核黄素受体蛋白(RIR)与RIR类似蛋白(AtRIR)以及转录因子RAP2.6L在拟南芥防卫反应中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核黄素可通过生物合成、代谢等多个环节,尤其是黄素介导的氧化还原过程,影响植物防卫和生长发育。异源表达中华鳖核黄素受体蛋白转基因拟南芥体内内源核黄素含量高于野生型,同时转基因植物也表现增强的抗病反应,但其机制不清楚。因此,本博士论文着重解析转核黄素受体基因植物的抗病机制以及内源核黄素含量调控所影响的生理过程和代谢途径,为阐明核黄素参与调控植物生长和防卫反应的机制提供研究基础。生物胁迫与非生物胁迫影响植物的正常生长与发育,植物对生物胁迫和非生物胁迫的响应称为植物防卫反应。本文的研究目标是鉴定参与调控植物防卫反应中新的因子。
     1.核黄素受体蛋白调控拟南芥过氧化氢(H2O2)信号及对病原细菌的防卫反应
     核黄素(维生素B2)在生物体内以黄素单核苷酸(flavin mononucleotide, FMN)和黄素腺嘌呤二核苷酸(flavin adenine dinucleotide, FAD)的形式作为辅基,与黄素蛋白(flavoprotein)或金属黄素蛋白(metalloflavoprotein)组成复合酶,参与生物体内以氧化-还原反应为特征的五十多个生理生化过程。我们的研究表明,核黄素在拟南芥体内引发H2O2信号,调控对病原细菌的抗性。为了调控植物体内核黄素的含量,我们通过转基因手段,在拟南芥过量表达中华鳖(Trionyx sinensis japonicus)的核黄素受体(riboflavin receptor)基因,得到转基因拟南芥品系RIRA11 (riboflavin receptor expression Arabidopsis)。拟南芥转基因植株(RIRA11)与野生型相比,在营养生长期间,体内核黄素含量增加、黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)含量降低,增强对病原细菌的抗性。转录组学分析表明,转基因拟南芥(RIRA11)中涉及多个细胞进程的950个基因的表达发生了改变。其中线粒体电子传递有关的13个基因表达显著下降,导致植株体内H2O2含量上升;RT-PCR和real-time PCR分析表明,此13个基因表达水平与芯片数据一致。转基因植株中核黄素受体基因沉默后,其黄素含量和抗病表型回复到野生型的表型。我们的研究表明,通过调控增加植物体内黄素含量,抑制线粒体电子传递链基因表达,促进H2O2的产生,这些细胞生理代谢的变化,最后导致植物体内H2O2含量增加,增强植物抗病性。
     2.外源核黄素受体蛋白调控拟南芥开花转型
     核黄素可通过生物合成、代谢等多个环节,尤其是黄素介导的氧化还原过程,影响植物防卫和生长发育。我们把中华鳖的核黄素受体基因转入拟南芥中,借以调控植物体内的黄素含量,研究黄素对于植物防卫与生长发育的调控作用。异源表达核黄素受体蛋白拟南芥品系RIRA11 (riboflavin receptor expression Arabidopsis)体内总的黄素含量增加,线粒体电子传递链主要基因转录水平下降,细胞氧化还原水平上升,开花提前。用RNAi方法沉默转基因植株中的外源核黄素受体基因后,沉默植物恢复到野生型的表型。与野生型或基因沉默植株相比,过量表达核黄素受体拟南芥(RIRA11)开花转型相关基因表达增强,顶端分生组织中开花标志基因AP1表达增强,开花提前。外源施用H202能诱导植物开花,但依赖于植株体内H2O2含量。我们的研究表明,过量表达核黄素受体拟南芥开花提前,H2O2在植物开花转型过程中起重要作用。
     3.昼夜节律调控拟南芥核黄素信号传导反应
     植物昼夜节律钟在调控植物生理进程、对环境的响应和发育中起及其重要的作用。与此相似,核黄素信号途径广泛参与调控植物生长与发育。核黄素是黄素单核苷酸(FMN)和黄素腺嘌呤二核苷酸(FAD)的前体。FMN, FAD是生物体黄素酶辅基,参与植物体内线粒体电子传递、光合作用、脂肪酸氧化、维生素B6、维生素B12、叶酸代谢等多个生化过程。本研究中,我们的研究结果表明,植物昼夜节律调控核黄素信号传导途径。我们通过异源表达中华鳖核黄素受体蛋白的拟南芥,来调控植物内源核黄素含量。异源表达核黄素受体拟南芥和野生型相似,内源核黄素含量在24 h周期内呈节律波动,但异源表达核黄素受体拟南芥植株内源核黄素含量显著高于野生型植株。RT-PCR分析结果表明,植物内源核黄素含量升高影响了昼夜节律钟输入途径和中心震荡器有关基因的表达模式。另外,外源核黄素诱导或抑制基因的表达模式也受昼夜节律调控。外源核黄素施用植物能诱导植物产生防卫反应,该过程也受昼夜节律调控。因此,我们的研究表明,植物昼夜节律钟调控核黄素信号传导反应。
     4.拟南芥RIR类似蛋白(AtRIR)在非生物胁迫中的功能分析
