直接序列扩频信号的盲解扩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
直接序列扩频(Direct Sequence Spread Spectrum, DSSS)信号具有抗多径、抗干扰、低截获概率、多址复用等优点,在军事和民用通信领域有着广泛的应用。对于非合作方如通信侦察、无线电频谱监测及非法通信电台的定位跟踪等,需要在未知扩频序列条件下实现信号的解扩以完成传输信息的恢复,因此开展DSSS信号的盲解扩研究具有重要的意义。
     尽管过去在DSSS信号盲解扩方面已经取得了很多进展,但由于缺乏深入的理论分析,使得问题的解决手段比较单一,新方法比较少,仍存在一些重要问题没有获得满意的解决。例如,对于扩频波形估计的理论下界一直没有被研究过;长码DSSS信号的极大似然估计问题很少从非合作的角度分析过。
     本文针对上述问题展开了深入的理论研究,得到的主要研究成果包括以下几个方面:
     1.在确定与随机信号模型条件下,首次由理论上分别推导了DSSS信号扩频波形估计的CRB,可同时适用于长码与短码情况,为衡量各种扩频波形估计方法的性能提供了理论下界。
     2.针对单用户短码DSSS信号的盲同步问题,提出了一种具有低计算复杂度的基于协方差矩阵m1范数改进算法,并推广至多用户且截获信号含有未知频偏的情况;针对短码QPSK-DSSS信号,提出了一种基于恒模特性的扩频序列估计改进算法;通过理论推导证明了扩频波形估计可达到CRB的传统特征分析方法,本质上为高斯极大似然估计器;针对异步短码CDMA信号的盲解扩,通过降维和去噪处理,提出了一种具有低计算复杂度且估计性能更优的改进算法。
     3.针对单用户长码DSSS信号,对扩频波形的极大似然估计进行了理论推导,注意到该极大似然估计问题为组合优化问题,提出了一种基于半定规划的盲解扩算法并推广至截获信号含有未知频偏的情况,在低信噪比和短数据条件下相对传统方法具有优良的估计性能且可达到CRB。同时,提出算法可适用于短码DSSS信号。
     4.针对多用户长码DSSS信号,确定信号模型和用户个数已知条件下,提出了一种基于缺失数据模型低秩近似的盲解扩算法,并在单用户情况下扩频波形估计可达到CRB;随机信号模型条件下提出了一种基于多元高斯缺失模型极大似然估计的盲解扩算法,可实现用户个数的估计。针对单用户长码DSSS信号,提出了一种基于单调缺失数据模型的非优化迭代盲解扩算法,可避免优化估计方法中的初始值和步长的选取、局部收敛性等问题。
     5.针对多用户长码DSSS信号,利用多通道接收技术,通过将二维缺失数据模型向三维空间推广,提出了一种基于缺失张量模型的盲解扩算法。由于充分利用了空、时、码的分集结构,提出算法相对单通道盲解扩算法具有更优估计性能。
Direct sequence spread spectrum (DSSS) signals have been widely used for military and civil communications due to their anti-multipath, anti-jamming, low probability of intercept and multiple access properties. In non-cooperative applications such as communication reconnaissance, wireless spectrum surveillance and localization tracking of illegal communication transmitters, the transmitted information should be recovered without prior knowledge of the spreading sequence at the receiver. Therefore, blind despreading of DSSS signals plays an important role in non-cooperative scenarios.
     Although in the past years the study on blind despreading of DSSS signals has witnessed many developments, not so much in problem solving means and with new measures due to lack of profound theoretic investigation. However, some important problems have not been solved satisfactorily. For an example, the theoretical lower bound of spreading waveform estimation has not been studied. Another example is that the Maximum Likelihood Estimate (MLE) of long-code DSSS signals has seldom been evaluated comprehensively under the non-cooperative context.
     These problems are comprehensively studied from theoretical viewpoint. The main contributions of this dissertation include some aspects as follows:
     1. For the first time, under the stochastical and the deterministic models for the DSSS signals, we derive the Cramér–Rao bound (CRB) for the spreading waveform estimation problem. The derived CRB holds for both long-code and short-code DSSS signals, and gives a performance lower bound for all spreading waveform estimators.
     2. For the problem of blind synchronization for single-user short-code DSSS signals, an improved algorithm based on m1 -norm of the covariance matrix is proposed. The proposed algorithm has low computational complexity and can be used for the multi-user signals with unknown carrier offset. For the spreading sequence estimation problem of short-code QPSK-DSSS signals, an improved algorithm based on constant modulus property is proposed. Through theoretical analysis, we prove that the existing eigenanalysis-based spreading waveform estimator, which can approach the CRB, is essentially the Gaussian MLE. Using de-noising and reduced-dimension techniques, an improved blind despreading algorithm for asynchronous CDMA signals is presented, which has low computational complexity and shows good performance.
