colvin V. L., et al. Photocatalytic degradation of nitrogen-containing organic compounds over TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2011, 351:17-28.
    [9]Almquist C. B., Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity [J]. Journal of Catalysis,2002,212(2): 145-156.
    [10]Su C., Hong B. Y., Tseng C. M. Sol-gel preparation and photocatalysis of titanium dioxide [J]. Catalysis Today,2004,96(3):119-126.
    [11]Pavasupree S., Jitputti J., Ngamsinlapasathian S., et al. Hydrothermal synthesis, characterization, photocatalytic activity and dye-sensitized solar cell performance of mesoporous anatase TiO2 nanopovvders [J]. Materials Research Bulletin,2008,43(1): 149-157.
    [12]Karuppuchamy S., Suzuki N., Ito S., et al. A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature [J]. Current Applied Physics,2009.9(1):243-248.
    [13]Choi H., Stathatos E., Dionysiou D. D. Photocatalytic TiO2 films and membranes for the development of efficient wastewater treatment and reuse systems [J]. Desalination, 2007,202(1-3):199-206.
    [14]Zhang Z., Zhong X., Liu S., et al. Aminolysis route to monodisperse titania nanorods with tunable aspect ratio [J]. Angewandte Chemie,2005,117(22):3532-3536.
    [15]Ohya T., Nakayama A., Ban T., et al. Synthesis and characterization of halogen-free, transparent, aqueous colloidal titanate solutions from titanium alkoxide [J]. Chemistry of Materials,2002,14(7):3082-3089.
    [16]Yan X., Pan D., Li Z., et al. Controllable synthesis and photocatalytic activities of water-soluble TiO2 nanoparticles [J]. Materials Letters,2010,64(16):1833-1835.
    [17]L.Thompson T., John T. Yates J. Surface science studies of the photoactivation of TiO2 snew photochemical processes [J]. Chemical Reviews,2006,106(10):4428-4453.
    [18]Watson S., Beydoun D., Scott J., et al. Preparation of nanosized crystalline TiO2 particles at low temperature for photocatalysis [J]. Journal of Nanoparticle Research, 2004,6(2):193-207.
    [19]Li H., Zhao C., Chen Z., et al. TiO2-Ag nanocomposites by low-temperature sol-gel processing [J]. Journal of the American Ceramic Society,2010,93(2):445-449.
    [20]Liu A. R., Wang S. M., Zhao Y. R., et al. Low-temperature preparation of nanocrystalline TiO2 photocatalyst with a very large specific surface area [J]. Materials Chemistry and Physics,2006,99(1):131-134.
    [21]Derjaguin B. V., Landau L. Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes [J]. Acta Physicochim. USSR 1941,14:633-662.
    [22]Verwey E. J. W., Overbeek J. T. G. Theory of the stability of lyophobic colloids [M]. New York:Elsevier Pub. Co.,1948.
    [23]Samuneva B., Kozhukharov V., Trapalis C., et al. Sol-gel processing of titanium-containing thin coatings [J]. Journal of Materials Science.1993,28(9): 2353-2360.
    [24]Morrison I. D. Electrical charges in nonaqueous media [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,1993,71(1):1-37.
    [25]孟哈日巴拉.高分散性无机纳米粒子的制备及其表而修饰[D].长春:吉林大学,2006.
    [26]Xu J. J., Ao Y. H., Fu D. G., et al. Synthesis of fluorine-doped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light [J]. Journal of Physics and Chemistry of Solids,2008,69(10):2366-2370.
    [27]Chen Z., Zhao G., Li H., et al. Effects of water amount and ph on the crystal behavior of a TiO2 nanocrystalline derived from a sol-gel process at a low temperature [J]. Journal of the American Ceramic Society,2009,92(5):1024-1029.
    [28]Gopal M., Chan W. J. M., Jonghe L. C. D. Room temperature synthesis of crystalline metal oxides [J]. Journal of Materials Science,1997,32(22):6001-6008.
    [29]Zheng Y., Shi E., Chen Z., et al. Influence of solution concentration on the hydrothermal preparation of titania crystallites [J]. Journal of Materials Chemistry, 2001,11(5):1547-1551.
    [30]张雄飞.纳米二氧化钛复合粉体的电化学合成[D].昆明:昆明理工大学,2003.
    [31]李春燕,李憋强.Ti02的溶胶凝胶过程研究[J].硅酸盐学报,1996.24(3):338-341.