     渗透压、氧和盐等非生物胁迫影响植物的正常生长和发育。在非生物胁迫环境下植物体内产生、积累的活性氧对植物造成了氧胁迫。AtRIR (At5G27830)是一个功能未知蛋白,序列推测可能是核黄素受体(RIR)类似蛋白。RT-PCR和AtRIR启动子控制的GUS活性检测表明,AtRIR在植物所有主要器官包括根、茎、叶、花中表达。通过根长测定表明,与野生型拟南芥相比,AtRIR T-DNA插入突变体对渗透压、氧和盐胁迫更敏感;过量表达AtRIR转基因拟南芥(AtRIR-OE)增强对渗透压、氧胁迫的抗性。转基因植株在盐、氧、渗透压胁迫和脱落酸处理下,与野生型相比,体内活性氧的含量降低,氧胁迫反应基因(APX1和FSD1)表达减弱;但非生物胁迫反应基因(COR47, RD29B, RD29A)表达增强。这些研究表明,AtRIR通过调控植物体内活性氧的含量,介导植物对非生物胁迫的抗性。
     5.拟南芥RAP2.6L转录因子突变体增强对Pseudomonas syringae的抗性
     植物受病原菌侵染或用病原物激发子处理植物时,激活的植物防卫反应中涉及大量基因的转录调控。目前许多研究表明,ERF类转录因子在植物受病原物侵染后,通过调控寄主植物基因的表达参与植物防卫反应。然而,特异的ERF转录因子在植物防卫中的作用还知之甚少。我们分析了RAP2.6L转录因子在拟南芥对Pst DC3000基本防卫中的作用。RAP2.6L偶联GFP的融合蛋白在洋葱表皮细胞中定位于细胞核。RAP2.6L受环境胁迫(水杨酸、茉莉酸、黄酮)的诱导表达。通过分析RAP2.6L在基本防卫信号通路突变abi1-1, jar1-1, ein2-1和npr1-1上的受病原细菌诱导表达模式,表明水杨酸和茉莉酸信号通路正调控RAP2.6L表达,而乙烯信号通路抑制其表达。RAP2.6L T-DNA插入突变体rap2.6L接种Pst DC3000后,与野生型相比,3d后叶片细菌数量减少约10倍,病害症状显著减轻,水杨酸调控的PR1, PR2基因表达增强。基于rap2.6L突变体的分析表明,RAP2.6L负调控植物对Pst DC3000的基本防卫反应。RAP2.6L具有转录激活功能,在植物防卫反应中调控了许多下游因子,参与植物对病原细菌的抗性。
     总结
     本研究利用核黄素受体蛋白转基因拟南芥为主要研究材料,对内源核黄素变化对于植物防卫反应信号传导机制及其开花转型进行了解析。本文还对鉴定了调控拟南芥防卫反应的两个因子。研究发现:第一,核黄素受体转基因拟南芥体内核黄素含量升高,转录组学分析影响了次级代谢、物质运输、转录调控等多种生理代谢过程。核黄素通过抑制线粒体电子传递链基因表达,致使植株内源过氧化氢水平升高。第二,过氧化氢是拟南芥防卫的重要信号分子,抑制植物过氧化氢含量同时也削弱了植物的防卫能力。过氧化氢介导核黄素受体转基因拟南芥对病原细菌的抗性。第三,核黄素受体蛋白转基因拟南芥开花提前,过氧化氢在此过程中起重要作用,体外施用过氧化氢能诱导拟南芥提前开花。第四,野生型拟南芥叶片中核黄素含量受光周期调控,昼夜节律调控核黄素信号传导。第五,鉴定了AtRIR在拟南芥抗非生物胁迫中的作用。第六,拟南芥RAP2.6L T-DNA突变体增强对病原细菌的抗性。
Riboflavin (vitamin B2) biosynthetic and functional pathways affect plant growth, development, and defensive responses by multiple mechanisms. Endogenous-modulated riboflavin also triggers plant disease resistance in Arabidopsis expressing the riboflavin receptor protein encoding gene from soft-shelled turtle(Trionyx sinensis japonicus). However, the mechanism of disease resistance in transgenic plants is still unknown. Studies in this Ph.D thesis aim at determination of signaling pathways and components in plant responses to endogenous riboflavin, as well as the physiological processes and metabolic pathways, which are affected by endogenous riboflavin with higher levels. Biotic stress and abiotic stresses such as osmotic, oxidative, and salinity affect normal growth and development in plants. Our objective is identifying new genes involved in biotic stress and abiotic stress.
