系列烷基甜菜碱/十二烷基硫酸钠相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双十二烷基甲基羧基甜菜碱(diC_(12)B)以及单长链烷基二甲基羧基甜菜碱(C_nB)被发现是优良的无碱驱油用表面活性剂,经过与其它表面活性剂复配可使原油/水界面张力降到超低。本文试图研究系列甜菜碱与阴离子表面活性剂SDS的相互作用和协同效应,以揭示这种相互作用和协同效应与甜菜碱分子结构的关系。
     本文首先合成和提纯了系列烷基甜菜碱样品,随后测定了25°C、1:1NaCl存在下单一表面活性剂水溶液的表面张力及其与壬烷的界面张力随浓度的变化曲线,获得单一表面活性剂的表面活性参数。再通过测定表面张力和界面张力,应用非理想混合胶束理论和非理想混合吸附理论计算系列甜菜碱/SDS等摩尔混合体系的相互作用参数并分析各种协同效应。
     结果表明,少量NaCl和微量叔胺的存在对甜菜碱的表面张力-浓度曲线无显著影响。在25°C,1:1NaCl存在下,基于表面张力测定和壬烷/水界面张力测定获得的单一系列甜菜碱在水溶液中的临界胶束浓度基本接近。单长链烷基甜菜碱C_nB(n=12~18)与SDS等摩尔混合,在混合胶束形成方面存在较强的协同效应,β~M为较大的负值(-8.32~-10.65,空气/水界面)。在混合吸附单层中也显示强烈的吸引相互作用,β~S亦为较大的负值(-7.47~-10.60,空气/水界面)。总体相互作用强于阴离子-非离子混合体系但弱于阴离子-阳离子混合体系。但基于壬烷/水界面张力测定获得的β~S绝对值相对较小(-0.27~-6.34),表明在油/水界面上相互作用有所减弱,这可能与油分子插入吸附单分子层的烷基链之间导致分子间距离增大有关。C_nB与SDS等摩尔混合,在降低表(界)面张力的效能方面是否有协同效应取决于甜菜碱的烷基链长,C_(12)B和C_(14)B能产生显著的协同效应,但随着烷基链长的进一步增加,混合体系失去降低γ_(cmc)方面的协同效应。
     双长链烷基甜菜碱diC_(12)B具有相对较高的cmc和较低的γ_(cmc),其分子结构有利于提高降低表面张力的效率尤其是效能。但其与SDS混合在降低表(界)面张力的效率和效能方面皆无协同效应。混合物溶液的表(界)面张力总是略高于按理想混合理论所得的计算值,据此推算出β~S值为+0.607(空气/水界面)和+1.33(壬烷/水界面),即宏观上表现出负协同效应。diC_(12)B与阳离子以及非离子表面活性剂混合亦得到类似结果。
     甜菜碱分子中的季铵阳离子与SDS分子中的阴离子头基间的静电作用是甜菜碱/SDS吸引作用的源泉。然而diC_(12)B分子中含有两个长链烷基,其单独形成单分子层时分子截面积比一般单烷基链表面活性剂的分子截面积还要小,而每个烷基链截面积就更小,当形成混合吸附单层时,其它表面活性剂分子的插入将导致混合单层中烷基链的密度下降或烷基链的平均面积增大,从而导致降低表面张力的效率和效能下降,宏观上表现出负协同效应。
Dialkylmethylcarboxybetaine(diC_(12)B) and monoalkyldimethylcarboxybetaine(C_nB) have been found to be good surfactants applicable in alkali-free surfactant polymer flooding to enhance crude oil recovery. By mixing with other surfactants, they can reduce the crude oil/water interfacial tension (IFT) to ultralow. In this thesis the interactions and synergisms between a series of alkylbetaines and sodium dodecyl sulfate (SDS) are studied to reveal the dependences of the interactions and synergisms on molecular structure of the alkylbetaines.
     A series of alkylbetaine samples were first prepared and purified. Then the surface activity parameters of the individul surfactants were obtained by measuring surface tension of aqueous solutions of them and IFT between aqueous solutions of them and nonane as function of concentration at 25°C in the presence of 1:1(molar ratio)NaCl. After that by measuring both the surface tensions and IFTs and appliying nonideal mixed micelle theory and nonideal mixed monolayer theory to calculate the interaction parameter in mixed micelle,β~M, and that in mixed monolayer,β~S, and to analyze various synergistic effects.
