双十二烷基甲基甜菜碱的合成及中试研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碱-表面活性剂-聚合物(ASP)三元复合驱是适合我国大多数油田的一项三次采油技术,可以使采收率在水驱的基础上进一步提高15-20%,但近年来的矿场实验表明,碱的使用可引起多价离子沉淀、岩石矿物溶蚀等副作用,严重的可能导致油井报废。为此近年来三次采油向无碱化方向发展。然而ASP三元复合驱中使用的表面活性剂在无碱条件下大多无效,因此需要开发新型表面活性剂以适应无碱二元复合驱。双十二烷基甲基甜菜碱(diC12甜菜碱)已被证明是优良的无碱驱油用表面活性剂,但采用传统的氯乙酸合成工艺叔胺转化率只能达到70%左右。为此本文试图通过系统的研究以揭示转化率偏低的原因并提出改进措施,在此基础上进行中试放大实验。
     本文首先研究了diC12甜菜碱产品中游离叔胺和活性物含量的测定方法,以便监测叔胺转化率。结果表明,可以通过盐酸-异丙醇直接滴定测定产品中游离叔胺含量,在此基础上可用两相滴定法测定产品中活性物含量。合成diC12甜菜碱过程中,由于反应温度高(100℃左右),氯乙酸的水解不可避免。采用高效液相色谱法可以测定水解产物羟基乙酸和残存氯乙酸的含量。分析表明,实际反应体系反应6h后氯乙酸即已消耗殆尽,其中仅70%左右转变成甜菜碱,而氯乙酸的最终水解率达到27%左右。合成diC12甜菜碱的反应是非均相反应,加快搅拌速率和添加乳化剂都可以改善反应体系的非均质性,从而提高叔胺转化率。在其它反应条件相同的情况下,提高搅拌速度和添加乳化剂可使叔胺转化率提高7%左右,但最终转化率都只能达到80%左右。显然提高叔胺转化率的关键是保证体系中有足够的氯乙酸并防止其水解。提高氯乙酸/叔胺摩尔比可以提高转化率,例如氯乙酸/叔胺摩尔=1.8时,转化率可达到86%,但生产成本和浪费过大。控制氯乙酸/叔胺摩尔比=1.1,NaOH/氯乙酸摩尔比=1.1,在反应6h后一次性补加20%的氯乙酸和相应的氢氧化钠,再反应4h,氯乙酸/叔胺总摩尔比不超过1.3,可使叔胺最终转化率提高到85%左右。
     在上述优化工艺条件下用0.5 M3反应釜进行了两次中试,叔胺转化率分别达到85.6%和84.4%,平均85%,产品活性物含量达到64%左右,表明中试工艺条件稳定可靠。用中试获得的diC12甜菜碱为主表面活性剂配制的无碱驱油剂具有优良的性能,45℃下在0.05%~0.3%活性物浓度范围内能使大庆原油/地层水界面张力降至10-3mN/m数量级,天然岩芯驱油实验在水驱基础上平均提高采收率17.8%,达到大庆无碱驱油剂的技术指标。
Alkali-surfactant-polymer (ASP) flooding is one of enhanced oil recovery techniques suitable for most of Chinese oilfields by which the recovery can be increased by 15-20% on the basis of water flooding. However, resent field experiments show that the use of alkali gives rise to some side effects, such as precipitation of the multivalent ions, erosion of rocks and materials, which more severely may results in destroying of oil wells. Thus alkali-free SP flooding becomes more attractive than ASP flooding in China. Unfortunately, surfactants effective in ASP flooding are usually ineffective in the absence of alkali and new surfactants need to be designed. It has been reported that didodecylmethylcarboxybetaine (diC_(12)B), synthesized by reacting tertiary amine with chloroactic acid in the presence of sodium hydroxide, is a good surfactant effective in alkali-free SP flooding. The conversion of the tertiary amine, however, is difficult to exceed 70%. This paper will focus on analyzing the reasons why the conversion of tertiary amine is so low and testing the measures which can be used to improve the recovery. After that production of diC_(12)B in pilot plant scale will be tested.