     3. For single-user long-code DSSS signals, we derive the MLE of spreading waveform. Note that the MLE problem belongs to the field of combinatorial optimization. We propose a blind despreading algorithm based on semidefinite programming and extend it to the case when unknown carrier offset exists. The proposed algorithm provides significant performance improvements compared to existing methods in the case of low numbers of data samples and low SNR, and can be applied to the short-code DSSS signals.
     4. For multi-user long-code DSSS signals, under the deterministic model and the assumption that the user number is known apriori, we propose a blind despreading algorithm based on low-rank approximation of missing-data model, and the proposed algorithm can approach the CRB in the single-user case. Under the stochastical model, based on the MLE for incomplete multivariate Gaussian data, we propose a blind despreading algorithm which can estimate the user number. For the single-user DSSS signals, to overcome the drawbacks concerning convergence towards local minima and the difficulty to choose the initial value and iterative step precisely in optimization methods, a non-iterative blind despreading algorithm based on monotone missing-data model is proposed.
     5. Using multi-channel receiver, we propose a blind despreading algorithm based on missing-tensor model for multi-user long-code DSSS signals through the three-dimensional extension of the two-dimensional missing-data model. Due to fully exploiting the structure of spatial-temporal-spreading diversity, the proposed algorithm provides better performance compared to the ones using single-channel receiver.
引文
[1] M. K. Simon, J. K. Omura, R. A. Scholtz, et al. Spread Spectrum Communications Handbook, McGraw-Hill Companies, 1994.
    [2]张天骐. DS及DS/CDMA信号的估计方法研究:[博士学位论文].成都:电子科技大学, 2002.
    [3]牟青.直接序列扩频信号的截获分析研究:[博士学位论文].成都:电子科技大学, 2010.
    [4] R. A. Dillard. Detectability of spread-spectrum signals. IEEE Trans. Aerospace and Electronic Systems, 1979, 15(7):526-537.
    [5] H. Urkowitz. Energy detection of unknown deterministic signals. Proceedings of the IEEE, 1967, 55(4):523-531.
    [6] A. Sonnenschein, P. M. Fishman. Radiometric detection of spread-spectrum signals in noise of uncertain power. IEEE Trans. Aerospace and Electronic Systems, 1992, 28(3):654-660.
    [7]魏国强.直接序列扩谱通信信号的检测研究[硕士学位论文].成都:电子科技大学, 2002.
    [8] J. J. Lehtomaki, M. Juntti, H. Saarnisaari. CFAR strategies for channelized radiometer. IEEE Signal Processing Letters, 2005, 12(1):13-16.
    [9] W. E. Snelling, E. A. Geraniotis. The interception of spread spectrum waveforms via the amplitude distribution function, IEEE Military Communications Conference, 1991, 537-542.
    [10] N. Krasner. Optimal Detection of Digitally Modulated Signals. IEEE Trans. Communications, 1982, 30(5):885-895.
    [11] W. A. Gardner. Signal interception: a unifying theoretical framework for feature detection. IEEE Trans. Communications, 1988, 36(8):897-906.
    [12] W. A. Gardner, W. Brown, C. Chih-Kang. Spectral Correlation of Modulated Signals: Part II--Digital Modulation. IEEE Trans. Communications, 1987, 35(6):595-601.
    [13] W. A. Gardner, C. M. Spooner. Cyclic spectral analysis for signal detection and modulation recognition, 1988, Military Communications Conference, Vol.2:419-424.
    [14] G. B. Giannakis. Cyclo-stationary signal analysis. In Digital Signal Processing Handbook. Boca Raton, FL, USA: CRC Press, 1999.
    [15] A. V. Dandawate, G. B. Giannakis. Statistical tests for presence of cyclostationarity. IEEE Trans. Signal Processing, 1994, 42(9):2355-2369.
    [16]谈满堂,朱德君.谱相关理论用于直接序列扩谱信号的检测与估计.电子对抗, 1995, 10(4): 53-59.
    [17]杨忠,张建立.低信噪比直扩信号的周期特征检测与参数估计.无线电工程, 1995, 25(06): 13-20.
    [18]余敬东,郭伟,李牧.直接序列扩频通信的循环谱检测和参数估计技术.电子科技大学学报, 1996, 25(增刊):439-444.
    [19]黄春琳,姜文利,周一宇.直接序列扩频信号的初相和扩频码序列初始时间的循环谱估计.通信学报, 2002, 23(07):1-7.