     The results show that the presence of small amount of NaCl and trace of tertiary amine in the samples will not signicatly affect theγ-LogC curves of the alkylbetaines. At 25°C and in the presence of 1:1NaCl, the cmc of the individual surfactants measured via surface tension measurements and IFT measurements are similar. Strong attractive interaction in both mixed micelles and mixed monolayers was detected between C_nB (n=12~18) and SDS, and relatively big negativeβM (-8.32~-10.65, air water interface) andβ~S (-7.47~-10.60, oil/water interface) values were calculated. The interactions are in general stronger than that in anionic-nonionic surfactant mixtures but weaker than that in anionic-cationic surfactant mixtures. Specifically the attractive interaction in mixed monolayer at oil/water interface(β~S = -0.27~-6.34) is less strong than that in mixed monolayer at air/water interface, probably resulted from the inserting of oil molecules in between the alkyltails to enhance the distance between surfactant molecules in the mixed monolayer. The synergistic effect in reducing surface tension effectiveness or reducing IFT effectiveness between C_nB and SDS at equal molar ratio depends on the alkyl length in the C_nB. Both C_(12)B and C_(14)B give strong synergistic effect while further increasing the alkyl length results in loss of this synergistic effect.
     Double long alkyl betaine, diC_(12)B, displays relatively high cmc and lowerγ_(cmc), the molecular structure of which seems to be beneficial to enhancing the efficient and effectiveness in reducing surface tension and IFT. However, no synergistic effects were observed in either efficient or effectiveness in reducing surface tension and IFT when mixed with SDS. The surface tensions or IFTs measured for mixed systems were a little higher than that calculated based on ideal mixing theory, and positiveβ~S values, +0.601 for air/water interface and +1.33 for nonane/water interface, were then predicted, or apparently an antagonism was obtained. Similar results were obtained when mixing diC_(12)B with cationic and nonionic surfactants.
     The strong interaction between C_nB and SDS is mainly due to the electrostatic interactions between the quaternary ammonium in C_nB and negative headgroup in SDS. For diC_(12)B molecule, however, which has double long alkyls and is normally more closely packed in its individual monolayer and thus has a cross section area of alkyl much smaller than that of conventional monoalkyl surfactant, the inserting of any conventional surfactant molecule to form mixed monolayer will results in an increase of the cross section area of the alkyl area on average, and thus results in an increase of the surface tension or IFT.
引文
[1]李干佐,徐军.表面活性剂在油田中的应用及其作用原理[J].精细石油化工进展. 2004, 5(2): 1~6.
    [2]刘方,李玉华,蔡诗琴.石油开采中表面活性剂驱的应用与展望[J].精细与专用化学品. 2000, 22: 9~11.
    [3]隋智慧.驱油用表面活性剂的研究[J].精细石油化工进展. 2005, 6(1): 7~9.
    [4]贾贺峰,申利春.三次采油技术的研究现状[J].化工科技市场. 2006, 29(12): 31~34.
    [5]陈业泉,曹绪龙,王德顺等.胜利油区复合驱油体系研究及表面活性剂的作用[J].精细石油化工. 2001, 5: 19~21.
    [6] Stefan Iglauer, Yongfu Wu, Patrick Shiner.“New surfactant classes for enhanced oil recovery and their tertiary oil recovery potential”[J]. Journal of Petroleum Science and Engineering. 2010, 71: 23~29.
    [7]郭东红,李森,袁建国.表面活性剂驱的驱油机理与应用[J].精细石油化工进展. 2002, 3(7): 36~41.
    [8]陈忠,罗蛰潭等.三元复合驱强化采油技术[J].西南石油学院学报. 1997, 19(4): 44~48.
    [9] E. Carrero, N. V. Queipo, S. Pintos, L.E. Zerpa,“Global sensitivity analysis of Alkali-Surfactant-Polyer enhanced oil recovery processes”[J]. Journal of Petroleum Science and Engineering. 2007, 58, 30~42.
    [10] Haiyan Zhang, Mingzhe Dong, Suoqi Zhao.“Which One Is More Important in Chemical Flooding for Enhanced Court Heavy Oil Recovery, Lowering Interfacial Tension or Reducing Water Mobility?”[J]. Energy Fuels. 2010, 24, 1829~1836.
