海拉尔油田苏德尔特复杂岩性储层压裂技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海拉尔油田苏德尔特区主要储层是兴安岭群含凝灰质沉积岩储层和布达特群缝洞发育的变质岩储层,均属于低孔特低渗储层,自然产能低,压裂是最有潜力的增产措施,也是提交油田控制储量的关键技术,但是,由于储层的构造和岩性复杂,常规压裂施工难度大,裂缝起裂和延伸不易预测和控制,施工过程中压裂液滤失大,易低砂比砂堵,改造强度低,效果差,措施成功率低。为此,本文深入研究了苏德尔特区兴安岭群和布达特群复杂岩性储层有效压裂技术,这对苏德尔特区的有效开发具有重要意义和实用价值。
     首先,系统研究了兴安岭群和布达特群储层的沉积、构造、储层和岩性等特征,并详细分析了储层的注采能力。结果表明,兴安岭群沉积岩储层凝灰质及蒙脱石和高岭石等粘土矿物含量较高,敏感性较强。布达特群变质岩潜山储层多为碎裂的含钙中砂岩、细粒长石岩屑砂岩和碳酸盐质砾岩。两套储层均属低孔特低渗透储层,排驱压力较高,中偏强水敏,弱速敏到中等偏强速敏。断层均十分发育,布达特群储层裂缝和孔洞相对比较发育。两套储层的自然产能和吸水能力都非常低,多数层试油时不出油,采油指数和吸水系数都很低。
     其次,基于已有地应力计算模型,建立了考虑构造应力和热应力影响的地应力计算新模型,并设计了相应的地应力剖面解释软件,进而,利用实际测井资料,分区块进行了地应力解释,计算出沿深度的连续地应力剖面数据、岩石力学参数、柱状剖面图及分层数据等,得到苏德尔特区地应力的纵向和平面分布规律,为苏德尔特区压裂开发提供了理论依据。
     第三,基于储层岩性认识和地应力等研究成果,给出了布达特群储层裂缝起裂和延伸准则及裂缝开启的数学模型和求解方法,并且,分析了含凝灰质兴安岭群储层压裂的起裂和延伸机理。同时,还测定了两套储层的岩石力学参数,结果表明,布达特群变质岩基质致密,裂缝和孔洞发育,且储层厚度较大,纵向上无明显应力差,压裂时压裂液滤失量大,易垂向延伸,裂缝较窄且缝高不易控制,压裂施工难度大,需要降低滤失和优化压裂施工设计,建议采用合层压裂以减少裂缝窜层,也可采用液体控缝高剂控制裂缝高度。含凝灰质兴安岭砂岩储层是粘土含量高、具有较强塑性的硬地层,水力压裂时裂缝起裂机理与常规砂岩硬地层相同,但由于岩石塑性较强,且因粘土吸水膨胀应力而使裂缝内有效净压力降低,导致裂缝变窄,加砂困难,采用能够抵制岩石水化的低滤失压裂液,可以控制裂缝的起裂和延伸。
     第四,针对兴安岭群含凝灰质储层易水化变软和滤失大及布达特群复杂介质储层滤失大的问题,研制了低滤失交联冻胶乳化压裂液体系,并从配方优化、性能表征、降滤失机理、滤失和压裂模型等方面,系统地研究了交联冻胶乳化压裂液的应用性能。结果表明,该乳化压裂液体系具有良好的岩石配伍性、乳化液稳定性、降滤失性能、流变性能、破胶性能及携砂能力,且储层伤害低,可适用于兴安岭群含凝灰质强水敏储层及布达特群缝洞发育复杂介质储层的压裂施工。乳化压裂液的降滤失机理主要是贾敏效应、高粘度、对凝灰岩吸水的抑制作用、油水两相流动效应及滤饼的形成。计算结果表明,乳化压裂液可明显改善裂缝的几何形状。
     第五,根据储层的地应力和岩性等特点,开展了兴安岭群含凝灰质储层压裂的施工参数和施工工艺的优化研究。设计了乳化压裂液的配液装置及配液流程,确定了有效的乳化压裂液施工参数,进行了现场试验,分析了现场压裂应用效果。同时,研究了布达特群储层的人工控缝高、变排量施工、测试压裂和地应力分析等压裂优化设计方法及提高压裂砂比和加砂强度的系列技术,形成了布达特群储层现场压裂施工控制技术,进行了现场试验,分析了布达特群储层的现场压裂应用效果。最后,对本文研究的复杂岩性储层压裂技术的措施效果进行了经济评价。
     室内实验分析和现场试验结果表明,本文研究的复杂岩性储层压裂技术可有效的开发动用苏德尔特区含凝灰质兴安岭群储层和复杂介质布达特群储层,现场压裂施工的压裂液平均返排率高,砂比和加砂强度大,施工成功率高(达到80%~90%),投入产出比分别达到1:5和1:8以上,技术效果和经济效益非常显著,解决了苏德尔特区复杂岩性储层压裂的难题。
Xinganling sedimentary tuff formations and Budate metamorphic formations with fractures and dissolved pores/caves are the main formations with low pororsity and extra low permeability of Sudert region in Hailaer Oilfield. Only limited oil could be produced by unartificial method. Hydraulic fracturing technology which is potential to stimulate such formations can provide more estimated and recoverable reserves. However, the structure and lithology of the formations are so complexed and unconventional that conventional fracturing technologies are noneffective because it is difficult to forecast and control fracture splitting and extending with large loss of fracturing fluid. As a result, sand plug is encountered at lower proppant concentration, limited stimulation is obtained, only a few wells are stimulated and improved. In this work, researches on effective hydraulic fracture technologies were carried out to improve the hydraulic fracturing effect and stimulate the formation.