    [32]胡安正,唐超群.Sol-gel法制备纳米Ti02的原料配比和胶凝过程机理探研[J].功能材料,2002,33(4):394-397.
    [33]谷科成,胡相红,陈逸,等.Sol-gel法制备纳米TiO2凝胶过程的控制[J].后勤工程学院学报,2009,26(1):66-70.
    [34]赵力,蒋慧,姚红,等.纳米光催化剂TiO2制备过程中的影响因素分析[J].辽宁化工,2008,37(2):85-88.
    [1]Chen Y. X., Wang K., Lou L. P. Pholodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation [J]. Jounal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):281-287.
    [2]Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [3]Karuppuchamy S., Suzuki N., Ito S., et al. A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature [J]. Current Applied Physics,2009,9(1):243-248.
    [4]Saadoun L., Ayllon J. A., Jimenez-Becerril J., et al.1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania [J]. Applied Catalysis B:Environmental,1999,21(4):269-277.
    [5]Watson S. S., Beydoun D., Scott J. A., et al. The effect of preparation method on the photoactivity of crystalline titanium dioxide particles [J]. Chemical Engineering Journal,2003,95(1-3):213-220.
    [6]Wu X. H., Ding X. B., Qin W., et al. Enhanced photo-catalytic activity of TiO2 films with doped la prepared by micro-plasma oxidation method [J]. Journal of Hazardous Materials,2006,137(1):192-197.
    [7]Sauer T., Neto G. C., Jose H. J., et al. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,149(1-3):147-154.
    [8]Beltran F. J., Rivas F. J., Montero-De-Espinosa R. Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor [J]. Applied Catalysis B:Environmental,2002,39(3): 221-231.
    [9]Marugan J., Grieken R. V., Cassano A. E., et al. Scaling-up of slurry reactors for the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions [J]. Catalysis Today,2009,144(1-2):87-93.
    [10]杨祝红.二氧化钛晶须的制备及光催化处理废水研究[D].南京:南京工业大学,2003.
    [11]张曙光.干式颗粒负载法制备磁性光催化剂的研究[D].天津:天津大学,2005.
    [12]徐更生.负载型纳米Ti02催化剂的制备及其在难降解有机废水处理中的应用研究[D].浙江:浙江大学,2004.
    [13]夏淑梅.磁性颗粒负载纳米TiO2光催化剂的制备及性能研究[D].哈尔滨:哈尔滨工程大学,2009.
    [14]吴自清.磁性FiO2/SiO2/Fe3O4光催化剂的制备及其对溴氨酸光催化氧化研究[D].武汉:华中科技大学,2006.
    [15]王侃.负载型TiO2催化剂可见光降解染料污染物的研究[Dl.浙江:浙江大学2004.
    [16]刘爱丽.纳米磁性高分子微球的合成及用于DNA电化学生物传感器的研究[D].浙江:浙江大学,2005.
    [17]姜炜.纳米磁性粒子和磁性复合粒子的制备及其应用[D].南京:南京理工大学,2005.
    [18]Xu S. H., Shangguan W. F., Jian Y., et al. Preparations and photocatalytic properties of magnetically separable nitrogen-doped TiO2 supported on nickel ferrite [J]. Applied Catalysis B:Environmental,2007,71(3-4):177-184.
    [19]Yao K. F., Peng Z., Liao Z. H., et al. Preparation and photocatalytic property of TiO2-Fe3O4 core-shell nanoparticles [J]. Journal of Nanoscience and Nanotechnology, 2009,9(2):1458-1461(4).
    [20]Hu X., Yang J., Zhang J. Magneticloading of TiO2/SiO2/Fe3O4 nanoparticles on electrode surface for photoelectrocatalytic degradation of diclofenac [J]. Journal of Hazardous Materials,2011,196(30):220-227.
    [21]lvarez P. M., Jaramillo J., Lopez-Pinero F., et al. Preparation and characterization of magnetic TiO2 nanoparticles and their utilization for the degradation of emergingpollutants in water [J]. Applied Catalysis B:Environmental.2010.100(1-2): 338-345.
    [22]Li Y. X., Mei Z., Min G., et al. Preparation and properties of a nano TiO2/Fe3O4 composite superparamagnetic photocatalyst [J]. Rare Metals,2009,28(5):423-427.
    [23]Li H., Zhang Y., Wang S., et al. Study on nanomagnets supported TiO2 photocatalysts prepared by a sol-gel process in reverse microemulsion combining with solvent-thermal technique [J]. Journal of Hazardous Materials,2009,169(1-3): 1045-1053.
