α-长链癸基甜菜碱表面活性剂的分离纯化技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两性表面活性剂是一类具有极高安全性,对婴儿皮肤和眼睛无刺激,生物降解性好,Krafft点低,耐硬水及高浓度电解质,无公害无污染的绿色表面活性剂。但生产过程中副产的盐分使得产品粘度过高、pH值不稳定或化学稳定性下降并影响其应用性能。目前,两性表面活性剂的纯化问题成为限制该类表面活性剂研究与应用的重要因素,所以对两性表面活性剂分离纯化的研究将为两性表面活性剂的发展起到重要推动作用。本文尝试对α–长链癸基甜菜碱(α–CB)表面活性剂进行分离纯化,重点对α–CB的电渗析脱盐进行研究,并对α–CB的表面化学性质及应用性能进行研究,主要得出以下结论:
     采用萃取结晶、离子交换树脂和抽提等传统方法分别对α–CB进行分离纯化。与离子交换树脂和抽提分离方法相比,萃取结晶法可以有效地去除α–CB产品中的残留脂肪酸及无机盐,并得到质量分数>98%的α–CB产品。运用红外、核磁、质谱、元素分析、熔点、测定表面张力曲线等手段对提纯后的产品进行结构鉴定和纯度检验,确定提纯后的产物为高纯度的α–癸基甜菜碱。
     对α–CB的电渗析脱盐进行研究,考察了操作电压、淡室流量、溶液pH值等操作条件对电渗析脱盐效果的影响,并通过比较脱盐速率、α-CB回收率和耗电量等性能指标,优化操作条件。实验证明,电渗析法可以有效脱除α–CB中的无机盐,在α–CB的等电点pH 7.50,操作电压10 V,淡室流量20 L/h的条件下,脱盐率可达到99%以上,回收率为82.7%。为进一步提高α–CB的回收率,采用恒定电流法对α–CB进行电渗析脱盐,恒定电流0.5 A,淡室流量20 L/h,溶液pH 7.50,脱盐率99%时,α–CB的回收率可以达到89.4%。
     对α–CB的表面化学性质和应用性能的研究表明,α–CB具有优良的表面活性和泡沫性能,其cmc值和最低表面张力(25℃)分别为9.3×10-3 mol/L和38.2 mN/m,泡沫高度可以达到175 mm;α–CB在钙皂分散和抗硬水性能方面都优于SDS,表现出了两性表面活性剂的突出优势;此外,对含有α–烷基甜菜碱的肥皂应用性能的研究表明,加入α–烷基甜菜碱后肥皂的润湿性能和抗硬水性能都有大幅提高,表现出了较强的润湿及抗硬水性能的增效作用。
Zwitteronic surfactant has many excellent properties such as the low toxicity and stimulating to the skin and the eyes, good biologic degradation, low Krafft point, in addition it is able to bear the hard water and the high concentration electrolyte, basically no social effects of pollution. However, the inorganic salt producing in the zwitteronic surfactant synthesis process increases its viscosity, makes its pH not stable, decreases its stability, and effects its application performances. The difficulty purity of this surfactant limits its research and application. The separation techniques used in purification of this surfactant will promote the development of zwitteronic surfactant. In this paper, traditional purification methods were attempted to purify theα-capric betaine(α-CB). The electrodialysis desalination ofα-CB and the surface chemical properties and application performances ofα-CB were investigated. The main points were as follows:
     Recrystallization, ion exchange resin and extraction were applied to purify theα-CB. It was found that the fatty acid and the inorganic salt could be removed effectively by the method of recrystallization, which could be obtainedα-CB with mass fraction of 98%. Products identify and purity test were confirmed by IR, H-NMR, Ms, elemental analysis, melt point and surface tension curve.
     The electrodialysis desalination ofα-CB was investigated. The effects of the operation voltage, flow rate and pH of the solution on the electrodialysis desalination ofα-CB were investigated and the optimum operating condition was chosen through comparing desalination rate, the recovery ofα-CB and electricity consumption. The results showed that the inorganic salt existing in zwitterionic surfactant solution could be removed effectively. It was found that under an optimum operating condition, pH value 7.50 (at the isoelectric point ofα-CB), operation voltage 10 V, and flow rate 20 L/h, the desalination efficiency was 99% and the recovery ofα-CB was 82.7%. The electrodialysis desalination ofα-CB with constant current was investigated which made the recovery ofα-CB significantly increased. It was found that current 0.5 A, flow rate 20 L/h, pH value 7.50, the desalination efficiency was more than 99% and the recovery ofα-CB was 89.4%.
     The surface chemical properties and application performances ofα-CB were investigated.α-CB had good surface activity and foaming performance, the critical micelle concentration, minimum surface tension and foam height ofα-CB were tested to be 9.3×10-3 mol/L, 38.2 mN/m and 175 mm, respectively. The lime soap dispersing ability and hard water-resistance ofα-CB were superior to SDS, which exhibited excellent performance. Moreover, the application performance of soap addingα-alkyl betaine was investigated. The results showed thatα-alkyl betaine had synergism on wetting and hard water-resistance.
引文
1.方云.两性表面活性剂[M].北京:中国轻工业出版社, 2001.
    2. María del Mar Graciani Constante, Maria Amalia Rodriguez Rodriguez, María Mu?oz Pérez, et al. Micellar Solutions of Sulfobetaine Surfactants in Water-Ethylene Glycol Mixtures: Surface Tension, Fluorescence, Spectroscopic, Conducto- metric, and Kinetic Studies[J]. Langmuir, 2005, 21: 7161–7169.
    3. Sylvain Doussin, Nicolas Birlirakis, Patrick Berthault, et al. Novel Zwitterionic Reverse Micelles for Encapsulation of Proteins in Low-Viscosity Media[J]. Chemistry-A European Journal, 2006, 12: 4170–4175.
    4. Yves Chevalier, Flavien Melis, Jean Pierre Dalbiez. Structure of zwitterionic surfactant micelles: micellar size and intermicellar interactions[J]. The journal of Phyical Chemistry, 1992, 96(21): 8614–8619.
    5. María Mu?oz, Amalia Rodríguez, María del Mar Graciani, et al. Conductometric, Surface Tension, and Kinetic Studies in Mixed SDS–Tween 20 and SDS-SB3-12 Micellar Solutions[J]. Langmuir, 2004, 20: 10858–10867.
    6. Adolf Schmitz, Esser, Alfred Muhr, Zurich. Method for preventing the growth of algae in swimming pools, tanks, and the like[P]. U.S.P 3125486, 1964
    7.王军.从天然可再生资源制备表面活性剂的研究进展[J].精细与专用化学品, 2002, 15: 3–5.
    8.汪祖模,徐玉珮.两性表面活性剂[M].北京:轻工业出版社, 1990, 3–8.
    9.徐燕莉.表面活性剂的功能[M].北京:精细化学出版中心, 2000: 41–43.
    10.李英,李干佐..十二烷基甜菜碱的界面活性及其体系的相态研究[J].化学物理学报., 1998, 11(3): 283-288.
    11.任春华.两性表面活性剂——甜菜碱[J].表面活性剂工业., 1996, 3: 1–6.
    12. Wikkes, B. G.,Wickert, J. N. Synthetic Alphatic Penetrahts. Industrial And Engineering Chemistry[J]. 1937, 29:1234–1239.
    13. Parris N., Weil J. k., Linfield W. M. JAOCS, 1976①, 53: 97.
    14. Liebreich O. Berichte. 1869, 2: 12.
    15. Frederlck Baxter Downing, Carneys Point, Frank Willard Johnson. Nitrogen-Containing Organic Compounds[P]. US, 2,129,264. 1938–09–06.
    16. K.Tori, T. Nakagawa. Colloid Chemical Properties of ampholytic surfactants. research laboratory, Shionogi & Co., Fukushime Ku, Osaka(Japan). 1962, 6; 44–51.
    17.夏咏梅,方云,何家荣.天然油脂基两性表面活性剂的合成和性质Ⅲ.α-长链烷基甜菜碱的合成和性质[J].日用化学工业, 1994, 4, 1–3.
    18.方云,夏咏梅,胡学一,王义友.一种α-烷基甜菜碱两性表面活性剂的制备方法[P].中国专利, 1803269A. 2006–07–19.
    19. Paulo Meneghetti and Syed Qutubuddin,Synthesis of Poly(methyl methacrylate) Nanocomposites via Emulsion Polymerization Using a Zwitterionic Surfactant[J]. Langmuir, 2004, 20 (8): 3424–3430.
    20.张金花,唐季安.表面活性剂的提纯与鉴定[J].化学通报, 1999, 4: 7–14.
    21.北原文雄,早野茂夫,原一郎.表面活性剂分析和试验法[M].北京:轻工业出版社, 1988: 61.
    22. Shinoda K, Fontell K., Ionic surfactants capable of being used in hard water[J]. Advances in Colloid andInterface Science, 1995, 54: 55–62.
    23. Tang Fang-qiong, Xiao Zhen, Tang Ji-an, and Jiang Long. The Effect of SiO2 particles upon stabilization of foam[J]. Journal of Colloid and Interface Science, 1989, 131(2): 498–502.
    24. Lunkenheimer K, Miller K, Kretzschmar G et al. Investigation on the Possibility of purifying surfactant solutions by adsorption on solids[J]. Colloid &Polymer Science, 1984, 262: 662–666.
    25. Kelly J, Greenwald H L. Chromatographic Separation of a non-ionic polyether surfactant[J]. The journal of Phyical Chemistry. 1958, 62: 1096–1098.
    26. Hodgson P K G and Stewart N J. Purification of ethoxylated anionic surfactants by preparative high-performation liquid chromatography. Journal of Chromatography[J]. 1987, 387: 546–550.
    27. Edward Tunstall Messenger, Slmon Holland Nicholson. Surfactant Purification By An electrolytic Method[P]. London, 1,525,692, 1978–09–20.
    28. Lunkenheimer K, Pergande H J, Kruger H. Apparatus for programmed high-performance purification of surfact solutions. Review of Scientific Instruments[J].1987, 58(12): 2313–2316.
    29. Schubert K V, Strey R, Kahlweit M. A new purification technique for alkyl polyglycol ethers and miscibility gaps for wate CiEj[J]. Journal of Colloid and Interface Science, 1991, 141: 21–29.
    30. Graciaa A, Lachaise J, Marion G, et al. Purification of surfactants.Tenside[J]. Journal of Surfactants and Detergen, 1989, 26(6): 384–386.
    31.许振良.膜法水处理技术[M].北京:化学工业出版社, 2001, 41.
    32.马成良,我国电渗析技术发展浅析[J].膜科学与技术. 1998, 18 (4): 58–60.
    33.王湛,周翀.膜分离技术基础[M].北京:化学工业出版社, 2006, 318.
    34.赵成茂,董泉玉,杨从贵.牛磺酸母液分离过程中牛磺酸流失的原因与解决办法[J].辽宁化工, 2004, 33(2): 63–65.
    35. Toraj Mohammadi, Anita Kaviani. Water shortage and seawater desalination by electrodialysis[J]. Desalination, 2003, 158: 267–270.
    36. Jung-Hoon Song, Kyeong-Ho Yeon, Seung-Hyeon Moon, et al. Effects of the Operating Parameters on the Reverse Osmosis-Electrodeionization Performance in the Production of High Purity Water[J]. Korean Journal of Chemical Engineering, 2005, 22(1): 108–114.
    37. Mohtada Sadrzadeh, Amir Razmi, Toraj Mohammadi. Separation of different ions from wastewater at various operating conditions using electrodialysis[J]. Separation and Purification Technology. 2007, 54: 147–156.
    38.彭超,汤建华.电渗析法处理溴化钠废水溶液的研究[J].水处理技术, 2004, 30(1): 19–21.
    39. T. V. Elisseeva, V. A. Shaposhnik, I. G.. Luschik. Demineralization and separation of amino acids by electrodialysis with ion-exchange membranes[J]. Desalination, 2002, 149: 405– 409.
    40. L. Madzingaidzo, H. Danner, R. Braun. Process development and optimization of lactic acid purification using electrodialysis[J]. Journal of Biotechnology, 2002, 96(3): 223–239.
    41. Reza Nikbakht, Mohtada Sadrzadeh, Toraj Mohammadi. Effect of operating parameters on concentration of citric acid using electrodialysis[J]. Journal of Food Engineering, 2007, 83: 596–604.
    42.蔡邦肖.类甜菜碱药液的膜分离工艺研究[J].膜科学与技术. 2005, 25(1): 30–33.
    43.王辉,余立新.用双极性膜电渗析法分离混合氨基酸[J].清华大学学报. 2004, 44(12): 1588–1591.
    44.唐宇,龚燕,王晓林,等. 1,3-丙二醇发酵液电渗析脱盐的中试研究[J].化工进展, 2004, 24(1): 84–87.
    45.周军,叶长明,陈少伟,等.电渗析技术在处理工业废水中的应用[J].节能与环保, 2007, 7: 33–37.
    46. Angela Tegeler, Wolfgang Ruess, Erich Gmahl. Determination of amphoteric surfactants in cosmetic cleaning products by high-performance liquid chromatography on a cation-exchange column[J]. Journal of Chromatography A, 1995, 715: 195–198.
    47.毛培坤,表面活性剂产品工业分析[M].北京:化学工业出版社, 2003.
    48. GB 11896– 89,水质氯化物的测定–硝酸银滴定法[S].北京:国家环境保护局, 1990
    49.柳恒,苏天铎,唐清富,张红宇.三甲铵乙内脂(甜菜碱)的合成[J].陕西化工, 1999, 328(1): 54–58.
    50.赵瑞华.电渗析法处理氨基酸废水[D]: [硕士学位论文].太原:太原理工大学化学工程系,2001, 4.
    51. Laura J. Banasiaka, Thomas W. Kruttschnittb, Andrea I. Sch?ferc. Desalination using electrodialysis as a function of voltage and salt concentration[J]. Desalination, 2007, 205: 38–46.
    52. Zhao G X, Zhu B Y, Physical chemistry of surfactant[M]. Beijing: Peking University Press, 1991, 13–18.
    53.李方,李干佐,汪汉卿,等.荧光和动态光散射方法研究两性表面活性剂胶束的聚集和相互作用[J].高等学校化学学报, 1998, 19, (7):1117–1120.
    54. Borghetty H. C, Bergam C. H. Synthetic Detergents In The Soap Industriy. JAOCS, 1950, 27: 88-90.
    55. Rosen, M. J., Surfactants and Interfacial Phenomena[M], 2nd edn., NewYork: John Wiley & Sons, 1989.
    56. Van Os N.M., J. R. Haak and L.A.M. Rupert, Physico-chemical properties of selected anionic, cationic and nonionic surfactants[M]. Elsevier, Amsterdam, 1993.
    57. Chorro M, Kamenka N, Faucompre B, et al, Micellization and adsorption of a zwitterionic surfactant: N-dodecyl betaine-effect of salt[J]. Collid and Surface A, 1996, 110(3): 249–261.
    58. QB/T 2623.1-2003.肥皂中游离苛性碱含量的测定[S].北京:中华人民共和国国家发展和改革委员会, 2003.
    59. QB/T 2623.6–2003.肥皂中氯化物含量的测定—滴定法[S].北京:中华人民共和国国家发展和改革委员会, 2003.
    60. QB/T 2486–2000.香皂洗衣皂复合洗衣皂—洗衣皂[S].北京:国家轻工业局, 2000.
    61. QB/T 2485–2000.香皂洗衣皂复合洗衣皂—香皂[S].北京:国家轻工业局, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700