     1. Riboflavin modulation of hydrogen peroxide signaling that regulates Arabidopsis resistance to a bacterial pathogen
     Riboflavin (RIB) mediates multiple bioprocesses through flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Here we show that RIB plays an initial role in hydrogen peroxide (H2O2) signaling that regulates pathogen defense in Arabidopsis {Arabidopsis thaliana). We transformed Arabidopsis with TsRIR, a RIB receptor gene from soft-shelled turtle (Trionyx sinensis japonicus), and characterized the RIR-expressing Arabidopsis (RIRA) line RIRA11. Resistance to a bacterial pathogen was promoted coincidently with increased contents of RIB, decreased contents of FMN and FAD in RIRA11 compared to wild-type (Col-0) plant during vegetative growth. Transcriptomics analysis revealed that 950 genes assorted in various cellular processes were altered in RIRA11. Significantly down-regulated profiles included 13 genes critically functional in the mitochondrial electron transport chain (METC), indicating a facilitated production of H2O2 via METC. The transcriptomics information was confirmed by RT-PCR and Real-Time PCR. Silencing the riboflavin receptor protein (RIR) in transgenic plant (RIRA) restored WT characters. Our results uncover a novel signaling contrail:the modulation of RIB reduces FMN and FAD contents and thus depresses METC flux but promotes peroxidation; these changes in METC result in H2O2 burst, which in turn stimulates defense response.
     2. A riboflavin receptor protein modulates the floral transition in Arabidopsis
     Plants flower in response to specific signals. Hydrogen peroxide from flavin-dependent redox mediates many bioprocesses but is unclear for effects on the floral transition. In early-flowering Arabidopsis plants expressing turtle riboflavin receptor protein, the protein localizes to chloroplasts, alters flavin form conversion, and represses the mitochondrial electron transport chain. Cellular hydrogen peroxide is thus elevated to promote the function of the FT protein in activating API, an integrator of the floral transition pathways. Comparing wild-type or silencing Arabidopsis, the transcription levels of genes involved in flowering were increased in over-expression riboflavin receptor protein Arabidopsis (RIRA). RIRA plants show early flowering phenotype. Our results demonstrate a molecular basis by which H2O2 promotes flower development.
     3. The circadian clock regulates riboflavin responses in Arabidopsis
     The circadian clock plays a pervasive role in the temporal regulation of plant physiology, environmental responsiveness, and development. In contrast, the riboflavin play a similarly far-reaching role in the spatial regulation of plant growth and development. Here we present work that the circadian clock regulates riboflavin signal transduction. Using transgenic Arabidopsis plants (RIRA) which ectopic express riboflavin receptor protein from turtle (TsRIR), we found that endogenous riboflavin levels showed circadian rhythms in both wild-type and RIRA. RIRA plants with high concentration of endogenous riboflavin affected the circadian input and central genes expression pattern. By RT-PCR assay, we verified that riboflavin-mediate transcriptional response are circadian regulated. Exogenous riboflavin can induce priming of defense toward infection by Pseudomonas syringae pv. tomato DC3000 (Pst), but the clock controls plant sensitivity to applied riboflavin. Thus the circadian clock regulates some riboflavin response.
     4. Functional characterization of Arabidopsis RIR-like protein (AtRIR) in abiotic stresses
     Abiotic stresses such as osmotic, oxidative, and salinity affect normal growth and development in plants. The production and accumulation of reactive oxygen species (ROS) cause oxidative stress under these abiotic conditions. AtRIR (At5G27830) was identified as a unknown function protein that contain no previously defined domains or motifs, a putative riboflavin receptor protein (RIR) like protein. AtRIR transcripts are found in all major organs including root, leaf and flower by RT-PCR and AtRIR promoter controlled GUS activity. The AtRIR T-DNA insertion mutant (Atrir) showed a higher sensitivity to osmotic, oxidative and salinity stress than the wild-type (Col-0), as revealed by root growth length. Over expression of AtRIR protein in Arabidopsis (AtRIR-OE) was found to enhance of plants to osmotic, oxidative stress. AtRIR-OE reduces the content of ROS and transcripts of oxidative responsive genes (APX1, FSD1) under salt, oxidant, osmotic and abscisic acid treatment. The induced expression of stress-responsive genes (COR47, RD29B, RD29A) was more sensitive to abiotic stress and exogenous ABA in AtRIR-OE than in the wild-type. This indicates that AtRIR modulates the abiotic stress response via the regulation of oxidative stress response.