     First, the sediment, structure, formation and lithology characteristic of the formations were investigated, and injection and production capabilities were researched in detail. It is shown that, Xinganling sedimentary tuff formations are sensitive to water and flow rate for their higher contents of montmorillonite and kaolinite. And Budate metamorphic hidden mountain formations are comprised of fractured calcic medium sand rocks, sand rocks with fine feldspathic rock crumbs and carbonate conglomerate rocks. With lower porosity and permeability, higher drainage pressure, medium/large water sensitivity, weak/medium/large flow rate sensitivity were observed in laboratory. Faults are found in both kinds of formations. More fractures, pores and caves are found in Budate formations. Both kinds of formations were tested with much lower oil production and water injection capabilities. There was almost no oil produced from most formations in the test for oil. The oil productivity index and water injectivity index were extra lower.
     Second, new earth stress models in view of structural and heat stress were established based on the existing earth stress models, and the earth stress profile interpretation software developed with these models. Then the earth stress of some regions were interpreted with the practical well logging data, continuous earth stress profile data, rock mechanic data, column profile chart and layered data obtained. Then longitudinal and tabulate rules of the earth stress were concluded. These technologies and theories are significant for development of Suderte region effectively.
     Third, based on the achievements of formation lithology and earth stress etc., the earth stress and hydraulic fracture models of Budate were discussed, the splitting and extending guidelines were presented, the splitting models and solving methods were provided furthermore. At the same time, the splitting and extending principles of Xinganling sedimentary tuff formations were investigated. Whereafter, rock mechanic parameters of both kinds of formations were measured. It shows that matrix of Budate formations is compacted and tight. There are developed fractures, pores and caves in it. The earth stress difference is unconspicuous between the formation and up/under isolated layers because its large thickness. As a result, fracturing fluid loss is large, the splitted fracture inclined to extend vertically, fracture with limited width were obtained, the height of fracture was difficult to control, and it is hard to implemented effective hydraulic fracture. It could be improved by means of reducing fracturing fluid loss and optimizing design of the hydraulic fracture execution. It is advised to fracture the formations combined to restrain the unexpected fracture extension, and/or use fluid additives to control fracture height. Xinganling tuff sand formations belong to elastic rigid formations with large clay content. Their fracture splitting and extending principles are similar to the conventional sand formation, but the width of the fracture and sand added is limited for the effective net pressure decrease in the fracture derived from the plasticity and expanding stress of the rocks adsorbing water. Emulsified crosslinking jelly glue fracturing fluids is potential to restrain water adsorption to the rocks, control fracture splitting and extending effectively.