    [11]牛瑞霞等.二元无碱驱油体系的室内研究与评价[J].新疆石油地质. 2006, 27(6): 733~735.
    [12]于涛,刘娜,丁伟.磺酸盐类表面活性剂在三次采油中的应用[J].化学工程师. 2004 10(109): 52~54.
    [13]王者琴,夏慧芬,王刚等.无碱超低界面张力下二元复合体系对水驱残余油采收率的影响[J].油学院学院. 2007, 31(3): 25~27.
    [14]宋文玲,方琪,伊庆庵等.甜菜碱活性剂驱油体系对油水界面张力的影响[J]. 2008, 27(5): 105~107.
    [15]丁颖等.表面活性剂在三次采油中的应用及展望[J].内蒙古石油化工. 2004, 30:121~123.
    [16]郭东红,张飞宇,邱宾.三次采油表面活性剂的研究与应用进展(一)[J].应用科技. 2008, 16(7): 13~15.
    [17]张蕾.中外科技情报.
    [18]胡菲菲.油田化学剂研究进展[J].工程科技. 2009, 9: 129~130.
    [19]段明峰,梅平,熊洪录. N, N-二甲基十二烷基叔胺的合成反应研究[J].化学与生物工程, 2005(8): 28~30.
    [20]孙保兴,李莉.制备双长链烷基一甲基叔胺催化剂的研究[J].金陵石油化工. 1989, 6(7): 44~46.
    [21]曾广溯,陈钢,陈禾.叔胺制备工艺评价[J].油脂化工. 2001, 4: 314~331.
    [22] Xiang Bin, Zhang Qunhui.“Synthesis of alkyl betaines and their surface activities.Zhejiang Daxue Xuebao”[J]. 1995, 23(2): 125.
    [23]汪宏飞.十二烷基二甲基甜菜碱两性表面活性剂的合成与分析[J].四川日化. 1991, 4: 7~10.
    [24] Carpmaels, Ransford.“process for making betaines”[P]. The Patent Office. 1974, 1~5.
    [25]方云.两性表面活性剂[M].中国轻工业出版社, 2001.
    [26]苗碗根,莫春生.表面张力和表面吉布斯自由能的严格证明.广东化工. 2008[J], 2(35): 33~34.
    [27]李艳红,王升宝,常丽萍.表(界)面张力测定方法的研究进展.日用化学工业[J]. 2007, 37(2): 102~106.
    [28]奚新国, Pu Chen.表面张力测定方法的现状与进展.盐城工学院学报(自然科学版)[J]. 2008, 21(3).
    [29]李葵英.界面与胶体的物理化学[M]..哈尔滨工业大学出版社1998: 124~135.
    [30]方云,刘雪峰,夏永梅.双点式超滤法测定临界胶束浓度的研究. 2000, 23(1): 24~30.
    [31]陈达士.物理化学第二册(第三版)[M].地质出版社. 1993: 28.
    [32]崔正刚.溶液表面化学[M].江南大学. 2005
    [33]赵国玺.表面活性剂复配原理.石油化工. 1987, 15(1): 45-51.
    [34] J. D. Hines, R. K. Thomas.“Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection: anionic/nonionic and zwitterionic / anionic mixtures”[J]. J. Phys. Chem. B. 1997, 101(45): 9215~9223.
    [35] Toshihiko Iwasaki, Masataka Ogawa, Kunio Esumi, et al.“Interactions betweenBetaine-Type Zwitterionic and Anionic Surfactants in Mixed Micelles”[J]. Langmuir. 1991, 7(1): 30~35.
    [36]张志庆,徐桂英,肖莉等.十二烷基甜菜碱/十二烷基硫酸钠复配体系与原油间的界面张力.山东大学学报(理学版)[J]. 2002, 37(2): 153~157.
    [37]张志庆,徐桂英,叶繁等.十二烷基甜菜碱/十二烷基硫酸钠复配体系的表面活性.物理化学学报[J].2001, 17(12): 1122~1125.
    [38] Aleisha A. McLachlan, D. Gerrard Marangoni .“Interactions between zwitterionic and conventional anionic and cationic surfactants”[J]. Journal of Colloid and Interface Science . 2006, 295: 243~248.