    [24]Beydoun D., Amal R. Novel photocatalyst:Titania-coated magnetite. Activity and photodissolution [J]. The Journal of Physical Chemistry,2000,104(18):4387-4396.
    [25]Watson S., Beydoun D., Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):303-313.
    [26]Gao Y., Chen B. H., Li H. L., et al. Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties [J]. Materials Chemistry and Physics,2003,80(1):348-355.
    [27]Chen F., Xie Y. D., Zhao J. C., et al. Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and uv irradiation [J]. Chemosphere,2001,44(5):1159-1168.
    [28]尹晓红,辛峰,张凤宝,等.含磁性γ-Fe2O3核的TiO2/Al2O3催化剂的制备及光催化性能[J].精细化工,2006,23(1):58-61.
    [29]李鸿,朱宝林,郑修成,等.包覆型磁性二氧化钛的制备及其光催化性能的研究[J].分子催化,2006,20(5):429-434.
    [30]Tung W. S., Daoud W. A. New approach toward nanosized ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts [J]. ACS applied materials & interfaces, 2009,1(11):2453-2461.
    [31]Teja A. S., Koh P. Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles [J]. Progress in Crystal Growth and Characterization of Materials,2009, 55(1-2):22-45.
    [32]Tanaka T., Shimazu R., Nagai H., et al. Preparation of spherical and uniform-sized ferrite nanoparticles with diameters between 50 and 150 nm for biomedical applications [J]. Journal of Magnetism and Magnetic Materials,2009,321(10): 1417-1420.
    [33]Xiao L., Li J., Brougham D. F., et al. Water-soluble superparamagnetic magnetite nanoparticles with biocompatible coating for enhanced magnetic resonance imaging [J]. ACS Nano,2011,5(8):6315-6324.
    [34]Shukla A., Patra M. K., Mathew M., et al. Preparation and characterization of biocompatible and water-dispersible superparamagnetic iron oxide nanoparticles (SPIONS) [J]. Advanced Science Letters,2010,3(2):161-167.
    [35]Gupta A. K., Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedieal applications[J]. Biomaterials,2005.26(18):3995-4021.
    [36]Qiao R. R., Yang C. H., Gao M. Y. Superparamagnetic iron oxide nanoparticles:From preparations to in vivo mri applications [J]. Journal of Materials Chemistry,2009,19: 6274-6293.
    [37]Yu W. W., Peng X. G. Formation of high-quality CdS and other ii-vi semiconductor nanocrystals in noncoordinating solvents:Tunable reactivity of monomers [J]. Angewandte Chemie International Edition,2002.41(13):2368-2371.
    [38]Yu W. W., Falkner J. C., Yavuz C. T., et al. Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts [J]. Chemical Communications,2004:2306-2307.
    [39]Yu W. W., Chang E., Sayes C. M., et al. Aqueous dispersion of monodisperse magnetic iron oxide nanocrystals through phase transfer [J]. Nanotechnology,2006,17: 4483-4487.
    [40]Yu W. W., Chang E., Falkner J. C., et al. Forming biocompatible and non-aggregated nanocrystals in water using amphiphilic polymers [J]. Jounal of the American Chemical Society,2007,129(10):2871-2879.
    [41]Yu S., Chow G. M. Carboxyl group (-COOH) functionalized ferrimagnetic iron oxide nanoparticles for potential bioapplications [J]. Journal of Materials Chemistry,2004, 14:2781-2786.
    [42]Yu W. W. Semiconductor quantum dots:Synthesis and water-solubilization for biomedieal engineering [J]. Expert Opinion on Biological Therapy,2008.8: 1571-1581.
    [43]Yu W. W.. Chang E., Drezek R., et al. Water-soluble quantum dots for biomedieal applications [J]. Biochemical and Biophysical Research Communications,2006,348: 781-786.
    [44]Ge J., Hu Y., Biasini M., et al. Superparamagnetic magnetite colloidal nanocrystal clusters [J]. Angewandte Chemie International Edition.2007.46(23):4342-4345.
    [45]Yoon K. Y. Kotsmar C., Ingram D. R., et al. Stabilization of superparamagnetic iron oxide nanoclusters in concentrated brine with cross-linked polymer shells [J]. Langmuir,2011,27(17):10962-10969.