    [20]金艳,姬红兵,罗军辉.一种基于循环统计量的直扩信号检测与参数估计方法.电子学报, 2006, 34(04):634-637.
    [21] Q. Mou, P. Wei, H.-M. Tai. Invariant detection for short-code QPSK DS-SS signals. Signal Processing, 2010, 90(5):1720-1729.
    [22] J. F. Kuehls, E. Geraniotis. Presence detection of binary-phase-shift-keyed and direct-sequence spread-spectrum signals using a prefilter-delay-and-multiply device. IEEE Journ. Selected Areas in Communications, 1990, 8(5):915-933.
    [23] C. M. Spooner, W. A. Gardner. Robust feature detection for signal interception. IEEE Trans. Communications, 1994, 42(5):2165-2173.
    [24] T. Thanh, M. A. Wickert. Performance of spectral line detection using integrated trispectrum. Military Communications Conference, 1998, Vol 2:2659-663.
    [25] D. A. Hill, J. B. Bodie. Carrier detection of PSK signals. IEEE Trans. Communications, 2001, 49 (3):487-496.
    [26]汤辉,王殊,基于去噪盲分离的多个直扩信号参数估计.系统工程与电子技术, 2011, 33 (8):1722-1726.
    [27] W. A. Gardner, C. M. Spooner. Signal interception: performance advantages of cyclic-feature detectors. IEEE Trans. Communications, 1992, 40(1):149-159.
    [28] W. A. Gardner, A. Napolitano, L. Paura. Cyclostationarity: Half a century of research. Signal Processing, 2006, 86(4):639-697.
    [29] M. K. Tsatsanis, G. B. Giannakis. Blind estimation of direct sequence spread spectrum signals in multipath. Signal Processing, IEEE Trans. Signal Processing, 1997, 45(5):1241-1252.
    [30] G. Burel. Detection Of Spread Spectrum Transmissions Using Fluctuations Of Correlation Estimators, IEEE Int. Symp. on Intelligent Signal Processing and Communication Systems Honolulu, Hawaii, 2000, 1-6.
    [31]刘聪峰,陈鹏举,王昌宝.倒谱检测技术研究,中国电子学会电子对抗分会第十一届学术年会论文集,解放军电子工程学院, 2001:143-146.
    [32]张天骐,周正中.直扩信号伪码周期的谱检测.电波科学学报, 2001, 16(04):518-528.
    [33]张天骐,周正中.低信噪比直扩信号伪码周期检测的谱方法.仪器仪表学报, 2001, 22 (增刊): 41-42.
    [34]刘刚,植强,应用增强二次谱估计直扩信号扩谱周期.电子对抗技术, 2003, 18(3):26-28.
    [35]詹亚锋,曹志刚,马正新,直接扩频序列信号的参数估计.系统工程与电子技术, 2004, 26(9):1176-1197.
    [36]沈振惠.基于四阶统计2-D切片的直扩信号多参数估计.信号处理, 2005, 21(03):304-306.
    [37]赵知劲,邬佳,徐春云等.基于四阶累积量的DSSS/QPSK信号检测方法研究.电子学报, 2007, 35(6):1046-1049.
    [38]董占奇,胡捍英,于宏毅.基于延迟相乘-相关及谱分析的直扩信号检测与符号周期、码片时宽估计分析.电子与信息学报, 2008, 30(04):840-842.
    [39] G. Siavash, A. Bahman. Detection of DS-SS Signals over Fading Channels without Prior Knowledge of Spreading Sequence by Measuring Signal Nongaussianity, IEEE 17th International Symposium In Personal, Indoor and Mobile Radio Communications, 2006:1-5.
    [40] S. Ghavami, B. Abolhassani. Blind Detection of DS-SS Signals over Fading. Channels Using Negentropy or Kurtosis without any prior knowledge, PIMRC'07, 2007:329-333.
    [41]张天骐,周正中,邝育军等.低信噪比长伪码直扩信号伪码周期的估计方法.系统工程与电子技术, 2007, 29(1):12-16.
    [42]张天骐,代少升,杨柳飞等,在残余频偏下微弱直扩信号伪码周期的谱检测.系统工程与电子技术, 2009, 31(04):778-781.
    [43]张天骐,苗圃,马国宁等.多径环境下的直扩信号伪码周期估计.电波科学学报, 2009, 24(5): 973-978.
    [44]徐海源,王丰华,黄知涛等.长码直扩信号的符号速率盲估计方法.国防科技大学学报, 2007, 29(6):44-48.