    [39] Fang Li , Gan-Zuo Li, Jian-Bo Chen.“Synergism in mixed zwitterionic-anionic surfactant solutions and the aggregation numbers of the mixed micelles”[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 1998, 145: 167~–174.
    [40] M. J. Rosen.“Synergism in Mixtures Containing Zwitterionic Surfactants”[J]. Langmuir. 1991, 7: 885~888.
    [41] J. D. Hines, R. K. Thomas, P. R. Garrett, et al.“Investigation of Mixing in Binary Surfactant Solutions by Surface Tension and Neutron Reflection: Strongly Interacting Anionic/Zwitterionic Mixtures”[J]. J. Phys. Chem. B. 1998, 102: 8834~8846.
    [42]张莉,傅洵,张志强.十八烷基二甲基甜菜碱界面化学的研究. 2004, 25(3): 192~196.
    [43] Mclachlan A A, Marangoni D G.“Interactions between zwitterionic and conventional anionic and cationic surfactants”[J]. Journal of Colloid and Interface Science, 2006, 295, 243~248.
    [44] J. D. Hines, P. R. Garrett, G. K. Rennie et al.“Structure of an adsorbed layer of n-dodecyl-N,N-dimethylamino acetate at the air/solution interface as determined by neutron reflection”[J]. J Phys Chem B, 1997, 101, 7121~7126.
    [45]廖传文,张文艳,王海江,崔正刚.直接滴定法测定甜菜碱活性物和残余叔胺含量.日用化学工业[J]. 2010.
    [46]程珊.驱油用两性表面活性剂的合成与应用[D]:[硕士学位论文].无锡:江南大学化学与材料工程学院, 2009.
    [47] Dr.Deniz Korkmaz.“Precipitation Titration: Determination of Chloride by the Mohr Method”.
    [48] M.J. Rosen, S.B. Sulthana, J. Colloid Interface Sci. 239 (2001): 534~539.
    [49]崔正刚, Jean Paul CANSELIER.非理想二元混合表面活性剂体系的表面张力方程Ⅱ.日用化学工业. 1999(1): 12~15.
    [50]崔正刚, Jean Paul CANSELIER.一些二元阴/阳离子表面活性剂混合体系的混合胶束形成和表面张力降低的效能[J].日用化学工业. 1997(4): 1~6.
    [51] M. J. Rosen, X . Y. Hua“Surface concentrations and molecular interactions in binary mixtures of surfactants”. J Colloid Interface Sci [J ]. 1982 , 86: 164~172.
    [52] M. J. Rosen. Phenomena in mixed surfactant systems (ed by SCAMEHORN JF)[M], ACS Symp Series,311. American Chemical Society, Whashington D.C., 1986, 144~162.
    [53]崔正刚, Canselier Jean Paul.非理想二元混合表面活性剂体系的表面张力方程.华东理工大学学报[J]. 1999, 25(4): 347~352.
    [54]崔正刚, Jean Paul Canselier.非理想二元混合表面活性剂体系的表面吸附和表面张力方程[J]. 1997(1): 1~7.
    [55] Z.-G.Cui, J. P. Canselier. X. Q. Zhou. Colloid Polym Sci[J]. 2005, 283: 539~550.
    [56] Z.-G.Cui, J. P. Canselier. Interfacial and micellar properties of some anionic/cationic binary surfactant systems. 1. Surface properties and prediction of surface tension [J]. Colloid Polym Sci. 2000,278: 22~29.
    [57] Z.-G.Cui, J. P. Canselier. Interfacial and micellar properties of some anionic/cationic binary surfactant systems. 2. Mixed micelle formation and surface tension reduction effectiveness [J]. Colloid Polym Sci, 2001, 279, 259-267.
    [58] X .Y. Hua, M. J. Rosen.“Synergisms of binary mixtures of surfactants.Ⅰ.Theoretiacal analysis”[J]. Colloid and interface Sci.1982, 90(1): 212~219.
    [59] B.Y. ZHU, M. J.Rosen. J. Colloid and interface Sci. 1984,99(2): 435~442.
    [60] P. C. Hiemenz.胶体与表面化学原理[M].周祖康,马季铭,译.北京大学出版社, 1996: 285.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700