     5. Mutant in Arabidopsis RAP2.6L transcription factor enhancing plant defense against Pseudomonas syringae
     A common feature of plant defense responses is the transcriptional regulation of a large number of genes upon pathogen infection or treatment with pathogen elicitors. A large body of evidence suggests that plant ERF transcription factors are involved in plant defense including transcriptional regulation of plant host genes in response to pathogen infection. However, there is only limited information about the roles of specific ERF DNA-binding transcription factors in plant defense. We analyzed the role of the RAP2.6L transcription factor from Arabidopsis in plant defense against the bacterial pathogen Pseudomonas syringae. RAP2.6L translational fusion with green fluorescent protein is localized to the nucleus. RAP2.6L expression is responsive to general environmental stress. Analysis of Pst DC3000-induced RAP2.6L in the defense signaling mutants abi1-1,jar1-1, ein2-1 and npr1-1 further indicated that this gene is positively regulated by the salicylic acid (SA) and jasmonic acid (JA) signaling pathway and negatively regulated by ethylene signaling pathway. T-DNA insertion mutants for RAP2.6L reduced growth of Pst DC3000 and displayed reduced disease symptom severity as compared to wild-type plants. The rap2.6L mutant plants also displayed increased expression of the SA-regulated PR1 and PR2 genes after the pathogen infection. Based on analysis of T-DNA insertion mutants, stress-induced RAP2.6L functions as a negative regulator of SA-mediated defense responses to P. syringae. RAP2.6L was a transcriptional activator and was able to activate the expression of genes involved in plant defense.
     Conclusive remarks
     Data obtained from studies in RIR (riboflavin receptor protein) transgenic Arabidopsis have provided us the further understanding on the mechanisms of riboflavin mediated pathogen defense and floral transition in Arabidopsis. Firstly, RIR transgenic Arabidopsis increased riboflavin content in leaves affecting many physiological processes, which provide us the cues to explore the mechanisms of riboflavin mediated plant defense and development. Secondly, the modulation of RIB reduces FMN and FAD contents and thus depresses METC flux, these changes in METC result in H2O2 burst, which in turn stimulates defense response. Thirdly, cellular hydrogen peroxide is elevated to promote flowering in RIR transgenic Arabidopsis and the circadian clock regulates some riboflavin response in wild type Arabidopsis. Fourthly, we have identified Arabidopsis AtRIR function in abiotic stresses. Fifthly, we have identified a new transcription factor which regulates plane defense in Arabidopsis.
引文
1. Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZip protein mediating signals from the floral pathway integrator FT at the shoot apex. Science 309:1052-1056.
    2. Achard P, Herr A, Baulcombe DC, Harberd NP (2004). Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357-3365.
    3. Amirsadeghi S, Robson CA, McDonald AE, Vanlerberghe GC (2006). Changes in plant mitochondrial electron transport alter cellular levels of reactive oxygen species and susceptibility to cell death signaling molecules. Plant Cell Physiol.47:1509-1519.
    4. An HL, Roussot C, Suarez-Lopez P, Corbesier L, Vincent C, Pineiro M, Hepworth S, Mouradov A, Justin S, Turnbull C, Coupland G (2004). CONSTANS acts in the phloem to regulate a systemic signal that induces photoperiodic flowering of Arabidopsis. Development 131:3615-3626.
    5. Antony AC (1996). Folate receptors. Annu. Rev. Nutrition 16:501-521.
    6. Apel K, Hirt H (2004). Reactive oxygen species:metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol.55:373-99.
    7. Ascencio JT, Sozzani R, Lee TJ, Chu TM, Wolfinger RD, Cella R, Bowdoin LH (2008). Global analysis of Arabidopsis gene expression uncovers a complex array of changes impacting pathogen response and cell cycle during geminivirus infection. Plant Physiol.148:436-454.
    8. Aukerman MJ, Sakai H (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730-2741.
    9. Aver'yanov AA, Lapikova VP, Nikolaev ON, Stepanov AI (2000). Active oxygen-associated control of rice blast disease by riboflavin and roseoflavin. Biochemistry (Mosc) 65:1292-1298.
    10. Bahadur U, Ganjam GK, Vasudevan N, Kondaiah P (2005). Estrogen regulation of chicken riboflavin carrier protein gene is mediated by ERE half sites without direct binding of estrogen receptor. Mol. Cell. Endocrinol.231:1-11.
    11. Bangaru MLY, Karande AA (2008). Biochemical characterization of recombinant chicken riboflavin carrier protein. Mol. Cell Biochem.308:1-7.
    12. Bao YM, Wang JF,-Huang J, Zhang HS (2008). Cloning and characterization of three genes encoding Qb-SNARE proteins in rice. Mol. Genet. Genomics 279:291-301.
    13. Barrientos A, Moraes CT(1999). Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem.274:16188-16197.
    14. Bastow R, Mylne JS, Lister C, Lippman Z, Martienssen RA, Dean C (2004). Vernalization requires epigenetic silencing of FLC by histone methylation. Nature 427:164-167.
    15. Bedhomme M, Hoffmann M, McCarthy EA, Gambonnet B, Moran RG, Rebeille F, Ravanel S (2005). Folate metabolism in plants. An Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts.J. Biol. Chem.280:34823-34831.
    16. Blazquez MA (2005). The right time and place for making flowers. Science 309:1024-1025.
    17. Bomer R, Kampmann G, Chandler J (2000). A MADS domain gene involved in the transition to flowering in Arabidopsis. Plant J.24:591-599.
    18. Boss PK, Bastow RM, Mylne JS, Dean C (2004). Multiple pathways in the decision to flower: enabling, promoting, and resetting. Plant Cell 16:S18-S31.
    19. Bright J, Desikan R, Hancock JT, Weir IS, Neill SJ (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J.45:113-122.
    20. Bu Q, Jiang H, Li CB, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Li C (2008). Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses. Cell Res.18:756-767.
    21. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X (1997). The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88: 57-63.
    22. Cao Y, Dai Y, Cui S, Ma L (2008). Histone H2B monoubiquitination in the chromatin of FLOWERING LOCUS C regulates flowering time in Arabidopsis. Plant Cell 20:2586-2602.
    23. Casal JJ (2002). Environmental cues affecting development. Curr. Opin. Plant Biol.5:37-42.
    24. Cashman JR (2002). Human and plant flavin-containing monooxygenase N-oxygenation of amines: detoxication vs. bioactivation. Drug Metab. Rev.34:513-521.
    25. Che P, Lall S, Nettleton D, Howell SH (2006). Gene expression programs during shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol.141:620-637.
    26. Cheng Q, Liu HT, Bombelli P, Smith A, Slabas AR (2004). Functional identification of AtFao3, a membrane bound long chain alcohol oxidase in Arabidopsis thaliana. FEBS Lett.574:62-68.
    27. Christie JM, Salomon M, Nozue K, Wada M, Briggs WR (1999). LOV (light, oxygen, or voltage) domains of the blue-light photoreceptor phototropin (nphl):binding sites for the chromophore flavin mononucleotide. Proc. Natl. Acad. Sci. USA 96:8779-8783.
    28. Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002). Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol. Plantarum 114:157-164.
    29. Clough SJ, Bent AF (1998). Floral dip:a simplified method for agrobacterium mediated transformation of Arabidopsis thaliana. Plant J.16:735-743.
    30. Collins NC, Thordal-Christensen H, Lipka V, Bau S, Kombrink E, Qiu JL, Huckelhoven R, Stein M, Freialdenhoven A, Somerville SC (2003). SNARE-protein-mediated disease resistance at the plant cell wall. Nature 425:973-977.
    31. Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C, Coupland G (2007). FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030-1033.
    32. Covington MF and Harmer SL (2007). The circadian clock regulates auxin signaling and responses in Arabidopsis. PLoS Biol.5:e222. doi:10.1371/journal.pbio.0050222.
    33. Dangl JL, Jones Jonathan DG (2001). Plant pathogens and integrated defence responses to infection. Nature 411:827-833.
    34. Dat J, Vandenabeele S, Vranova E, Van Montagu M, Inze D, Van Breusegem F (2000). Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci.57:779-795.
    35. Dat JF, Pellinen R, Beeckman T, Van DCB, Langebartels C, Kangasjarvi J, Inze D, Van BF (2003). Changes in hydrogen peroxide homeostasis triger an active cell death process in tobacco. Plant J. 33:621-632.
    36. Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005). Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17:268-281.
    37. Delledonne M, Zeier J, Marocco A, Lamb CJ (2001). Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 98:13454-13459.
    38. Desikan R, Hancock JT, Bright J, Harrison J, Weir I, Hooley R, Neill SJ (2005). A role for ETR1 in hydrogen peroxide signaling in stomatal guard cells. Plant Physiol.137:831-834.
    39. Devlin PF, Robson PRH, Patel SR, Goosey L, Sharrock RA, Whitelam GC (1999). Phytochrome D acts in the shade-avoidance syndrome in Arabidopsis by controlling elongation growth and flowering time. Plant Physiol.119:909-915.
    40. Dong HP, Peng JL, Bao Z, Meng X, Bonasera JM, Beer SV, and Dong H (2004). Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol.136:3628-3638.
    41. Dong HS, Beer SV (2000). Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90:801-811.
    42. Dorey S, Kopp M, Geoffroy P, Fritig B, Kauffmann S (1999). Hydrogen peroxide from the oxidative burst is neither necessary nor sufficient for hypersensitive cell death induction, phenylalanine ammonia lyase stimulation, salicylic acid accumulation or scopoletin consumption in cultured tobacco cells treated with elicitor. Plant Physiol.121:163-173.
    43. Doyle MR, Davis SJ, Bastow RM, Mcwatters HG, Kozmabognar L, Nagy F, Millar AJ, Amasino RM (2002). The ELF4 gene controls circadian rhythms and flowering time in Arabidopsis thaliana. Nature 419:74-77.
    44. Durrant WE, Dong X (2004). Systemic acquired resistance. Annu. Rev. Phytopathol.42:185-209.
    45. Dynowski M, Schaaf G, Loque D, Moran O, Ludewig U (2008). Plant plasma membrane water channels conduct the signalling molecule H2O2. Biochem. J.414:(53-61).
    46. Eckardt NA (2007). Phloem-borne FT signals flowering in cucurbits. Plant Cell 19:1435-1438.
    47. Emanuelsson O, Brunak S, Heijne G, Nielsen H (2007). Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols.2:953-971.
    48. Fischer M, Bacher A (2006). Biosynthesis of vitamin B2 in plants. Physiol. Plantarum 126: 304-318.
    49. Fischer M, Haase I, Feicht R, Schramek N, Kohler P, Schieberle P, Bacher A (2005). Evolution of vitamin B2 biosynthesis:riboflavin synthase of Arabidopsis thaliana and its inhibition by riboflavin. Biol. Chem.386:417-428.
    50. Fowler S, Lee K, Onouchi H, Samach A, Richardson K, Morris B, Coupland G, Putterill J (1999). GIGANTEA:a circadian clock controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J.18: 4679-4688.
    51. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y,Yamaguchi SK, Shinozaki K (2006). Crosstalk between abiotic and biotic stress responses:a current view from the points of convergence in the stress signalling networks. Curr. Opin. Plant Biol.9:436-442.
    52. Gadjev I, Vanderauwera S, Gechev TS, Laloi C, Minkov IN, Shulaev V, Apel K, Inze D, Mittler R, Breusegem FV (2006). Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol.141:436-445.
    53. Glazebrook J (2004). Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol.43:205-227.
    54. Gollery M, Harper J, Cushman J, Mittler T, Mittler R (2007). POFs:what we don't know can hurt us. Trends Plant Sci.12:492-496.
    55. Goodrich J, Puangsomlee P, Martin M, Long D, Meyerowitz E M, Coupland G (1997). A polycomb-group gene regulates homeotic gene expression in Arabidopsis. Nature 386:44-51.
    56. Govrin E, Levine A (2000). The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr. Biol.10:751-757.
    57. Grad LI, Lemire BD (2006). RIB enhances the assembly of mitochondrial cytochrome c oxidase in C. elegans NADH-ubiquinone oxidoreductase mutants. Biochim. Biophys. Acta.1757:115-122.
    58. Grant JJ, Yun BW, Loake GJ (2000). Oxidative burst and cognate redox signalling reported by luciferase imaging:identification of a signal network that functions independently of ethylene, SA and Me-JA but is dependent on MAPKK activity. Plant J.24:569-582.
    59. Gregory Ⅲ JF (1998). Nutritional properties and significance of vitamin glycosides. Annu. Rev. Nutr.18:277-296.
    60. Grivennikova VG, Vinogradov AD (2006). Generation of superoxide by the mitochondrial Complex I. Biochim. Biophys. Acta.1757:553-561.
    61. Gutterson N, Reuber T L (2004). Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr. Opin. Plant Biol.7:465-471.
    62. Hamajima S, Ono S (1995). Sequence of a cDNA encoding turtle riboflavin-binding protein:a comparison with avian riboflavin-binding protein. Gene 164:279-282.
    63. Hamazume Y, Mega T, Ikenaka T (1987). Positions of disulfide bonds in riboflavin protein of hen egg white. J. Biochem.101:1217-223.
    64. Hayama R, Yokoi S, Tamaki S, Yano M, Shimamoto K (2003). Adaptation of photoperiodic control pathways produces short-day flowering in rice. Nature 422:719-722.
    65. He Y, Michaels SD, Amasino RM (2003). Regulation of flowering time by histone acetylation in Arabidipsis. Science 302:1751-1754.
    66. He YK, Tang RH, Hao Y (2004). Nitric oxide represses the Arabidopsis floral transition. Science 305:1968-1971.
    67. Herz S, Eberhardt S, Bacher A (2000). Biosynthesis of riboflavin in plants. The ribA gene of Arabidopsis thaliana species a bifunctional GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase. Phytochemistry 53:723-731.
    68. Horan K, Jang C, Bailey SJ, Mittler R, Shelton C, Harper JF, Zhu JK, Cushman JC, Gollery M, Girke T (2008). Annotating genes of known and unknown functions by large-scale co-expression analysis. Plant Physiol.147:41-57.
    69. Huang SN, Phelps M, Swaan PW (2003). Involvement of endocytic organelles in the subcellular trafficking and localization of riboflavin. J. Pharmacol. Exp. Ther.306:681-687.
    70. Huang SN, Swaan PW (2001). Riboflavin uptake in human trophoblast-derived bewo cell monolayers:cellular translocation and regulatory mechanisms. J. Pharmacol. Exp. Ther.298: 264-271.
    71. Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O (2005). The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309:1694-1696.
    72. Huckelhoven R, Kogel KH (2003). Reactive oxygen intermediates in plant-microbe interactions: Who is who in powdery mildew resistance? Planta 216:891-902.
    73. Jack T (2004). Molecular and genetic mechanisms of floral control. Plant Cell 16 Suppl:S1-17.
    74. Jaeger KE, Wigge PA (2007). FT protein acts as a long-range signal in Arabidopsis. Curr. Biol.17: 1050-1054.
    75. Jarillo JA, Capel J, Tang RH, Yang HQ, Alonso JM, Ecker JR, Cashmore AR (2001). An Arabidopsis circadian clock component interacts with both CRY1 and PHYB. Nature 410:487-490.
    76. Jiang D, Wang Y, Wang Y, He Y (2008). Repression of FLOWERING LOCUS C and FLOWERING LOCUS T by the Arabidopsis polycomb repressive complex 2 components. PLoS ONE 3:e3404. doi:10.1371/journal.pone.0003404.
    77. Jofuku KD, den Boer BG, Van MM, Okamuro JK (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6:1211-1225.
    78. Johnson E, Bradley M, Harberd N P,Whitelam GC (1994). Photoresponses of light-grown phya mutants of Arabidopsis phytochrome a is required for the perception of daylength extensions. Plant Physiol.105:141-149.
    79. Jones JD, Dangl JL (2006). The plant immune system. Nature 444:323-329.
    80. Joo JH, Wang S, Chen JG, Jones AM, Fedoroff NV (2005). Different signaling and cell death roles of heterotrimeric G protein a-and b-subunits in the Arabidopsis oxidative stress response to ozone. Plant Cell 17:957-970.
    81. Jordan DB, Bacot KO, Carlson TJ, Kessel M, Viitanen PV (1999). Plant riboflavin biosynthesis cloning, chloroplast localization, expression, purification, and partial characterization of spinach lumazine synthase. J. Biol. Chem.274:22114-22121.
    82. Kariola T, Brader G, Li J, Palva ET (2005). Chlorophyllase 1, a damagecontrol enzyme, affects the balance between defense pathways in plants. Plant Cell 17:282-294.
    83. Keppler LD, Baker CJ, Atkinson MM (1989). Active oxygen production during a bacteria induced hypersensitive reaction in tobacco suspension cells. Phytopathology 79:974-978.
    84. Kim KC, Lai Z, Fan B, Chen Z (2008). Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell 20:2357-2371.
    85. King RW, Moritz T, Evans LT, Martin J, Andersen CH, Blundell C, Kardailsky I, Chandler PM (2006). Regulation of flowering in the longday grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol.141:498-507.
    86. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P (2000). Nitric oxide and salicylic acid signaling in plant defense. Proc. Natl. Acad. Sci. USA 97:8849-8855.
    87. Klusener B, Young JJ, Murata Y, Allen GJ, Mori IC, Hugovieux V, Schroeder JI (2002) Convergence of calcium signaling pathways of pathogenic elicitors and abscisic acid in Arabidopsis guard cells. Plant Physiol.130:2152-2163.
    88. Komiya R, Ikegami A, Tamaki S, Yokoi S, Shimamoto K (2008). Hd3a and RFT1 are essential for flowering in rice. Development 135:767-774.
    89. Koornneef A, Pieterse CMJ. (2008). Cross talk in defense signaling. Plant Physiol.146:839-844.
    90. Koussevitzky S, Nott A, Mockler TC, Hong F, Sachetto-Martins G, Surpin M, Lim J, Mittler R, Chory J (2007). Signals from chloroplasts converge to regulate nuclear gene expression. Science 316:715-719.
    91. Kozik A (1982). Disulfide bonds in egg-white riboflavin-binding protein:chemical reduction studies. Eur. J. Biochem.121:395-400.
    92. Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z (2008). Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology 8:68.
    93. Laloi C, Apel K, Danon A (2004). Reactive oxygen signalling:the latest news. Curr. Opin. Plant Biol.7:323-328.
    94. Ledger S, Strayer C, Ashton F, Kay SA, Putterill J (2001). Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J.26:15-22.
    95. Lee KP, Kim C, Landgraf K, Apel K (2007). EXECUTER1- and EXECUTER2-dependent transfer of stress-related signals from the plastid to the nucleus of Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 104:10270-10275.
    96. Lee S, Choi H, Suh S, Doo IS, Oh KY, Choi EJ, Schroeder Taylor AT, Low PS, Lee Y (1999). Oligogalacturonic acid and chitosan reduce stomatal aperture by inducing the evolution of reactive oxygen species from guard cells of tomato and Commelina communis. Plant Physiol.121:147-152.
    97. Lenaz G, Fato R, Genova ML, Bergamini C, Bianchi C, Biondi A (2006). Mitochondrial Complex I:structural and functional aspects. Biochim. Biophys. Acta.1757:1406-1420.
    98. Levy YY, Mesnage S, Mylne JS, Gendall A R, Dean C (2002). Multiple roles of Arabidopsis VRN1 in vernalization and flowering tine control. Science 297:243-246.
    99. Li J, Brader G, Kariola T, Palva ET (2006). WRKY70 modulates the selection of signaling pathways in plant defense. Plant J.46:477-491.
    100. Lim MH, Kim YS, Chung KS, Seo YH, Lee I, Kim J, Hong CB, Kim HJ, Park CM (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16:731-740.
    101. Lin C (2000). Plant blue-light receptors. Trends Plant Sci.5:337-342.
    102. Lin MK, Belanger H, Lee YL, Varkonyl-Gasic E, Taoka KI, Miura E, Xoconostie-Cazares B, Gendler K, Jorgensen RA, Phinney B (2007). FLOWERING LOCUS T-protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19:1488-1506.
    103. Liszkay A, van der Zalm E, Schopfer P (2004). Production of reactive oxygen intermediates O22, H2O2, and OH by maize roots and their role in wall loosening and elongation growth. Plant Physiol. 136:3114-3123.
    104. Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F, and Dong H (2006). The internal glycine-rich motif and cysteine suppress several effects of the HpaGxooc protein in plants. Phytopathology 96: 1052-1059.
    105. Lough TJ, Lucas WJ (2006). Integrative plant biology:role of phloem long-distance macro-molecular trafficking. Annu. Rev. Plant Biol.57:203-232.
    106. Love AJ, Yun BW, Laval V, Loake GJ, Milner JL (2005). Cauliflower mosaic virus, a compatible pathogen of Arabidopsis, engages three distinct defense signaling pathways and activates rapid systemic generation of reactive oxygen species. Plant Physiol.139:935-948.
    107. Luhua S, Ciftci YS, Harper J, Cushman J, Mittler R (2008). Enhanced tolerance to oxidative stress in transgenic Arabidopsis plants expressing proteins of unknown function. Plant Physiol.148: 280-292.
    108. Maehashi K, Matano M, Kondo A, Yamamoto Y, Udaka S (2007). Riboflavin-binding protein exhibits selective sweet suppression toward protein sweeteners. Chem. Senses 32:183-190.
    109. Maehashi K, Matano M, Nonaka M, Udaka S, Yamamoto Y (2008). Riboflavin-binding protein is a novel bitter inhibitor. Chem. Senses 33:57-63.
    110. Magome H, Yamaguchi S, Hanada A (2004). Dwarf and delayed-flowering 1, a novel Arabidopsis mutant deficient in gibberellin biosynthesis because of overexpression of a putative AP2 transcription factor. Plant J.37:720-729.
    111. Martinez-Garcia JF, Huq E, Quail PH (2000). Direct targeting of light signals to a promoter element-bound transcription factor. Science 288:859-863.
    112. Mason CW, D'Souza VM, Bareford LM, Phelps MA, Ray A, Peter WS (2006). Recognition, cointernalization, and recycling of an avian riboflavin carrier protein in human placental trophoblasts. J. Pharmacol. Exp. Ther.317:465-472.
    113. Mathieu J, Warthmann N, Kiittner F, Schmid M (2007). Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol.17:1055-1060.
    114. Meinhard M, Rodriguez PL, Grill E (2002). The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signalling. Planta 214:775-782.
    115. Michaels SD (2008). Flowering time regulation produces much fruit. Curr. Opin. Plant Biol.12: 1-6.
    116. Michaels SD, Himelblau E, Kim SY, Schomburg FM, Amasino RM (2005). Integration of flowering signals in winter-annual Arabidopsis. Plant Physiol.137:149-156.
    117. Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004). Reactive oxygen gene network of plants. Trends Plant Sci.9:490-498.
    118. Mittler R (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.7:405-410.
    119. Mizoguchi T, Wheatley K, Hanzawa Y, Wright L, Mizoguchi M, Song HR, Carre I A, Coupland G (2002). LHY and CCA1 are partially redundant genes required to maintain circadian rhythms in Arabidopsis. Dev. Cell2:629-641.
    120. Mockler T, Yang H, Yu X, Parikh D, Cheng Y C, Dolan S, Lin C (2003). Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl. Acad. Sci. USA 100: 2140-2145.
    121. M(?)ller LM (2001). Plant mitochondria and oxidative stress electron transport, NADPH turnover, and metabolism of reactive oxygen species. Annu. Rev. Plant Physiol. Plant Mol. Biol.52:56-591.
    122. Monaco HL (1997). Crystal structure of chicken riboflavin-binding protein. EMBO J.16: 1475-1483.
    123. Monte E, Alonso JM, Ecker JR, Zhang Y, Li X, Young J, Austinphillips S, Quail PH (2003). Isolation and characterization of phyC mutants in Arabidopsis reveals complex crosstalk between phytochrome signaling pathways. Plant Cell.15:1962-1980.
    124. Moon J, Lee H, Kim M, Lee I (2005). