长轴泵的优化设计及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长轴泵广泛应用于农田排灌、防洪、排涝、污水处理、电站(燃煤电站、核电站、蓄能电站、潮汐电站)、冷却系统等各个领域。然而由于其自身结构的特殊性,导叶式长轴泵普遍存在着性能低下、主轴容易断裂和振动剧烈等问题。因此如何提高其性能和泵轴的可靠性分析是当前研究的重要方向。
     本文对带有空间导叶的船用长轴泵的设计优化方法、内部流场和泵轴可靠性分析进行了较为系统的研究,主要内容和结论如下:
     1介绍长轴泵的水力设计及优化方法,并以JLY-80-27型泵为研究对象,通过数值计算详细分析了不同喉部面积、导叶叶片出口安放角和导叶叶片数对泵性能的影响。针对所要设计的船用泵,将叶轮和空间导叶作为一个整体,对空间导叶的主要性能参数进行合理设计和优化,最后利用PRO/E绘图软件生成叶轮、空间导叶的三维实体及整个流道计算区域。
     2利用FLUENT软件对其内部流场进行数值模拟,分析整个流道、叶轮、环形空间、空间导叶及其内外盖板的内部流场。结果发现:(1)叶轮进口出现负压,该区域将有可能发生空化。(2)环形空间内流动紊乱,产生较大的冲击损失。(3)导叶工作面和背面的流速从导叶进口处至导叶出口处呈现增大—减小趋势,在导叶中部附近达到最大,导叶背面出现二次流。(4)导叶内外盖板上出现不同程度的漩涡,说明空间导叶内流动相当混乱,存在着复杂的流动状态。
     3分别以二硫化碳和水为输送介质,计算了不同流量下该泵的流场情况,并把计算结果与试验结果对比分析。结果表明:计算和实测的特性曲线总体趋势是一致的,扬程和效率有了明显的提高;相同流量下数值计算结果和试验数据的最大误差基本小于18%,证明了数值计算和优化方法的有效性,得到的结果符合设计要求;相同流量下,介质为二硫化碳的计算扬程和效率略高于介质为水时的计算扬程和效率。
     4基于ANSYS有限元软件和传统的泵轴校核理论,对泵轴进行了静力和疲劳强度分析,根据所得危险点的主应力值对泵轴进行了校核,并对泵轴的变形情况以及振动状况作了分析和研究。
The long axis of pumps are widely used in agricultural irrigation, flood control, drainage, sewage treatment, power station(coal-fired power plants, nuclear power stations, storage power and tidal power plants), cooling system and other fields. However, because of their special structure, the long axis of pumps with guide vane exist poor performance, shaft fracture and severe vibration problems generally. So how to improve the performance and the reliability of the shaft are currently important research directions.
     The design optimization and flow field of the marine long axis of pump with a space guide vane and the reliability analysis of shaft were studied systematically in the paper. The main contents and conclusions are as follows:
     1 The hydraulic design and optimization of the long axis of pump were introduced. Based on a JLY-80-27-type pump as the research object, a detailed analysis of different throat area, blade exit angle of guide vane and number of guide vane blades on the influence of the pump's performance was done by numerical calculation. For the designed marine pump, the impeller and space guide vane were put as a whole and the main performance parameters of the space guide vane were carried on reasonable design and optimization. Finally, the impeller, space guide vane and computational domain of the whole flow were generated by PRO/E.
     2 The internal flow field was simulated by FLUENT software. The flow distributions of the whole flow, impeller, annular space, space guide vane and its internal and external cover were analyzed. The results show that:(1)The inlet of impeller appears negative pressure, where cavitation will occur. (2)The flow in annular space is chaotic, which has a great impact on loss. (3)The velocity of flow in the face and back of the guide vane shows an increase-decrease trend from the inlet to the exit, which reaches the maximum near the middle of the guide vane. The secondary flow emerges in the back of guide vane. (4)There are different degrees of swirl in its internal and external cover of the guide vane, which shows the flow is rather chaotic and complex.
     3 Carbon disulfide and water were used for conveyance medium respectively and the flow field conditions under different flows of the pump were calculated. The calculated results and experimental results were compared and analyzed. The results indicate that:The overall trend of characteristic curve between calculation and test is consistent and the head and the efficiency increase obviously; The maximum error is basically less than 18% in the same flow between numerical calculation results and experimental data, which proves the effectiveness of the numerical calculation and optimization. The obtained result complies with the design requirements; The calculated head and efficiency when the medium is carbon disulfide are slightly higher than that when the medium is water under the same flow.
     4 Based on ANSYS software and traditional checking theory of pump shaft, the pump shaft was conducted for static and fatigue strength analysis. The pump shaft was also checked according to the danger point of principal stress value.The deformation and vibration circumstances of the pump shaft were analyzed and studied.
引文
[1]李辉.熔盐泵内三维湍流场非定常数值计算[D].江苏大学,2008,4.