     Forth, emulsified crosslinking jelly glue fracturing fluid with lower fluid loss was developed to decrease fluid loss in hydraulic fracture of the formation with complex lithology. Its technological and ecnomics feasibilities are evaluated in terms of prescription optimization, performance characterization, principles of decrease in the fluid loss, models of fluid loss and hydraulic fracturing, and so on. It shows that the fracturing fluid has favorable compatibility, emulsion stability, capability to reduce fluid loss, rheological and glue breaking characteristics, sand carrying capability, and lower damage to the formation. The system is applicable to hydraulic fracture of Xinganling tuff sand formations with strong water sensitivity and Budate formation with fractures, dissolved pores and caves. The principles of its decrease in fluid loss are researched in detail, mainly Jamin's effect, high viscosity, inhibition of the adsorption of water to the tuff rock, flow effect of water and oil phases, and filter cake formed the fracturing fluid involved to decrease the fluid loss. The simulation calculation indicated the emulsified crosslinking jelly glue fracturing fluid is significant to improve the fracture geometry.
     Fifth, optimization and design of the parameters and technics for hydraulic fracturing of Xinganling tuff formations were carried out according to the earth stress and lithology of the formations. The confecting facility and technological process designed. The effective implementing parameters were determined, The field tests were carried out. The field application results were analyzed. At the same time, some methods and technologies are provided to optimize and design hydraulic fracturing implementation and enhance proppant concentration, which include fracture height controlling artificially, operation with different injection rates, testing hydraulic fracture, and earth stress analysis, etc. And field implementing control technologies for Budate formations also provided, then the field application results are introduced. In the end, the commercial effects of the hydraulic fracturing technologies for the complex formations in Sudert region are introduced.
     Laboratory and field researching results show that the hydraulic fracturing technologies are feasible and practical to develop Xinganling sedimentary tuff formations and Budate metamorphic formations with fractures and dissolved pores/caves in Sudert region. Large ratio of fracturing fluid flowed back to that injected, higher proppant concentration, higher success rate (up to 80% ~90%), and higher input-output ratio (1:5 and 1:8 respectively) were obtained.
引文
[1] L.吉德利等著,蒋阗,单文文等译.水力压裂技术新进展[M].石油工业出版社, 1995.
    [2]姜瑞忠,蒋廷学,汪永利.水利压裂技术的近期发展与展望[J].石油钻采工艺,2004, 26(4):52-56
    [3] Robert. S.S著,刘德铸译.油井增产技术[M].石油工业出版社, 2003.
    [4]王鸿勋编著.水力压裂原理.石油工业出版社[M]. 1987: 1-6.
    [5]刘让杰,张建涛.水力压裂支撑剂现状及展望[J].钻采工艺, 2003, 26(4): 31-34.
    [6] D.麦德尔[德].水力支撑剂压裂和砾石充填[M].北京:石油工业出版社, 1999.
    [7] Stewart, Lisa, Cassell, B.R.; Bol, G.M.. Acoustic-Emission Monitoring During Hydraulic Fracturing[C].1992, SPE 20970-PA.
    [8] J. Groenenboom, D.B. van Dam and C.J. de Pater. Time lapse ultrasonic measurements of laboratory hydraulic fracture growth: width profile and tip behaviour[C]. 1999, SPE 56727-MS.
    [9] Wright, C.A., Davis, E.J., Golich, G.M., et al. Downhole Tiltmeter Fracture Mapping: Finally Measuring Hydraulic Fracture Dimensions[C]. 1998, SPE 46194-MS.
    [10] Savic, Milos, Cockram, M.J., Ziolkowski, A.M., Active Ultrasonic Monitoring of Laboratory-Scale Hydraulic Fracturing Experiments: Numerical Modelling vs. Experiment[C]. 1993, SPE 26793-MS.
    [11] Van Domelen, M.L., Jantz, E.L., Murphy, K.S., Onsite Design, Analysis, and Automation Maximizes Efficiency of Fracturing Operations[C].1989, SPE 18863-MS.
    [12] Meyer, B.R., Cooper, G.D., Nelson, S.G., Real-Time 3-D Hydraulic Fracturing Simulation: Theory and Field Case Studies[C].1990, SPE 20658-MS.