    [46]Deng Y. H., Qi D. W., Deng C. H., et al. Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins [J]. Journal of the American Chemical Society,2008, 130(1):28-29.
    [47]Fang H., Ma C. Y., Wan T. L., et al. Fabrication of monodisperse magnetic Fe3O4-SiO2 nanocomposites with core-shell structures [J]. The Journal of Physical Chemistry,2007,111(3):1065.
    [48]Wei X., Wei Z., Zhang L., et al. Highly water-soluble nanocrystal powders of magnetite and maghemite coated with gluconic acid:Preparation, structure characterization, and surface coordination [J]. Journal of Colloid and Interface Science, 2011,354(1):76-81.
    [49]Laurent S., Forge D., Port M., et al. Magnetic iron oxide nanoparticles:Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications [J]. Chemical Reviews,2008,108(6):2064-2110.
    [50]Sugimoto T., Matijevi E. Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels [J]. Journal of Colloid and Interface Science,1980,74(1):227-243.
    [51]Mizukoshi Y., Shuto T., Masahashi N., et al. Preparation of superparamagnetic magnetite nanoparticles by reverse precipitation method:Contribution of sonochemically generated oxidants [J]. Ultrasonics Sonochemistry,2009,16(4): 525-531.
    [52]Cheng C., Wen Y., Xu X., et al. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size [J]. Journal of Materials Chemistry, 2009,19:8782-8788.
    [53]Yu W. W., Wang Y. A., Peng X. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals:Ligand eddects on monomers and nanocrystals [J]. Chemistry of Materials,2003,15(22):4300-4308.
    [1]Lei Z., You W., Liu M., et al. Photocatalytic water reduction under visible light on a novel ZnIn2S4 catalyst synthesized by hydrothermal method [J]. Chemical Communications,2003, (17):2142-2143.
    [2]Yan H., Yang J., Ma G., et al. Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst [J]. Journal of Catalysis,2009, 266(2):165-168.
    [3]Santato C., Ulmann M., Augustynski J. Enhanced visible light conversion efficiency using nanocrystalline WO3 films[J]. Advanced Materials,2001,13(7):511-514.
    [4]Ooyama Y.. Shimada Y.. Ishii A., et al. Photovoltaic performance of dye-sensitized solar cells based on a series of new-type donor-acceptor π-conjugated sensitizer, benzofuro[2,3-c]oxazolo[4,5-a]carbazole fluorescent dyes [J]. Journal of Photochemistry and Photobiology A:Chemistry,2009,203(2-3):177-185.
    [5]Chatterjee D., Dasgupta S., Raob N. N. Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light [J]. Solar Energy Materials and Solar Cells.2006,90(7-8):1013-1020.
    [6]Chatterjee D., Dasgupta S. Visible light induced photocatalytic degradation of organic pollutants [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2005,6(2-3):186-205.
    [7]Yang X. X., Cao C. D., Hohn K., et al. Highly visible-light active C-and V-doped TiO2 for degradation of acetaldehyde [J]. Journal of Catalysis,2007,252(2):296-302.
    [8]Ghicov A., Schmidt B., Kunze J., et al. Photoresponse in the visible range from Cr doped TiO2 nanotubes [J]. Chemical Physics Letters,2007,433(4-6):323-326.
    [9]Ihara T., Miyoshi M., Ando M., et al. Preparation of a visible-light-active TiO2 photocatalyst by RF plasma treatment [J]. Journal of Materials Science,2001,36(17): 4201-4207.
    [10]Jang J. S., Li W., Oh S. H., et al. Fabrication of CdS/TiO2 nano-bulk composite photocatalysts for hydrogen production from aqueous H2S solution under visible light [J]. Chemical Physics Letters.2006,425(4-6):278-282.
    [11]Wu L., Yu J. C., Fu X. Characterization and photocatalytic mechanism of nanosized CdS coupled TiO2 nanocrystals under visible light irradiation [J]. Journal of Molecular Catalysis A:Chemical,2006.244(1-2):25-32.
    [12]洪孝挺,王正鹏,陆峰,等.可见光响应型非金属掺杂TiO2的研究进展[J].化工进展,2004,23(10):1077-1080.
    [13]张琦,李新军,李芳柏,等.WCx/TiO2比催化剂的可见光催化活性机理探讨[J].物理化学学报,2004,20(5):507-511.
    [14]Maeda M., Watanabe T. Visible light photocatalysis of nitrogen-doped titanium oxide films prepared by plasma-enhanced chemical vapor deposition [J]. Journal of the Electrochemical Society,2006,153(3):C186-C189.