    [2]杨军虎,马文瑛,蒋云国,袁亚非等.船用泵的现状与开发新势头[J11.液压与气动,2009(11):71-72.
    [3]吴仁荣.船用泵业的现状和发展趋势[J].通用机械,2007(10):8-11.
    [4]中国通用机械工业协会泵业分会.中国泵业年鉴[M].北京:红旗出版社.2004.
    [5]丛小青,陆伟刚,袁丹青.空间导叶的进口冲角不能太大[J].排灌机械,1993(1):12,19.
    [6]雷方元,李文广.空间导流器轴面流道的几何模型[J].流体机械,2000,28(9):22-25.
    [7]赵秋霞.导流壳几何参数选取及其对泵性能的影响[J].太原理工大学学报,2002,33(4):414-416.
    [8]贾卫东.混流泵内部三维不可压湍流场的数值模拟及实验研究[D].江苏大学,2004,4.
    [9]杨方飞,阎楚良,张书明.带空间导叶离心式潜水泵全三维流场的数值模拟[J].中国农业机械学会2006年学术会议论文集,2006:823-830.
    [10]T. Takemura, A. Goto. Experimental and numerical study of three-dimensional flows in a mixed-flow pump stage[J]. ASME Journal of Turbomachinery,1996,118(6):552-561.
    [11]M. Zangeneh. Inverse design of centrifugal compressor vaned diffusers in inlet shear flows[J]. ASME Journal of Turbomachinery,1996a,118:385-393.
    [12]K. Eisele, Z. Zhang, M. V. Casey, et al. Flow analysis in a pump diffuser----part 1:LDA and PTV measurements of the unsteady flow[J].ASME Journal of Fluid Engineering,1997, 119(12):968-977.
    [13]Akira Goto, Mehrdad Zangene. Hydrodynamic design of pump diffuser using inverse design method and CFD[J].ASME Journal of Fluids Engineering,2002,124(6):319-328.
    [14]Felix A.Muggli, Peter Holbein, Philippe Dupont. CFD calculation of a mixed flow pump characteristic from shutoff to maximum flow[J].Journal of Fluid Engineering,2002,124 (9): 798-802.
    [15]Hong Wang, Hiroshi Tsukamoto. Experimental and numerical study of unsteady flow in a diffuser pump at off-design conditions[J].ASME Journal of Fluid Engineering,2003,125(9): 767-778.
    [16]Masahiro Miyabe, Akinori Furukawa, Hideaki Maeda, et al. On improvement of characteristic instability and internal flow in mixed flow pumps[C].The 9th Asian International Conference on Fluid Machinery, No.AICFM9-091, October 16-19,2007, Jeju,Korea.
    [17]KIM Jin-Hyuk, AHN Hyung-Jin,KIM Kwang-Yong. High-efficiency design of a mixed-flow pump[J]. Technological Sciences,2010,53,24-27.
    [18]关醒凡.现代泵技术手册[M].北京:宇航出版社,1995.
    [19]桑一荫.基于有限元的泵轴强度分析[D].江苏大学,2007,6.
    [20]蒋孝煜.有限元法基础[M].北京:清华大学出版社,1984.
    [21]Brandlein J.滚动轴承支承机床主轴的特性[J].国外轴承,1991(2).
    [22]罗方元.多支承变截面机床主轴系统静特性的计算机模拟和系统参数优化[D].浙江大学,1988.
    [23]刘鸿文.材料力学[M].北京:高等教育出版社,1979.
    [24]Spur G等.主轴—轴承系统的计算[J].轴承,1992(1).
    [25]Bert R. Jorgensen, Yung C. Shin. Dynamics of Machine Tool Spindle/Bearing Systems under Thermal Growth[J]. Journal of Tribology,1997,119(10):875-882.
    [26]陈全兵,张锡昌,周锦国.超高速角接触球轴承—轴系统动态分析[J].洛阳工学院学报,1999,20(1):42-45.
    [27]蒋兴奇.主轴轴承热特性及对速度和动力学性能影响的研究[D].浙江大学,2001.
    [28]杨曼云,孙希平.TH6350卧式加工中心主轴系统静、动态特性分析[J].计算机辅助设计与制造,2001(4):48-50.
    [29]叶勇,郝艳华,张昌汉.基于ANSYS的结构可靠性分析[J].机械工程与自动化,2004(6):63-65.
    [30]齐学义,王岩,敏政.多级泵轴断裂分析[J].江苏大学学报(自然科学版),2008,29(6):502-506.
    [31]李潜,施卫东,郭仁惠.基于有限元的污水泵轴疲劳可靠性分析[J].农业机械学报,2007,38(12):208-211.
    [32]张桂娟.采用三维实体模型有限元分析法计算潜油泵轴强度[J].油气田地面工程,2008,27(8):19-20.
    [33]李红,王艳艳,夏长高,张万义.纸浆泵泵轴强度的有限元分析[J].机械设备,2006,27(7): 66-68.