     To detect the conversion of tertiary amine new efficient methods to determine the amounts of both free tertiary amine and diC_(12)B was first developed. The results show that by controlling suitable end point the contents of free tertiary amine in synthesized product can be measured by direct titration with standard hydrochloric acid-in-isopropanol solution and on this basis the content of active matter can be determined by two-phase titration method. It is found that the hydrolysis of chloroactic acid is unavoidable at synthesizing temperature (ca.100°C) and the hydrolysis product, glycolic acid, and the residual chloroactic acid in reaction system can be quantitatively determined by HPLC. The results show that after 6 hours of reaction the chloroactic acid in reaction system exhausted, and only 70% of the total chloroactic acid was converted to target product, with the rest, approximately 27% of the total chloroactic acid, was hydrolyzed. The reaction system is not isotropic but a heterogeneous oil-water mixed system. Increasing stirring speed and adding emulsifies are found to be beneficial to the enhancement of conversion, but it is still difficult to made the total conversion to exceed 80%. Obviously the key to improve the conversion of the tertiary amine is to ensure sufficient chloroactic acid in the reaction system and prevent them from hydrolyzing. Increasing initial chloroactic acid/tertiary amine molar ratio can improve the conversion of tertiary amine, for example, by increasing the molar ratio to 1.8, a conversion of 86% can be achieved. This method, however, is not economically efficient. It is found that with an initial chloroactic acid /tertiary amine molar ration of 1.1, NaOH/ chloroactic acid molar ration of 1.1, by adding 20% extra chloroactic acid and corresponding NaOH after 6 hours of reaction at 100°C and continue to react for 4h, a total conversion of 85% can be achieved, while the total chloroactic acid/ /tertiary amine molar ratio is not beyond 1.3.