    [15]Chen X. B., Mao S. S. Titanium dioxide nanomaterials:Synthesis, properties, modifications, and applications [J]. Chemical Reviews,2007,107(7):2891-2959.
    [16]Livraghi S., Czoska A. M., Paganini M. C., et al. Preparation and spectroscopic characterization of visible light sensitized N doped TiO2 (rutile) [J]. Journal of Solid State Chemistry,2009,182(1):160-164.
    [17]Rengifo-Herrera J. A., Pierzchala K., Sienkiewicz A., et al. Abatement of organics and escherichia coli by N, S co-doped TiO2 under uv and visible light. Implications of the formation of singlet oxygen (-O2) under visible light [J]. Applied Catalysis B: Environmental,2009,88(3-4):398-406.
    [18]Tian H., Ma J. F., Li K., et al. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange [J]. Ceramics International,2009,35(3):1289-1292.
    [19]Xu J. J., Ao Y. H., Fu D. G., et al. Synthesis of fluorine-doped titania-coated activated carbon under low temperature with high photocatalytic activity under visible light [J]. Journal of Physics and Chemistry of Solids,2008,69(10):2366-2370.
    [20]In S., Orlov A., Berg R., et al. Effective visible light-activated B-doped and B, N-codoped TiO2 photocatalysts [J]. Journal of the American Chemical Society,2007, 129(45):13790-13791.
    [21]Irie H., Watanabe Y., Hashimoto K. Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst [J]. Chemistry Letters,2003,32(8):772-773.
    [22]Ren W., Ai Z., Jia F., et al. Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 [J]. Applied Catalysis B:Environmental,2007,69(3-4):138-144.
    [23]Sakthivel S., Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide [J]. Angewandte Chemie International Edition,2003,42(40):4908-4911.
    [24]Zhang L., Fu H., Zhu Y. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon [J]. Advanced Functional Materials,2008, 18(15):2180-2189.
    [25]Choi Y., Umebayashi T., Yoshikawa M. Fabrication and characterization of C-doped anatase TiO2 photocatalysts [J]. Journal of Materials Science,2004.39(5):1837-1839.
    [261 Kuo C.-S., Tseng Y.-H., Lin H.-Y., et al. Synthesis of a CNT-grafted TiO2 nanocatalyst and its activity triggered by a DC voltage [J]. Nanotechnology,2007,18(46):465607.
    [27]Liang Y., Wang H., Casalongue H. S., et al. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials [J]. Nano Research.2010.3(10):701-705.
    [28]Dong F., Guo S., Wang H., et al. Enhancement of the visible light photocatalytic activity of C-doped TiO2 nanomaterials prepared by a green synthetic approach [J]. The Journal of Physical Chemistry C.2011,115(27):13285-13292.
    [29]Wu Z., Dong F., Liu Y., et al. Enhancement of the visible light photocatalytic performance of C-doped TiO2 by loading with V2O5 [J]. Catalysis Communications, 2009,11(2):82-86.
    [30]Yang X., Cao C., Hohn K., et al. Highly visible-light active C- and V-doped TiO2 for degradation of acetaldehyde [J]. Journal of Catalysis,2007,252(2):296-302.
    [31]Woan K., Pyrgiotakis G., Sigmund W. Photocatalytic carbon-nanotube-TiO2 composites [J]. Advanced Materials,2009,21(21):2233-2239.
    [32]Zhang X., Li H., Cui X., et al. Graphene/TiO2 nanocomposites:Synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting [J]. Journal of Materials Chemistry,2010,20:2801-2806.
    [33]Geim A. K., Novoselov K. S. The rise of graphene [J]. Nature Materials,2007,6: 183-191.
    [34]Novoselov K. S., Jiang D., Schedin F., et al. Two-dimensional atomic crystals [J]. Proceedings of the National Academy of Sciences of the United States of America, 2005,102(30):10451-10453.
    [35]Balandin A. A., Ghosh S., Bao W., et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters,2008,8(3):902-907.
    [36]Lee C., Wei X., Kysar J. W., et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science,2008,18(321):385-388.
    [37]Novoselov K. S., Jiang Z., Zhang Y., et al. Room-temperature quantum hall effect in graphene [J]. Science,2007,9(315):1379.
    [38]Liu L., Ryu S., Tomasik M. R., et al. Graphene oxidation:Thickness-dependent etching and strong chemical doping [J]. Nano Letters.2008,8(7):1965-1970.