    [34]施卫东,颜品兰,蒋小平,孙相春,李启峰.基于ANSYS/PDS的泵轴可靠性分析[J].排灌机械,2008,26(3):1-4.
    [35]王福军编著.计算流体动力学分析[M]北京:清华大学出版社,2004.
    [36]付跃登.带分流叶片离心泵内部流动数值模拟及实验研究[D].江苏大学,2007.12.
    [37]Versteeg H K, Malalasekera W. An introduction to computational fluid dynamics:the finite volume method [M]. Wiley, New York,1995.
    [38]唐学林,陈稚聪,吴玉林.离心泵叶轮内部清水湍流的动态大涡模拟[J].清华大学学报(自然科学版),2004,44(9):1231-1234.
    [39]齐学义,刘在伦,齐冲,等.二维大涡模拟在双流道式污水泵叶轮流场分析中的应用[J].水动力学研究与进展,2003,18(3):289-293.
    [40]唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002(3):3-8.
    [41]陶文铨.计算传热学的近代进展[M].北京:科学出版社.2000.
    [42]侯树强,王灿星,林建忠.叶轮机械内部流场数值模拟研究综述[J].流体机械,2005,33(5):30-34.
    [43]Cravero C, Satta A. Modeling of incompressible three-dimensional flow in rotating turbomachinery passages. Proceedings of ASME FEDSM'02. ASME 2002 Fluids Engineering Division Summer Meeting. Montreal, Quebec, Canada, July 14-18,2002: 721-727.
    [44]Han C.1984,"A navier-stokes analysis of three dimensional turbulent flows inside turbine blade rows at design and off design conditions",J of Engr for Gas Turbine and Power ASME. Vol.106:132-136.
    [45]Tsung F L,Loellbach J H.Development of an unsteady unstructured navier stockes solver for stator-rotor interaction.AIAA-96-2668.
    [46]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997.
    [47]朱自强,张正科,李津等.网格生成和数值模拟的讨论[J].空气动力学学报,1998,16(1):64-69.
    [48]阎超编著.计算流体力学方法及应用[M].北京:北京航空航天大学出版社,2006.
    [49]Athavale M M,Tiang Y,Przekwas A J. Application of an unstructured grid solution methodology to turbomachinery flows.AIAA-95-00174.
    [50]Murman E M, Cole J D. Calculation of plane steady transonic flow. AIAA Journal,1971,9: 114-121.
    [51]Thompson J F, Thames F C, Martin C W. Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two-dimensional bodies, J. comput. phys.1974,15:299-399.
    [52]陈池,袁寿其,郑铭等.离心泵叶轮三维贴体网格生成[J].农业机械学报,2000,31(7):50-53.
    [53]Tourlidakis A. Numerical modeling of viscous turbomachinery flows with a pressure correction method:[Ph.D.Dissertation]. Cranfield University, England,1992.
    [54]罗马吉,叶晓明,陈国华等.内燃机进气管道三维分块结构化贴体网格生成[J].华中理工大学学报,2000,28(12):70-72.
    [55]陶文铨编著.数值传热学(第二版)[M].西安:西安交通大学出版社,2001.
    [56]Thomas P D, Middlecoeff J F. Direct control of the grid point distribution in meshes generated by elliptic equations. AIAAJ,1980.18:652-656.
    [57]Chen, Y.S.,1986, Application of a Near-Wall Function to Turbulence Flow Computations,AIAA Paper 86-0483.
    [58]孙建平.混流泵内三维边界层计算[J].水泵技术,1994(4):14-16.
    [59]刘琦.高比转速混流泵内部流场数值模拟与性能预测[D].江苏大学,2006.12.
    [60]韩署东.ANSYS高级技术分析指南[M].北京:机械工业出版社,2003.
    [61]龚曙光.ANSYS工程应用实例解析[M].北京:机械工业出版社,2003.
    [62]刘国庆,杨庆东ANSYS工程应用教程[M].北京:中国铁道出版社,2003.
    [63]易日.使用ANSYS进行结构力学分析[M].北京:北京大学出版社,2002.
    [64]张胜民.基于有限元软件ANSYS7.0的结构分析[M].北京:清华大学出版社,2003.
    [65]单祖辉.材料力学[M].北京:高等教育出版社,1999.
    [66]关醒凡,姚兆生编译.泵零件强度计算[M].机械工业出版社,1981.
    [67]白稳乐,姚宁平,杜小山,李兵.钻探用泥浆泵曲轴的模态分析[J].煤田地质与勘探,2010,38(3):73-75.
    [68]樊小霞,张建斌,李海刚.基于ANSYS的六缸柴油机曲轴的模态分析[J].机械设计与制造,2008(9):107-108.
    [69]朱发新,林少芬,陈跃坡.船舶柴油机曲轴的模态分析[J].船舶工程,2008,30(1):23-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700