     The production tests in pilot plant scale were carried out using a reactor of approximately 0.5 M~3. A conversion of 85.6% and 84.4% were achieved respectively in two tests, indicating that the technology and related reaction conditions in synthesizing diC_(12)B are stable and reliable. As a key surfactant, the diC_(12)B produced in the pilot plant scale production was formulated to an oil displacements agent used for SP flooding. With this formulation the lab examinations show that the Daqing crude oil/water interfacial tension can be reduced to an magnitude of 10-3 mN/m in a total surfactant concentration range of 0.01~0.3%wt.% at 45°C without adding any alkaline chemicals or salts, and an average tertiary oil recovery, 17.8%, was achieved in oil displacement tests with natural cores.
引文
1.黄学.我国石油企业三次采油技术预见理论及应用[D]:[博士学位论文].北京:中国地质大学(北京)资源产业经济系, 2006
    2.张景存.三次采油[M].北京:石油工业出版社, 1995
    3.牟建海,李干佐.三次采油技术的发展现状及展望[J].化工科技市场, 2000(7):17-20
    4.李干佐,郭荣.微乳液理论及应用[M].北京:石油工业出版社, 1995
    5.隋智慧,林冠发,朱友益等.三次采油用表面活性剂的制备与应用及其进展[J].日用化学工业, 2003, 33(2):105-108
    6.杨清彦.大庆油田三元复合驱驱油机理研究.大庆石油地质与开发, 1999, 18(3):24-26
    7.王克亮,闫义田,马强.三元复合驱的走向[J].中国石油石化, 2005 (14):58-59
    8. Gan-Zuo Li, Jian-Hai Mu, Ying Li, Hong-Di Xiao and Qiang Gu.What is the Criterion for Selecting Alkaline/Surfactaint/Polymer Flooding Formulation:Phase Behavior or Interfacial Tension[J]. Journal of Dispersion Science and Technology,2000,21(3):305-314
    9. Rahman M.S, Hossain M.E, Islam M.R.An Environment-Friendly Alkaline Solution for Enhanced Oil Recovery[J]. Petroleum Science and Technology, 2008, 26(13):1596-1609
    10.李柏林,程杰成.二元无碱驱油体系研究[J].油气田地面工程, 2004(23):16
    11.鄂金太.无碱二元复合体系性能评价[J].大庆石油学院学报, 2008, 32(5):32-34
    12.马涛等.无碱二元复合驱油体系室内实验研究[J].中国海上油气, 2008, 20(1):41-43
    13.杨建平,李兆敏,李宜强.复合驱驱油用无碱表面活性剂筛选[J].石油钻采工艺, 2007, 27(5):62-64
    14.刘杰.驱油用无碱表面活性剂[J].油气田地面工程, 2006, 28(5):63-63
    15.吕鑫.聚合物/表面活性剂二元复合驱研究进展[J].西南石油大学学报(自然科学版), 2008, 30(3):127-131
    16.李孟涛,李先贵,杨孝君.无碱二元复合体系驱油试验研究[J]石油钻井工艺, 2004,26(5):73-76
    17.吴文祥,张玉丰,胡锦强等.聚合物及表面活性剂二元复合体系驱油物理模拟实验[J].大庆石油学院学报, 2005, 29(6):98-100
    18.郭东红,辛浩川,崔晓东等.聚合物驱后利用OCS表面活性剂?聚合物二元体系提高采收率的研究[J].精细石油化工进展, 2006, 7(1):1-3
    19.牛瑞霞,程杰成,龙彪.二元无碱驱油体系的室内研究与评价[J].新疆石油地质, 2006, 27(6):733-735
    20.刘莉平,杨建军.聚?表二元复合驱油体系性能研究[ J ].断块油气田, 2004,11(4):44-45
    21.夏慧芬,王海峰,王刚等.聚合物?甜菜碱表面活性剂提高水驱后残余油采收率研究[J].中国石油大学学报(自然科学版), 2007, 31(6):74-78
    22.刘仁强.聚驱后无碱驱油体系提高采收率机理研究[D]:[硕士学位论文].大庆:大庆石油学院, 2007
    23.夏慧芬,蒋莹,王刚.聚驱后聚表二元复合体系提高残余油采收率研究[J].西安石油大学学报(自然科学版), 2010, 25(1):45-49
    24.赵田红,郑国华,李少庆.三次采油用表面活性剂的研究现状与趋势[J].化学工程师, 2005(11):32-34
    25.王述银,孙新表.环烷酸盐和石油磺酸盐在稠油开采中的应用研究[J]特种油气藏,2001, 8(3):97-100
    26. Fang Yu, Wei-yu Fan, Shui-ping Li, Guo-zhi Nan, Xiang-hui Chen and You-zhi Duan.Study on Synthesis and Applied Performance of Petroleum Sulfonate for Enhanced Oil Recovery[J].Journal of Dispersion Science and Technology, 2008, 29(7):975 -984
    27.赵颖华,徐艳姝,王海峰等.木质素磺酸盐的改性及其在三次采油中的应用[J]大庆石油地质与开发, 2005, 24(4):90-91
    28.崔正刚,邹文华,张天林等.重烷基苯磺酸盐的合成及其在提高石油采收率中的应用[J]华东理工大学学报, 1999, 4(25):339-346
    29.崔正刚,邹文华,孙雪芳等.重烷基苯磺酸盐/碱/原油体系的界面张力[J]油田化学, 1999, 16(2):153-157
    30.崔正刚,刘世霞,王峰等.重烷基苯磺酸盐生产工艺及驱油剂性能的改进[J]日用化学工业, 2001, 3(31):17-21
    31.曲景奎,朱友益,隋智慧等.直链重烷基苯磺酸盐的驱油能力研究[J]化工进展,2003, 22(2):126-129
    32.李干佐,顾强,毛宏志等.天然混合羧酸盐驱油剂在中原油田的应用[J]油田化学,2000, 17(4):346-358
    33.李华斌,杨振宇,杨林等.大庆油田鼠李糖脂生物表面活性剂提高采收率[J]西南石油学院学, 2001, 21(1):25-28
    34.包木太,崔东阳,梁生康等.鼠李糖脂生物表面活性剂在稠油降黏中的应用初探[J].现代化工, 2009, 29(增刊2):138-140
    35.吴松,牛瑞霞,李柏林等.用于驱油用的脂肪酸烷醇酰胺的制备[J].大庆石油学院学报,2005,29(2):51-53
    36.李柏林,张长宝,牛瑞霞.烷醇酰胺的合成及应用[J].天津化工, 2006, 20(3):38-40
    37. Gong Yong, Zhi-ping Li, Jing-yi An. The Properties of Sodium Naphthalene Sulfonate in Lowering Interfacial Tension and its Possibility of Application in EOR[J].Journal of Dispersion Science and Technology, 2005, 26:503–507
    38. Chhetri A.B, Watts K.C, Rahman M.S and Islam M.R.Soapnut Extract as a Natural Surfactant for Enhanced Oil Recovery [J].Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2009, 31 (20):1893-1903
    39.刘海波.聚合物/表面活性剂二元复合驱室内实验研究[D]:[硕士学位论文].黑龙江:大庆石油学院,2007
    40.王辉,张丽萍,张丽苏等.双子表面活性剂DTDPA的合成及其在“三采”中的应用[J].浙江大学学报(理学版), 2007, 34(6):665-668
    41.于丽,孙焕泉,肖建洪等.羧酸盐类Gemini表面活性剂二元复合驱配方的研究[J].油气地质与采收率, 2008,15(6):59-62
    42.吴文祥,张武,刘春德.磺基甜菜碱BS11/聚合物复合体系驱油实验研究[J].油田化学, 2007, 24(1):60-62
    43.夏惠芬,王海峰,王刚等.聚合物/甜菜碱表面活性剂提高水驱后残余油采收率研究[J].中国石油大学学报(自然科学版), 2007, 31(6):74-78
    44.王刚,王德民,夏惠芬等.聚合物驱后用甜菜碱型表面活性剂提高驱油效率机理研究[J].石油学报, 2007, 28(4):86-90
    45.柳恒,苏天铎,唐清富等.三甲铵乙内酯(甜菜碱)的合成[J].陕西化工, 1999, 28(1):21-22
    46.杨官娥,魏文珑.甜菜碱合成新工艺的研究[J].中国药物化学杂志, 2001, 11(3):160-162
    47. Danov KD, Kralchevska SD, Kralchevsky PA, Ananthapadmanabhan KP, Lips A. Mixed Solutions of Anionic and Zwitterionic Surfactant (Betaine): Surface-Tension Isotherms, Adsorption, and Relaxation Kinetics[J].Langmuir 2004, 20, 5445-5453
    48. Chevalier Y, Storet Y, Pourchet S, Perchec PL. Tensioactive Properties of Zwitterionic Carboxybetaine Amphiphiles [J].Langmuir, 1991, 7, 848-853
    49.方云.两性表面活性剂[M].北京:中国轻工业出版社,2001
    50.梁志能.十二烷基二甲基甜菜碱的合成、性质和应用究[J].广州化工, 1989(4):13-15
    51.方云,卿萍.两性表面活性剂(羧甲基)十二烷基二甲基铵氯化物的合成[J].无锡轻工业学院学报, 1991, 10(4):42-47
    52.汪宏飞.十二烷基二甲基甜菜碱两性表面活性剂的合成与分析[J].四川日化,1991(4):7-10
    53.徐进云,郑帼,葛启等.十八烷基甜菜碱的合成与应用性能[J].纺织学报, 2005, 26(1):22-24
    54.方云,夏咏梅,江文中等.α-溴代长链脂肪酸的合成[J].日用化学工业, 1993(5):1-4
    55.方云,夏咏梅,江文中等.α-混合长链烷基甜菜碱的性能[J].日用化工业, 1994(6):1-4
    56. Shi-Fa Wang, Takeshi Furuno, Zhi Cheng. Synthesis of new betaine-type amphoteric surfactants from tall oil fatty acid[J].The Japan Wood Research Society, 2002, 48:419-424
    57.何元君,张铸勇.甜菜碱系两性表面活性剂的合成及应用[J].日用化学工业, 1996(3): 29-32
    58.段文贵.有机化学[M].北京:化学工业出版社,2010
    59.杨官娥,陈然,魏文珑.甜菜碱合成反应机制的研究[J].山西医科大学学报, 2001,
    32(2):141-142
    60. L.F.Berhenke, E.C.Britton. Effect of pH on Hydrolysis of Chloroacetic Acid[J]. Industrial and engineering chemistry, 1943, 38(5):544-546
    61.俞似春,陆妙龙,徐荣南.氯乙酸水解机理探讨[J].华东师范大学学报(自然科学版).1984(4):70-74
    62.徐继有,王宏平.氯乙酸的碱水解反应动力学实验[J].安徽化工.1990, (3):36-41
    63.程珊.驱油用两性表面活性剂的合成与应用[D]:[硕士学位论文].无锡:江南大学化学与材料工程学院, 2009
    64.中华人民共和国轻工行业标准QB/T 2344-97
    65.毛培坤.表面活性剂产品工业分析[M].北京:化学工出版社, 2003, 338-342
    66.张文卓.脂肪烷基二甲基甜菜碱活性物含量测定的两种方法的比较[J].日用化学工业,1997(6):41-43
    67.张曲.电位滴定法测定脂肪烷基二甲基甜菜碱含量[J].石油天然气化工, 1999, 28(3):223-224
    68.徐进云,郑帼,葛启等.十八烷基甜菜碱的合成与应用性能[J].纺织学报, 2005, 26(1):22-24
    69.焦学瞬,张春霞,张宏忠等.表面活性剂分析[M].北京:化学工业出版社, 2009, 125-126
    70.孙谨,吴连宝.非水滴定[M].北京:科学出版社, 1985
    71.北原文雄.表面活性剂分析和试验法.轻工业出版社.1988, 4, 143
    72.汪祖模,徐玉珮编.两性表面活性剂[M].北京:轻工业出版社,1990:242
    73.汤明辉,王向前.滤液法和沉淀法测定地骨皮醇提物中地甜菜碱含量.中国生化药物杂志.2002, 23(2):75-77
    74.孙伟,俞斌.长链烷基亚硫酸酯甜菜碱的微量分析[J].南京工业大学学报, 2004, 26(2):88-91
    75.孙伟.两性表面活性剂亚硫酸酯甜菜碱的合成及其含量分析方法[D]:[硕士学位论文].南京:南京工业大学理学院,2003
    76.夏纪鼎,倪永全.表面活性剂和洗涤剂化学与工艺学[M].北京:中国轻工业出版社, 1997, 569-571
    77. Borland JE, Perine JW, Sauer JD, Smith KR.Process for preparing solid betaines[P]. UP:5081293.1992-01-14
    78.邰燕芳.氯乙酸水解法合成羟基乙酸[D]:[硕士学位论文].南京:南京工业大学材料系, 2004
    79. Sheen R.T and Kahler H.L.Effects of Ions on Mohr Method for Chloride Determination [J]. Industrial and Engeering Chemistry Analytical Edition .1938,10(11):628-629
    80. Dr.Deniz Korkmaz. Precipitation Titration: Determination of Chloride by the Mohr Method.http//:academic.brooklyn.cuny.edu
    81.武汉大学主编.化学工程基础[M].北京:高等教育出版社, 2009:132-135
    82.陈敏恒等.工业反应过程的开发方法[M]北京:化学工业出版社, 1985
    83.朱炳辰等.化学反应工程[M]北京:化学工业出版社,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700