    [13] Locke, C.D., Overbey Jr., W.K., Yost II, A.B., Field Measurements of Dynamic Pressure and Seismic Activity During Foam Fracturing[C]. 1988, SPE 18555-MS.
    [14] Fitz-Patrick, R.P., Kerr, G.K., O'Shea, P.A.. A Comprehensive Fracture Diagnostics Experiment: Part 1-An Overview[C]. 1986, SPE 13893-PA.
    [15] Robinson, J.C., Practical Onsite Inspection and Testing Improves Fracture Treatment Quality[C]. 1985, SPE 14435-MS.
    [16] Holzhausen, G.R., Card, C.C., Raisbeck, J.M., et al. Hydraulic Fracture Growth during Steam Stimulation in a Single-Well Test[C]. 1985, SPE 13619-MS.
    [17]胥元刚.水力压裂的几个新进展[J].西安石油学院学报(自然科学版), 1998, (04):51-57
    [18]杨秀夫,刘希圣等.国内外水力压裂技术现状及发展趋势[J].钻采工艺, 1998,(04):21-27
    [19]王晓泉,陈作,姚飞.水力压裂技术现状及发展展望[J].钻采工艺, 1998, (02):28-34
    [20]叶芳春,李红.重复压裂技术综述[J].钻采工艺, 1997, (06):27-34
    [21]汪永利,姚飞.重复压裂技术研究与应用[J].油气采收率技术, 1997, (03):42-52
    [22]谢建华,赵恩远,李平,等.大庆油田水平井多段压裂技术[J].石油钻采工艺, 1998, (04): 72-76
    [23]闵家华,李昱,寇永强,等.浅论油田压裂技术和压裂液的优化选择[J].断块油气田, 1998, (03):1-5
    [24]谢朝阳,李志,罗美娥,等.大庆油田薄差油层压裂挖潜技术[J].断块油气田, 1997, (04): 53-56
    [25]王凤江,丁云宏,路勇.低渗透油田重复压裂技术研究[J].石油勘探与开发, 1999, (01): 71-73
    [26]俞绍诚.高砂比与端部脱砂压裂技术[J].河南石油, 1997, (04):1
    [27] Mark L. Wedman, Keith W. Lynch, and Jim W. Spearman, Hydraulic Fracturing for Sand Control in Unconsolidated Heavy-Oil Reservoirs[C].1999, SPE 54628-MS.
    [28] Nguyen, P.D., Dewprashad, B.T., Weaver, J.D., A New Approach for Enhancing Fracture Conductivity[C]. 1998, SPE50002-MS.
    [29] E. R. Upchurch, Near-Wellbore Halo Effect Resulting from Tip Screenout Fracturing: Its Direct Measurement and Implication for Sand Control[C]. 1999, SPE 56589-MS.
    [30] Stadulis, Jerome M., Development of a Completion Design to Control Screenouts Caused by Multiple Near-Wellbore Fractures[C]. 1995, SPE 29549-MS.
    [31] Nguyen, Phillip D., Weaver, Jim D., et al. Enhancing Fracture Conductivity Through Surface Modification of Proppant[C]. 1998, SPE 39428-MS.
    [32] Ortega, L., Brito, L., Corpoven S.A.; Ben-Naceur, K., Hydraulic Fracturing for Control of Sand Production and Asphaltene Deposition in Deep Hot Wells[C]. 1996, SPE 36461-MS.
    [33] Arthur Bale, Kjell Owren Statoil, and Michael B. Smith. Propped Fracturing as a Tool for Sand Control and Reservoir Management[C]. 1994, SPE 24992-PA
    [34] Abass, H.H., Wilson, J.M., Venditto, et al. Stimulating Weak Formations Using New Hydraulic Fracturing and Sand Control Approaches[C]. 1993, SPE 25494-MS.
    [35] Nguyen, P.D., Brumley, J.L., et al. Stabilizing Wellbores in Unconsolidated Formations for Fracture Stimulation[C]. 1998, SPE 49252-MS.
    [36]张文玉.压裂-充填措施的应用、设计及经验[J].世界石油工业,1995 ,2 (2):42-45
    [37] Dusseault, M.B., Danyluk, P.G., Bilak, R.A., Slurry Fracture Injection of Solid and Liquid Heavy Oil Wastes[C]. 1998 SPE 46823-MS.
    [38] Sipple-Srinivasan, M.M., Bruno, M.S., Hejl, K.A., Danyluk, P.G., Olmstead, S.E., Disposal of Crude Contaminated Soil Through Slurry Fracture Injection at the West Coyote Field in California[C]. 1998, SPE 46239-MS.
    [39]孙剑波,杨明飞,代建华,等.低渗透油藏重复压裂机理研究与应用[J].内蒙古石油化工, 2004, 30(1): 158-159
    [40]程兆蕙,罗英俊.中深井油层水力压裂[M].北京:石油工业出版社, 1990.
    [41] M. J.埃克诺米德斯, K.G.诺尔特等著,张保平等译.油藏增产措施[M].北京:石油工业出版社, 1991.
    [42]谢桂学,李爱山,罗峻,等.中、高渗透油藏压裂作用机理探讨[J].油气采收率技术, 1998, (01): 51-57
    [43]凌建军,黄鹂,等.低渗透油层压裂改造技术[J].钻采工艺, 1997, (04):25-28
    [44] M.B. Smith, A. Bale, StatOil, et al. An Investigation of Non-Darcy Flow Effects on Hydraulic Fractured Oil and Gas Well Performance. 2004, SPE 90864-MS.
    [45] H. Klein, Brent R. Ozenne, Ron S. Vandersypen.High-Permeability Fracturing: "Carter" Fluid Loss or Not, 2004, SPE 86550-MS.
    [46]L.G. Griffin, R.B. Sullivan, et al. Hydraulic Fracture Mapping of the High-Temperature, High-Pressure Bossier Sands in East Texas. 2003 SPE 84489-MS.
    [47] J.M. DeGraff, M.E. Meurer, and L.H. Landis. Fracture Network Modeling and Dual-Permeability Simulation of Carbonate Reservoirs. 2005 IPTC 10954-MS.
    [48]闵家华,李昱,寇永强,等.浅论油田压裂技术和压裂液的优化选择[J].断块油气田, 1998, (03): 1-5
    [49]赵忠扬,卢拥军,崔明月.优质植物胶水基压裂液系列研究与应用[J].石油与天然气化工, 1997, 26(3): 185-187
    [50]崔明月.水基压裂液添加剂的应用与评价[J].油田化学, 1997, 14(4):377-383
    [51]张海龙,崔福林,徐影.压裂液伤害及油层保护研究[J].石油天然气学报, 2005, 27(1): 221-223.
    [52]李志明,张金珠.地应力与油气勘探开发[M].北京:石油工业出版社, 1997.
    [53] A. Mcgarr, S. M. Spottiswoode, and N. C. GAY: Relationship of mine tremors to induced stresses and to rock properties in the focal region. Bulletin of the Seismological Society of America.1975, 65: 981-993.
    [54]葛洪魁,林英松,王顺昌.地应力测试及其在勘探开发中的应用[J].石油大学学报(自然科学版), 1998, 22(1): 94-98.
    [55]葛洪魁,林英松,王顺昌.水力压裂地应力测量有关技术问题的讨论[J].石油钻采工艺, 1998, (06):53-56,62
    [56]丁原辰,孙宝珊,邵兆刚,等. AE法油田最大主应力值的测量及其与油产关系[J].岩石力学与工程学报, 1998, (03):315-321
    [57]葛洪魁,林英松.油田地应力的分布规律[J].断块油气田, 1998, 5(5):1-5
    [58]李行船,马宗晋,曲国胜.分层地应力描述及其在胜利油田的应用[J].特种油气藏, 2005, 12(6): 8-10.
    [59]朱焕春,陶振宇.不同岩石中地应力分布[J].地震学报, 1994, (01): 24-27
    [60]朱焕春,陶振宇.地形地貌与地应力分布的初步分析[J].水利水电技术, 1994, (1):29-33
    [61]朱焕春,陶振宇,黄德凡.河谷走向与河谷地应力分布[J].岩石力学与工程学报, 1995, 14(1):17-24
    [62]李群芳.几种典型交汇方式的断裂周围应力场和位移场的三维空间分布-论断裂对构造应力场的影响[A].地壳构造与地壳应力文集1[C].国家地震局地壳应力研究所编,北京:地震出版社, 1987, 146-158.
    [63]李群芳,等.单断裂周围的三维应力场与形变场[J].地壳形变与地震, 1982, 2(1): 78-85.
    [64]杜成良,姬长生,罗天雨,等.水力压裂多裂缝产生机理及影响因素[J].特种油气藏. 2006, 13(5): 19-21.
    [65]李根生,黄中伟,牛继磊,等.综述地应力及射孔参数对水力压裂影响的研究进展[J].石油大学学报(自然科学版). 2005, 29(4):136-142.
    [66]胥元刚.射孔方位、密度、孔径对裂缝宽度的影响[J].天然气工业, 2004, 24(10): 47-49.
    [67]张保平,方竞,田国荣,等.水力压裂中的近井筒效应[J].岩石力学与工程学报. 2004, 23(14)): 2476-2479.
    [68]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究及发展[J].钻采工艺. 2005, 28(5): 50-53.
    [69]王祖文,郭大立,邓金根,等.射孔方式对压裂压力及裂缝形态的影响[J].西南石油学院学报. 2005, 27(5): 47-50.
    [70]张广清,陈勉,殷有泉,等.射孔对地层破裂压力的影响研究[J].岩石力学与工程学报. 2003, 22(1): 40-44.
    [71]柳贡慧,李玉顺.考虑地应力影响下的射孔初始方位角的确定[J].石油学报. 2001, 22(1): 105-108.
    [72]李志明.地应力与油层改造方案[J].石油钻采工艺. 1998, 20(6): 47-52.
    [73]陶良军,冯兴武,黄青松等.宝浪油田地应力和裂缝特征研究与应用[J].钻采工艺, 2001, 24(2): 25-27.
    [74]吕俊丰,刘鹏,林庆祥等.地应力分析解释技术在压裂中的应用[J].大庆石油地质与开发. 2005, 24(2): 64-66.
    [75]尤明庆.水压致裂法测量地应力方法的研究[J].岩土工程学报. 2005, 27(3): 350-353.
    [76]赵奎,金解放等.声发射测量原岩应力研究现状及进展[J].矿业快报. 2005, 438 (12): 4-6.
    [77]张书瑞,翟阳等.应用录井资料求地应力剖面[J].录井技术. 2003, 14(3):36-40.
    [78]张广清,金衍,陈勉.利用围压下岩石的凯泽效应测定地应力[J].岩石力学与工程学报. 2002, 21(3): 360-363.
    [79]周小平,王建华.测量地应力的新方法[J].岩土力学. 2002, 23(3): 316-320.
    [80]邢纪国,楼一珊.用于地应力测量的岩屑分析法[J].江汉石油学院学报. 2001, 23(4): 43-44.
    [81]欧阳健,王贵文.电测井地应力分析及评价[J].石油勘探与开发. 2001, 28(3): 92-94.
    [82]张筠,林绍文.利用测井进行地层弹性特征及应力场分析[J].测井技术. 2001, 25(6): 467-472.
    [83]刘允芳.在单钻孔中水压致裂法的三维地应力测量[J].岩石力学与工程学报. 1999, 18(2):192-196.
    [84]苏恺之等.地应力研究现状与展望[C].地应力研究文集,北京:地震出版社,1984年.
    [85]任希飞,王连捷.深部地应力测量方法--水压致裂法[J].水文地质工程地质. 1980, 2:39-42
    [86]余雄鹰,王越之,李自俊.声波法计算水平主地应力值[J].石油学报, 1996, 17(3): 59-62.
    [87]黄忠桥,康义逵.应用声发射资料计算地应力的方法[J].特种油气藏. 2003, 10(4): 4-6.
    [88] Tullis TE, The use of mechanical twinning in minerals as a measure of shear stress magnitudes [J]. J.G.R., 1980, 85(B.11):6263-6268.
    [89] Durham WB, Goetze C and Blake B, Plastic flow of oriented single crystals of olivine, Part2, Observations and interpretations of the dislocation structures[J]. J.G.R., 1977, 82(B6):5755-5770.