    [45]牟青,魏平.低信噪比下长码直扩信号的符号宽度估计.电子科技大学学报, 2011, 40(3):352-356.
    [46] P. Y. Qiu, Z. T. Huang, W. L. Jiang et al. Blind classification of the short-code and the long-code direct sequence spread spectrum signals. IET Signal Processing, 2010, 4(1):78-88.
    [47] C. A. French, W. A. Gardner. Spread-Spectrum Despreading Without the Code. IEEE Trans. Communications, 1986, 34 (4): 404-407.
    [48]杨小牛.直接序列(DS)扩频码的截获与干扰技术初探.通信对抗, 1991, 10(3):78-83.
    [49] L. Hongbin, X. Yuan, G. Zongxiang. A neural network approach to estimation of PN spreading sequence in DS/SS communications, International coference on neural information processing, Beijing, 1995, 432-435.
    [50]徐穆询.直扩通信解扩侦收.现代通信对抗研究, 1995, 3(4):17-25.
    [51]杨超斌,邱玲,朱近康.一种直扩通信信号快速检测识别方法.电子学报, 1999, 27(07):89-91.
    [52] F. Dominique, J. H. Reed. Subspace based PN code sequence estimation for direct sequence signals using a simplified Hebb rule. Electronics Letters, 1997, 33(13):1119-1120.
    [53] F. Dominique, J. H. Reed. Simple PN code sequence estimation and synchronisation technique using the constrained Hebbian rule. Electronics Letters, 1997, 33(1):37-38.
    [54] L. Tong, G. Xu, T. Kailath. Blind identification and equalization of multipath channels, In Communications, IEEE International Conference on Communications, 1992, Vol.3:1513-1517.
    [55] E. Moulines, P. Duhamel, J. F. Cardoso, et al. Subspace methods for the blind identification of multichannel FIR filters. IEEE Trans. Signal Processing, 1995, 43(2):516-525.
    [56] P. C. J. Hill, M. E. Ridley. Blind estimation of direct-sequence spread spectrum m-sequence chip codes, IEEE Sixth International Symposium in Spread Spectrum Techniques and Applications, 2000, Vol.1:305-309.
    [57] G. Burel, C. Bouder. Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal, Military Communications Conference Proceedings, 2000, vol.2:967-970.
    [58] C. Bouder, G. Burel. Spread Spectrum Codes Identification by Neural Networks. In Systems and Control: Theory and Applications, Mastorakis:World Scientific Press, 2000, 257-262.
    [59] C. Bouder, S. Azou, G. Burel. A robust synchronization procedure for blind estimation of the symbol period and the timing offset in spread spectrum transmissions, IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications, 2002, Vol.1: 238-241.
    [60] C. Bouder, S. Azou, G. Burel. Performance analysis of a spreading sequence estimator for spread spectrum transmissions. Journal of the Franklin Institute, 2004, 341(2004):595-614.
    [61] C. N. Nzoza, R. Gautier, G. Burel. Blind synchronization and sequences identification in CDMA transmissions, Military Communications Conference, 2004, Vol.3:1384-1390.
    [62] C. N. Nzoza, R. Gautier, G. Burel. Parallel Blind Multiuser Synchronization and SequencesEstimation in Multirate CDMA Transmissions, Fortieth Asilomar Conference in Signals, Systems and Computers, 2006, 2157-2161.
    [63] T. Koivisto, V. Koivunen. Blind despreading of short-code DS-CDMA signals in asynchronous multi-user systems. Signal Processing, 2007, 87(11):2560-2568.
    [64] Y. Yao, V. Poor. Eavesdropping in the synchronous CDMA channel: an EM-based approach. Signal Processing, IEEE Trans. Signal Processing, 2001, 49(8):1748-1756.
    [65] Y. Yao, V. Poor. Blind detection of synchronous CDMA in non-Gaussian channels. IEEE Trans. Signal Processing, 2004, 52(1):271-279.
    [66] A. Haghighat, M. R. Soleymani. Blind spreading sequence discovery for DS-CDMA signal interception. Military Communications Conference, 2003, Vol 2:13-16.
    [67] D. Avitzour. Detection of asynchronous CDMA with unknown user waveforms. IEEE Signal Processing Letters, 2004, 11(2):209-211.
    [68] L. Ming, S. N. Batalama, D. A. Pados, et al. Multiuser CDMA Signal Extraction, Military Communications Conference, 2006, 1-5.
    [69] M.Gupta, B. Santhanam. Hebbian learning based blind adaptive multiuser detection in DS-CDMA systems, Wireless Communications and Networking Conference, 2006, 1102-1107.