    [39]Boukhvalov D. W., Katsnelson M. I. Modeling of graphite oxide [J]. Journal of the American Chemical Society,2008,130(32):10697-10701.
    [40]Gilje S., Han S., Wang M., et al. A chemical route to graphene for device applications [J]. Nano Letters,2007,7(11):3394-3398.
    [41]Williams G., Seger B., Kamat P. V. TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide [J]. ACS Nano,2008,2(7):1487-1491.
    [42]Lambert T. N., Chavez C. A., Hernandez-Sanchez B., et al. Synthesis and characterization of titania-graphene nanocomposites [J]. The Journal of Physical Chemistry C,2009,113(46):19812-19823.
    [43]Tang Y.-B., Lee C.-S., Xu J., et al. Incorporation of graphenes in nanostructured TiO2 films via molecular grafting for dye-sensitized solar cell application [J]. ACS Nano, 2010,4(6):3482-3488.
    [44]Zhang H., Lv X., Li Y., et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2010,4(1):380-386.
    [45]Peng W., Wang Z., Yoshizawa N., et al. Fabrication and characterization of mesoporous carbon nanosheets-1 d TiO2 nanostructures [J]. Journal of Materials Chemistry,2010,20(12):2424-2431.
    [46]Marcano D. C., Kosynkin D. V., Berlin J. M., et al. Improved synthesis of graphene oxide [J]. ACS Nano,2010,4(8):4806-4814.
    [47]刘智勇.基于氧化石墨烯/聚合物光伏特性的研究[D].北京:北京交通大学,2011.
    [48]张佳利.化学还原氧化石墨烯及其衍生物的制备、性质和应用研究[D].上海:上海交通大学,2011.
    [49]Ohno T., Sarukawa K., Tokieda K., et al. Morphology of a TiO2 photocatalyst (Degussa, P-25) consisting of anatase and rutile crystalline phases [J]. Journal of Catalysis,2001,203(1):82-86.
    [1]Gogate P. R., Pandit A. B. A review of imperative technologies for wastewater treatment i:Oxidation technologies at ambient conditions [J]. Advances in Environmental Research.2004.8(3-4):501-551.
    [2]Jeong Y. S., Chung J. S. Biodegradation of thiocyanate in biofilm reactor using fluidized-carriers [J]. Process Biochemistry.2006.41(3):701-707.
    [3]Jing J. Y., Feng J., Li W. Y., et al. Removal of COD from coking-plant wastewater in the moving-bed biofilm sequencing batch reactor [J]. Korean Journal of Chemical Engineering,2009,26(2):564-568.
    [4]Liu H. B., Yang C. Z., Pu W. H., et al. Removal of nitrogen from wastewater for reusing to boiler feed-water by an anaerobic/aerobic/membrane bioreactor [J]. Chemical Engineering Journal,2008,140(1-3):122-129.
    [5]Matosic M., Prstec I., Jakopovic H. K., et al. Treatment of beverage production wastewater by membrane bioreactor [J]. Desalination,2009,246(1-3):285-293.
    [6]Shin D. H., Shin W. S., Kim Y. H., et al. Application of a combined process of moving-bed biofilm reactor (MBBR) and chemical coagulation for dyeing wastewater treatment [J]. Water Science and Technology,2006,54(9):181-189.
    [7]Weschenfelder S. E., Jos H. J., Gebhardt W.. et al. Monitoring the physicochemical and chemical treatment of textile wastewater using GC/MS, LC/MS and -MS/MS techniques [J]. Separation Science and Technology.2007,42(7):1535-1551.
    [8]Zhang M., Tay J. H., Qian Y., et al. Coke plant wastewater treatment by fixed biofilm system for cod and NH3-N removal [J]. Water Research,1998,32(2):519-527.
    [9]刑洁颖.移动床生物膜反应器对焦化废水脱碳除氮研究[D].太原理工大学硕士学位论文:太原,2009.
    [10]赵雁来等.杂环化学导论[M].北京:高等教育出版社,1992.
    [11]Zhu D. Z., Sun D. M., Wang S. L., et al. Absorption spectra analysis in the degradation process of quinoline in aqueous solution by vuv lights [J]. Spectroscopy and Spectral Analysis,2009.29(7):1933-1936.
    [12]张翠萍,刘益平,朱丽红.含喹啉废水的处理和生物降解研究进展[J].三峡环境 与生态,2008,1(1):49-52.
    [13]廖丽莎.异喹啉和2-甲基喹啉生物降解性能研究[D].上海:同济大学.2007.
    [14]Sun Q. H., Bai Y. H., Zhao C., et al. Aerobic biodegradation characteristics and metabolic products of quinoline by a pseudomonas strain [J]. Bioresource Technology, 2009,100(21):5030-5036.
    [15]Zhu S.-N., Liu D.-Q., Fan L., et al. Degradation of quinoline by rhodococcus sp. Q12 isolated from activated sludge [J]. Journal of Hazardous Materials,2008,160(2-3): 289-294.
    [16]Gupta V. K., Mittal A., Gajbe V. Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials [J]. Journal of Colloid and Interface Science,2005,284(1):89-98.
    [17]Ali I., Gupta V. K. Advances in water treatment by adsorption technology [J]. Nature Protocols,2007,1(6):2661-2667.
    [18]Ferrarisa M., Innella C., Spagni A. Start-up of a pilot-scale membrane bioreactor to treat municipal wastewater [J]. Desalination,2009,237(1-3):190-200.
    [19]Cheng H., Sabatini D. A. Separation of organic compounds from surfactant solutions: A review [J]. Separation Science and Technology,2007,42(3):453-475.
    [20]Cermenati L., Pichat P., Guillard C., et al. Probing the TiO2 photocatalytic mechanisms in water purification by use of quinoline, photo-fenton generated OH· radicals and superoxide dismutase [J]. Journal of Physical Chemistry B,1997,101(14): 2650-2658.
    [21]Cermenati L., Albini A., Pichat P., et al. TiO2 photocatalytic degradation of haloquinolines in water:Aromatic products GC-MS identification. Role of electron transfer and superoxide [J]. Research on Chemical Intermediates,2000,26(3): 221-234.
    [22]D'oliveira J. C., Guillarda C., Maillard C., et al. Photocatalytic destruction of hazardous chlorine-or nitrogen-containing aromatics in water [J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances& Environmental Engineering,1993,28(4):941-962.
    [23]Pichat P. Some views about indoor air photocatalytic treatment using TiO2: Conceptualization of humidity effects, active oxygen species, problem of C1-C3 carbonyl pollutants[J]. Applied Catalysis B:Environmental.2010,99(3-4):428-434.
    [24]王嘉,周涛,任大军.等.喹啉的微波辅助光催化氧化降解研究[J].环境保护科学,33(2):21-24.
    [25]An T., Zhang W., Xiao X., et al. Photoelectrocatalytic degradation of quinoline with a novel three-dimensional electrode-packed bed photocatalytic reactor [J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,161(2-3):133-242.
    [26]Czaplicka M. Qualitative and quantitative determination of halogenated derivatives in wastewater from coking plant [J]. Journal of Separation Science,2003,26(11): 1067-1071.
    [27]Kochany J.. Maguire R. J. Photodegradation of quinoline in water [J]. Chemosphere, 1994,28(6):1097-1110.
    [28]Li Y., Wang L., Liao L., et al. Nitrate-dependent biodegradation of quinoline, isoquinoline, and 2-methylquinoline by acclimated activated sludge [J]. Journal of Hazardous Materials,2010,173(1-3):151-158.
    [29]Nedoloujko A., Kiwi J. Parameters affecting the homogeneous and heterogeneous degradation of quinoline solutions in light-activated processes [J]. Journal of Photochemistry and Photobiology A:Chemistry,1997,110(2):149-157.
    [30]Hurum D. C., Agrios A. G., Gray K. A. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR [J]. Journal of Physical Chemistry B.2003,107(19):4545-4549.
    [31]Hurum D. C., Gray K. A. Recombination pathways in the degussa P25 formulation of TiO2:Surface versus lattice mechanisms [J]. Journal of Physical Chemistry B,2005, 109(2):977-980.
    [32]Yamazaki S.. Matsunaga S., Hori K. Photocatalytic degradation of trichloroethylene in water using TiO2 pellets [J]. Water Research,2001,35(4):1022-1028.
    [33]Chen Y. X., Wang K., Lou L. P. Photodegradation of dye pollutants on silica gel supported TiO2 particles under visible light irradiation [J]. Jounal of Photochemistry and Photobiology A:Chemistry,2004,163(1-2):281-287.
    [34]Fujishima A., Rao T. N., Tryk D. A. Titanium dioxide photocatalysis [J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2000,1(1):1-21.
    [35]Karuppuchamy S., Suzuki N., Ito S., et al. A novel one-step electrochemical method to obtain crystalline titanium dioxide films at low temperature [J]. Current Applied Physics,2009,9(1):243-248.
    [36]Saadoun L., Ayllon J. A., Jimenez-Becerril J., et al.1,2-diolates of titanium as suitable precursors for the preparation of photoactive high surface titania [J]. Applied Catalysis B:Environmental,1999,21(4):269-277.
    [37]Watson S. S., Beydoun D., Scott J. A., et al. The effect of preparation method on the photoactivity of crystalline titanium dioxide particles [J]. Chemical Engineering Journal,2003,95(1-3):213-220.
    [38]Wu X. H., Ding X. B., Qin W., et al. Enhanced photo-catalytic activity of TiO2 films with doped la prepared by micro-plasma oxidation method [J]. Journal of Hazardous Materials,2006,137(1):192-197.
    [39]Almquist C. B., Biswas P. Role of synthesis method and particle size of nanostructured TiO2 on its photoactivity [J]. Journal of Catalysis,2002,212(2): 145-156.
    [40]Grieken R. V., Aguado J., Lopez-Munoz M. J., et al. Synthesis of size-controlled silica-supported TiO2 photocatalysts [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):315-322.
    [41]Maira A. J., Yeung K. L., Lee C. Y., et al. Size effects in gas-phase photo-oxidation of trichloroethylene using nanometer-sized TiO2 catalysts [J]. Journal of Catalysis,2000, 192(1):185-196.
    [42]Sleiman M., Conchon P., Ferronato C., et al. Photocatalytic oxidation of toluene at indoor air levels (ppbv):Towards a better assessment of conversion, reaction intermediates and mineralization [J]. Applied Catalysis B:Environmental,2009, 86(3-4):159-165.
    [43]Brezova V., Billik P., Vreckova Z., et al. Photoinduced formation of reactive oxygen species in suspensions of titania mechanochemically synthesized from TiCl4 [J]. Journal of Molecular Catalysis A:Chemical,2010,327(1-2):101-109.
    [44]Jing J., Liu M., Colvin V. L., et al. Photocatalytic degradation of nitrogen-containing organic compounds over TiO2 [J]. Journal of Molecular Catalysis A:Chemical,2011. 351:17-28.
    [45]Pichat P., Cennenati L., Albini A., et al. Degradation process of organic compounds over uv-irradiated TiO2:Effect of ozone [J]. Research on Chemical Intermediates. 2000,26(2):161-170.
    [46]Beydoun D., Amal R. Novel photocatalyst:Titania-coated magnetite. Activity and photodissolution [J]. The Journal of Physical Chemistry,2000,104(18):4387-4396.
    [47]Beydoun D., Amal R., Low G., et al. Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide [J]. Journal of Molecular Catalysis A:Chemical,2002,180(1-2):193-200.
    [48]Watson S., Beydoun D., Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core [J]. Journal of Photochemistry and Photobiology A:Chemistry,2002,148(1-3):303-313.
    [49]Tung W. S., Daoud W. A. New approach toward nanosized ferrous ferric oxide and Fe3O4-doped titanium dioxide photocatalysts [J]. ACS applied materials & interfaces, 2009,1(11):2453-2461.
    [50]Marugan J., Grieken R. V., Cassano A. E., et al. Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2 and silica-supported TiO2 suspensions [J]. Applied Catalysis B:Environmental, 2008,85(1-2):48-60.
    [51]Orozco S. L., Arancibia-Bulnes C. A., Suarez-Parra R. Radiation absorption and degradation of an azo dye in a hybrid photocatalytic reactor [J]. Chemical Engineering Science,2009,64(9):2173-2185.
    [52]Pareek V., Chong S., Tade M., et al. Light intensity distribution in heterogenous photocatalytic reactors [J]. Asia-Pacific Journal of Chemical Engineering,2008,3(2): 171-201.
    [53]Venkatachalam N., Palanichamy M., Murugesan V. Sol-gel preparation and characterization of alkaline earth metal doped nano TiO2: Efficient photocatalytic degradation of 4-chlorophenol [J]. Journal of Molecular Catalysis A:Chemical,2007, 273(1-2):177-185.
    [54]Zhang H., Lv X., Li Y., et al. P25-graphene composite as a high performance photocatalyst [J]. ACS Nano,2010.4(1):380-386.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700