    [90] Nuttal J, Nutting J, Structure and properties of heavily cold worked for metals and alloys [J]. Met. Sci., 1978, 12:430-437.
    [91] White S, Difficulties associated with paleo-stress estimates [J]. Bull. Of Mineral., 1979, 102: 210-215.
    [92] Takeuchi S, Argon AS, Review: Steady state creep of single phase crystal line matter of high temperatures [J]. J. Mater. Sci.1976, 11:1542-1566.
    [93]祁英男,刘健中,毛吉震.用声发射法测定唐山地区历史地壳应力[J].华北地震科学, 1987,增刊:
    [94]刘建中,张金珠,张雪.油田应力测量[M].北京:地震出版社, 1993.
    [95]王连捷,潘立宙.地应力测量及其在工程中的应用[M].北京:地震出版社,1991.
    [96]修森D.R.,克劳福特A.M.,凯塞效应测量:根据钻取岩芯用声发射确定原地应力的一种新方法[M].地壳应力研究的新进展,北京:北京出版社, 1990.
    [97]黄庆华,马寅生等.阜新-义县盆地构造演化及应力场光弹性模拟分析[J].中国地质科学院院报, 1991, 22(2):6-9
    [98]李军,王贵文,欧阳健.利用测井信息定量研究库车坳陷山前地区地应力[J].石油勘探与开发. 2001, 28(5): 93-95
    [99]魏阳庆,何坤萍,姜钧.全波列声波测井在地应力分析中的应用[J].断块油气田, 7(3): 33-35.
    [100]蔡美峰.地应力测量原理和方法的评述[J].岩石力学与工程学报, 1993, 12(3): 275-283.
    [101]蔡美峰.地应力测量技术和原理[M].北京:科学出版社, 2000.
    [102]乔兰,蔡美峰,李长洪.应力解除法在某金矿地应力测量中的新进展[J].岩石力学与工程学报, 1995, 14(1): 25-32.
    [103]余琪祥,吴爱军,李善良,等.地应力剖面在储层开发中的应用-以川西XL气田沙溪庙组储层为例[J].石油与天然气地质. 2001, 22(1): 42-47.
    [104]董建华,刘鹏,王薇.地应力剖面在水力压裂施工中的应用[J].大庆石油学院学报. 2005, 29(2): 40-42.
    [105]张传进,鲍洪志,路保平.油气开采中岩石力学参数变化规律试验研究[J].石油钻采工艺. 2002, 24(4): 32-34.
    [106]李阳,姚飞,翁定为等.重复压裂技术的发展与展望[J].石油天然气学报, 2005 ,27 (5):789-791
    [107]赵永胜,王秀娟,兰玉波等.关于压裂裂缝形态模型的讨论[J].石油勘探与开发. 2001, 28(6): 97-98.
    [108]黄荣樽.水力压裂裂缝的起裂和扩展[J].石油勘探与开发, 1981, (5): 62-74.
    [109]姚飞,王晓泉.水力裂缝起裂延伸和闭合的机理分析[J].钻采工艺, 2000, (23): 22-23.
    [110]李民河,聂振荣,廖健德.水力压裂缝延伸方向分析及其应用[J].新疆地质2003, (21): 486-487.
    [111]邓燕.大位移井水力压裂裂缝起裂机理研究及应用[D]. 2003: 24-44.
    [112]陈勉,陈治喜,黄荣樽.破裂压力起裂角公式大斜度井水压裂缝起裂研究[J].石油大学学报, 1995, (19): 30-34.
    [113]周代余,郭建春,赵金洲,等.裸眼完井下的大位移井裂缝起裂研究[J].西南石油学院学报, 2002, (6): 33-34.
    [114]姚飞.水力裂缝延伸过程中的岩石断裂韧性[J].岩石力学与工程学报, 2004, (23): 2346-2348.
    [115]阳友奎,肖长富,邱贤德,等.水力压裂裂缝形态与缝内压力分布[J].重庆大学学报, 1995, (18): 20-21.
    [116]谢桂学.数学模型周边脱砂压裂技术研究[D].西南石油学院. 2001:40-58.
    [117]任勇,郭建春,赵金洲,等.压裂井裂缝导流能力研究[J].河南石油. 2005, 19(1): 46-48.
    [118]王晓冬,张义堂,刘慈群.垂直裂缝井产能及导流能力优化研究[J].石油勘探与开发. 2004, 31(5): 78-81.
    [119]寇永强,谢桂学,乐小明,等.裂缝导流能力优化研究[J].油气地质与采收率. 2002, 9(5): 40-41.
    [120]李峰.汪越胜.赵经文.油气井压裂裂缝高度分析[J].哈尔滨工业大学学报. 1999, 31(4): 22-25
    [121]胡永全,任书泉.水力压裂裂缝高度控制分析[J].大庆石油地质与开发,1996, (15): 55-56.
    [122]胥元刚,张琪.变裂缝导流能力下水力压裂整体优化设计方法[J].大庆石油地质与开发. 2000, 19(2): 40-42.
    [123]蒋廷学,汪永利,丁云宏,等.考虑应力敏感性和长期导流能力条件下的支撑剂优选方法[J].钻采工艺. 2004, 27(5): 75-76.
    [124] Atteberry, R.D., Tucker, R.L., Ritz, J.W. Application of Singered Bauxite Proppants to Stimulation of Low Permeability South Texas Gas Reservoir. 1979, SPE 7924-MS.
    [125] Seccombe, James C., Anderson, Gary E. Selection of a Fracture Proppant in Tight Gas Field, Bauxite vs. Sand, Wamsutter Area, Wyoming. 1982, SPE 10827-MS.
    [126] Tucker, R.L. Practical Pressure Analysis in Evaluction of Proppant Selection for the Low-permeability, Highly Geopressured Reservoirs of the Mcallen Ranch(Vicksburg) Field. 1979, 7925-MS.
    [127]何艳青.采用工艺技术的突破性进展—顶端脱砂技术[J].世界石油工业, 1995, 2 (2):33-34
    [128]谢桂学,乐小明.裂缝周边脱砂带对裂缝扩展的控制作用[J].油气地质与采收率, 2001, (04): 66-68.
    [129]张士诚等.重复压裂技术的研究与应用[J].世界石油工业, 1995 ,2 (7):21-25
    [130]张士诚,王鸿勋.国外水力压裂工艺技术近期发展水平综述[J].世界石油工业, 1995, 2 (6):18-21
    [131]叶芳春.水力压裂技术进展[J].钻采工艺,1995 ,18 (1):33-38
    [132]程兆蕙,罗英俊.中深井油层水力压裂[M].北京:石油工业出版社,1990.
    [133] Mukherjee, Hemanta, Paoli, B.F., McDonald, Todd, Cartaya, Hugo, et al.Successful Control of Fracture Height Growth by Placement of Artificial Barrier.1995, SPE 25917-PA.
    [134] Morales, Rogelio, Prado, Erling, Santillan. Production Optimization by an ArtificialControl Of Fracture Height Growth. 1997, SPE 38150-MS.
    [135] M. Bai, TerraTek; R.H. Morales, R. Suarez-Rivera, et al. Modeling Fracture Tip Screenout and Application for Fracture Height Growth Control. 2003, SPE 84218-MS.
    [136] Mullen, M.E., Norman, W.D., Wine, J.D., et al. Investigation of Height Growth In Frac Pack Completions. 1996, SPE 36458-MS.
    [137] Valko, Peter, Economides, M.J. Fracture Height Containment With Continuum Damage Mechanics. 1993, SPE 26598-MS .
    [138] R.G. Jeffrey and A.P. Bunger. A Detailed Comparison of Experimental and Numerical Data on Hydraulic Fracture Height Growth Through Stress Contrasts. 2007, SPE106030-MS
    [139] Hongren Gu and Eduard Siebrits. Effect of Formation Modulus Contrast on Hydraulic Fracture Height Containment. 2006, SPE 103822-MS.
    [140] Jennifer L. Miskimins, Robert D. Barree. Modeling of Hydraulic Fracture Height Containment in Laminated Sand and Shale Sequences. 2003, SPE 80935-MS

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700