    [70] K. Waheed, F. M. Salem. Blind information-theoretic multiuser detection algorithms for DS-CDMA and WCDMA downlink systems. IEEE Trans. Neural Networks, 2005, 16(4):937-948.
    [71] M. Li, S. N. Batalama, D. A. Pados. Population Size Identification for CDMA Eavesdropping, Military Communications Conference, 2007, 1-6.
    [72] Y. Jo, D. Wu. On cracking direct-sequence spread-spectrum systems. Wireless Communications and Mobile Computing, 2009:1-16.
    [73] V. R. Asghari, M. Ardebilipour, Spread Spectrum Code Estimation by Particle Swarm Algorithm. Trans. Engineering, Computing and Technology, 2005(7):207-210.
    [74] V. R. Asghari, M. Ardebilipour, Spread Spectrum Code Estimation by Genetic Algorithm. International Journal of Applied Mathematics and Computer Sciences, 2006, 2(1):7-10.
    [75] J. Mingyan, W. Yong, F. Rubio, et al. Spread Spectrum Code Estimation by Artificial Fish Swarm Algorithm, IEEE International Symposium on Intelligent Signal Processing, 2007, 1-6.
    [76] N. D. Sidiropoulos, G. B. Giannakis, R. Bro. Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans. Signal Processing, 2000, 48(3):810-823.
    [77] N. D. Sidiropoulos, G. Z. Dimic. Blind multiuser detection in W-CDMA systems with large delay spread. IEEE Signal Processing Letters, 2001, 8(3):87-89.
    [78] A. de Baynast, B. Aazhang, D. Declerq, et al. Bayesian blind PARAFAC receivers for DS-CDMA systems, IEEE Workshop on Statistical Signal Processing, 2003, 323-326.
    [79] L. De Lathauwer, J. Castaing. Tensor-based techniques for the blind separation signals. Signal Processing, 2007, 87(2):322-336.
    [80] L. De Lathauwer, A. de Baynast. Blind Deconvolution of DS-CDMA Signals by Means of Decomposition in Rank-(1,L,L) Terms. IEEE Trans. Signal Processing, 2008, 56(4):1562-1571.
    [81] D. Nion, L.De Lathauwer. An enhanced line search scheme for complex-valued tensor decompositions. Application in DS-CDMA. Signal Processing, 2008, 88(3):749-755.
    [82] D. Nion, L.De Lathauwer. A Block Component Model-Based Blind DS-CDMA Receiver. IEEE Trans Signal Processing, 2008, 56(11):5567-5579.
    [83] A. L. F. d. Almeida, J. C. M. M. G. Favier. PARAFAC-Based Unified Tensor Modeling of Wireless Communication Systems with Application to Blind Multiuser Equalization. Signal Processing, 2007, 87(2):337-351.
    [84] A. L. F. de Almeida, G. Favier, J. C. M. Mota. Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes. IEEE Trans. Signal Processing, 2008, 56(6):2417-2428.
    [85]游凌. DS直扩信号参数隐周期特征分析法.信号处理, 2000, 16 (增刊): 8-14.
    [86]张天骐,周正中.直扩信号的谱检测和神经网络估计.系统工程与电子技术, 2001, 23 (12):12-15.
    [87]张天骐,周正中,郭宗祥.一种DS/SS信号PN码序列估计的神经网络方法.信号处理, 2001, 17(6):533-537.
    [88]张花国,李立萍,陈天麒.一种改进的DS/SS信号PN码序列估计算法.信号处理, 2003, 19(增刊):33-36.
    [89] Y. Zhan, Z. Cao, J. Lu. Spread-spectrum sequence estimation for DSSS signal in non-cooperative communication systems. IEE Proceedings Communications, 2005, 152(4):476-480.
    [90]程皓,郭伟,刘飞.多用户DS/CDMA系统下的PN序列盲估计算法.电子测量与仪器学报, 2006, 20(6):45-49.
    [91]程皓,郭伟.相关矩阵相乘构造子空间方法.电子测量与仪器学报, 2007, 21(3):28-32.
    [92]程皓,郭伟,刘飞.基于相位信息的DSSS/CDMA信号用户PN序列快速分离算法.电路与系统学报, 2009, 14(1):49-54.
    [93]唱亮,汪芙平,王赞基.低复杂度的DSSS信号扩频序列估计算法.系统工程与电子技术, 2007, 29(08):1242-1244.
    [94] C. Liang, W. Fuping, W. Zanji. Low complexity method for spreading sequence estimation of DSSS signal in non-cooperative communication systems. Journal of Systems Engineering and Electronics, 2009, 20(1):41-49.
    [95]张红波,吕明.基于子空间跟踪的扩频码盲估计算法.系统工程与电子技术, 2006, 28(10):1470-1472.
    [96]吕明,张红波,唐斌.基于E-PASTd的盲扩频码序列估计算法.电子科技大学学报, 2007, 36(05):886-888.
    [97]吕明,周咏,唐斌.基于广义能量函数的扩频码序列盲估计算法.信号处理, 2009, 25(07):1160-1163.
    [98] T. Q. Zhang, A. P. Mu. A modified eigen-structure analyzer to lower SNR DS-SS signals under narrow band interferences. Digital Signal Processing, 2008, 18(4):526–533.
    [99] T. Q. Zhang, X. K. Lin, Z. Z. Zhou. Blind estimation of the PN sequence in lower SNR DS/SS signals. IEICE Trans. Commun., 2005, E88-B(7):3087-3089.
    [100] T. Q. Zhang, C. Zhang. An unsupervised adaptive method for eigenstructure analysis of lower SNR DS signals. IEICE Trans. Commun., 2006, E89-B(6):1943-1946.
    [101] Y. H. Peng, B. Tang, M. Lv. Fast method for spreading sequence estimation of DSSS signal based on maximum likelihood function. Journal of Systems Engineering and Electronics, 2010, 21(6):948–953.
    [102]高宁泊,赵晓晖,孟宪夫.基于偏差移除独立分量分析的DS-CDMA通信系统盲多用户检测.吉林大学学报(工学版), 2007, 37(6):1415-1419.
    [103]章军.负信噪比同步CDMA信号伪码盲估计方法.电子对抗, 2007, 117(6):9-13.
    [104]付卫红,杨小牛,刘乃安.基于盲源分离的CDMA多用户检测与伪码估计.电子学报, 2009, 36(07):1319-1323.
    [105]朱冰莲,李金磊.基于独立分量分析算法的DS-CDMA盲多用户检测.重庆工学院学报(自然科学版), 2009, 23(10):61-64.
    [106]冯辉,王可人.一种DS-CDMA系统扩频码和参数盲估计方法.数据采集与处理, 2009, 24(4):423-430.
    [107]付卫红,杨小牛,刘乃安等.基于盲源分离的CDMA系统上行链路多用户检测.北京邮电大学学报, 2009, 32 (02): 111-114.
    [108]沈雷,李式巨,王彦波等.多径信道中扩频信号伪随机序列盲估计.浙江大学学报(工学版), 2007, 41(11):1828-1833.
    [109]张晋东,秦贵和,陈涛等.基于FastICA-TDS的DS-CDMA盲源信号分离系统.通信学报, 2008, 29(8):124-128.
    [110]刘旭,许宗泽.正交约束PARAFAC的DS-CDMA盲接收机.应用科学学报, 2009, 27(2):131-136.
    [111]关炜.低信噪比直扩信号PN序列参数估计.青海师范大学学报, 2009, 4(4):21-24.
    [112]郑文秀,秦婷.改进的直扩序列算法仿真研究.系统仿真学报, 2011, 23(6):1210-1213.
    [113]徐海源.雷达/通信侦察中相位编码信号分析处理技术研究[博士学位论文].国防科学技术大学,2007.
    [114]张天骐,周正中,林孝康等.低信噪比长伪码直扩信号的盲估计方法.信号处理, 2008, 24(3): 370-376.
    [115] Z. Q. Dong, N. Y. Hu. A method for the detection of long pseudo-random code DSSS signals based on the processing of delay-multiply (II) - the estimation of the information symbol period and the pseudo-random code sequence. IEEE 11th Int. Conf. on Communication Technology Proceedings, 2008:233 - 236.
    [116] S. Daneshmand, H. Aghaeinia, M. Tohidian, et al . Blind estimation of signal in periodic long-code DSSS communications. IEEE Sarnoff Symposium, 2009, 1-6.
    [117]白娟,张天骐,赵德芳,包锐等.基于虚拟多用户模型的长码直扩信号伪码估计.电讯技术, 2011, 51(8): 29-35.
    [118] B. G. Agee, R. J. Kleinman, J. H. Reed. Soft synchronization of direct sequence spread-spectrum signals, IEEE Trans. Communications, 1996, 44(11):1527-1536.
    [119] N. R. Mangalvedhe, J. H. Reed. Evaluation of a soft synchronization technique for DS/SS signals. IEEE Journ. Selected Areas in Communications, 1996, 14(8):1643-1652.
    [120] P. Y. Qui, Z. T. Huang, W. L. Jiang, C. Zhang. Improved blind-spreading sequence estimation algorithm for direct sequence spread spectrum signals. IET Signal Processing, 2008, 2(2):139-146.
    [121] P. Y. Qui, Z. T. Huang, W. L. Jiang, C. Zhang. Blind multiuser spreading sequences estimation algorithm for the direct-sequence code division multiple access signals. IET Signal Processing, 2010, 4(5):465-478.
    [122] A. Haghighat, M.R.Soleymani. A MUSIC-based algorithm for blind user identification inmultiuser DS-CDMA. EURASIP, 2005, Vol 5:649-657.
    [123]王满喜,李宏,马刈非,陶业荣.非周期性DSSS信号的PN码序列盲估计.信号处理, 2009, 25(10):1605-1611.
    [124]牟青,魏平.基于缺失数据模型的长码直扩信号的伪码估计.电子学报, 2010, 38(10): 2355-2369.
    [125]牟青,魏平.未知频偏下长码直扩信号的盲解扩.电子与信息学报, 2010, 32(8): 1797-1801.
    [126] S. Valaee, S. Shahbazpanahi. Detecting the Number of Sginals in Wireless DS-CDMA Networks. IEEE Trans. Communications, 2008, 56(7):1189-1197.
    [127] K. Zarifi, A. B. Gershman. Blind Subspace-Based Signature Estimation in DS-CDMA Systems With Unkown Wide-Sense Stationary Interference. IEEE Trans. Signal Processing, 2007, 55(7):3325-3335.
    [128] T. G. Macdonald, M. B. Pursley. Complex processing in quaternary direct-sequence spread-spectrum receivers, IEEE Military Communications Conference, 1998, 494-498.
    [129] S. Verdú. Multiuser Detection, Cambridge University Press, 1998.
    [130] W. Xiaodong, H. V. Poor. Blind equalization and multiuser detection in dispersive CDMA channels. IEEE Trans. Communications, 1998, 46(1):91-103.
    [131] W. K. Ma, T. N. Davidson, K. M. Wong, Z. Q. Luo, P. C. Ching. Quasi-maximum-likelihood multiuser detection using semi-definite relaxation with application to synchronous CDMA. IEEE Trans. Signal Processing, 2002, 50(4):912-922.
    [132] P. H. Tan, L. K. Rasmussen. The application of semidefinite programming for detection in CDMA. IEEE J. Sel. Areas Commun., 2001, 19(8):442–1449.
    [133] M. Kisialiou, X. D. Luo. Efficient implementation of quasi-maximum-likelihood detection based on semidefinite relaxation. IEEE Trans. Signal Processing, 2009, 57(12):4811-4822.
    [134] J. Villares, G. Vazquez. Second-order parameter estimation. IEEE Trans. Signal Processing, 2005, 53(7):2408-2420.
    [135] J. Villares, G. Vazquez. The Gaussian Assumption in Second-Order Estimation Problems in Digital Communications. IEEE Trans. Signal Processing, 2007, 55(10):4994-5002.
    [136] S. M. Kay. Fundamentals of statistical signal Processing. Upper Saddle River, NJ: Prentice-Hall, 2001.
    [137] P. Stoica, R. L. Moses. Introduction to spectral analysis. Upper Saddle River, NJ: Prentice-Hall, 1997.
    [138] E. D. Carvalho, J. Cioffi, D. Slock. Cramer-Rao bounds for blind multichannel estimation. Proc. Global Telecommun. Conf., 2000:1036–1040.
    [139] E. D. Carvalho, D. Slock. Blind and semi-blind FIR multichannel Estimation: (Global) identifiability conditions. IEEE Trans. Signal Processing, 2004, 52 (4):1053–1064.
    [140] G. B. Giannakis, Y. Hua, P. Stoica et al. Signal Processing Advances in Wireless and Mobile Communications: Trends in Channel Estimation and Equalization, NJ:Englewood Cliffs, 2001.
    [141] P. Stoica, B. C. Ng. On the Cramer-Rao bound under parametric constrains. IEEE Trans. Signal Process. Lett., 1998, 5 (7):177–179.
    [142] B. Ottersten, M. Viberg, P. Stoica. Exact and large sample ML techniques for parameter estimation and detection in array processing. Radar Array Processing, Springer Verlag, 1993, 99–51.
    [143] M. Wax, T. Kailath. Detection of signals by information theoretic criteria. IEEE Trans. Acoustics, Speech, and Signal Processing, 1985, 33(2):387-392.
    [144] Z. Q. Luo, W. Yu. An introduction to Convex Optimization for Communications and Signal Processing. IEEE Trans. Signal Processing, 2006, 24 (8):1426–1438.
    [145] D. P. Palomar. Convex Optimization in Signal Processing and Communications. Camberidge University Press, 2010.
    [146] R. Bellman, K. Fan. On systems of linear inequalities in Hermitian matrix variables. Proceedings of Symposia in Pure Mathematics, 1963, 7:1-11.
    [147] Y. Nesterov, A. Nemirovskii. Interior Point Polynomial Methods in Covex Programming. Philadelpia, PA: SIAM, 1994, 13.
    [148] F. Alizadeh. Interior Point methods in semidefinite programming with applications to combinatorica optimization. SIAM J.Optim., 1995, 5:13-51.
    [149] S. P. Wu. S. Boyd. FIR filter design via semidefinite programming and spectral factorization. IEEE Proceeding of Decision and Cotrol, 1996, 1:271-276.
    [150] Z. L. Yu, M. H. Er, W. Ser. A novel adaptive beamformer based on semidefinite programming with magnitude response. IEEE Trans. Signal Processing, 2010, 56(5):1297-1307.
    [151] C. Meng, Z. Ding, S. Dasgupta. A semidefinite programming approach to source localization in wireless sensor networks. IEEE Signal Processing Letters, 2008, 15(1):253-256.
    [152] S. Boyd, L. Vandenberghe. Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
    [153] L. Vandenberghe, S. Boyd. Semidefinite programming. SIAM Rev., 1996, 38:49-95.
    [154] W. K. Ma, P. C. Ching, Z. Ding. Semidefinite Relaxation Based Multiuser Detection for M-ary PSK Multiuser Systems. IEEE Trans. Signal Processing, 2004, 52(10):2862-2872.
    [155] J. F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optimiz. Methods Softw., 1999, 11(12):625–653,.
    [156] S. J. Benson, Y. Ye, DSDP5: Software for Semidefinite Programming, Mathematics and Computer Science Division. ANL/MCS-P, Argonne National Laboratory-1289-0905, 2005.
    [157] E. J. Candès, B. Recht. Exact matrix completion via convex optimization. Arxiv preprint arXiv: 0805.4471, 2008.
    [158] J. Cai J, E. J. Candès. A singular value thresholding algorithm for matrix completion. Arxiv preprint arXiv: 0810.3286, 2008.
    [159] C. Pei. Heteroscedastic Low-Rank Matrix Approximation by the Wiberg Algorithm. IEEE Trans. Signal Processing, 2008, 56(4):1429-1439.
    [160] N. Srebro, T. Jaakkola. Weighted Low-Rank Approximations, ICML, 2003, 720-727.
    [161] K. Lee, Y. Bresler. ADMiRA: Atomic decomposition for minimum rank approximation. IEEE Trans. Signal Processing, 2008, 56(4):1429-1439.
    [162] J. P. Haldar, D. Hernando. Rank-constrained solutions to linear matrix equations using PowerFactorization. IEEE Trans. Signal Processing Letters, 2009, 16(7):584-587.
    [163] N. Stadler, P. Buhlmannm. Pattern alternating maximization algorithm for high-dimensional missing data. Arxiv preprint arXiv: 1005.0366v2, 2010.
    [164] R. J. A. Little, D. B. Rubin. Statistical analysis with missing data. Wiley Interscience, 2002.
    [165] J. L. Schafer. Analysis of incomplete multivariate data. Chapman&Hall/CRC Press, 1997.
    [166] A. P. Dempster, D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Roy. Statist. Soc. B, 1977, 39:1-38.
    [167] L. I. Perlovsky, T. L. Marzetta. Estimating a covariance matrix from incomplete realizations of a random vector. IEEE Signal Processing, 1992, 40(8):2097-2100.
    [168] E. G. Larsson, P. Stoica. High-resolution direction finding: the missing data case. IEEE Signal Processing, 2001, 49(5):950-958.
    [169] N. Gillis, F. Glineur. Low-rank matrix approximation with weights or missing data is NP-hard. Arxiv preprint arXiv: 1012.0197, 2010.
    [170] B. Jorgensen, H. C. Petersen. Efficient estimation for incomplete multivariate data. www.stat.sdu.dk/sem/benthcpaper.pdf, 2010.
    [171] C. Liu. Efficient ML estimation of the multivariate normal distribution from incomplete data.J.Multivariate Anal., 1999, 69:206-217.
    [172] J. B. Kruskal. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Applicat., 1977, 18:95-138.
    [173] X. Q. Liu, N. D. Sidiropoulos. Cramer-Rao Lower Bounds for Low-Rank Decomposition of Multidimensional Arrays. IEEE Trans. Signal Processing, 2001, 49(9):2074-2086.
    [174] G. Tomasi, R. Bro. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(1):163-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700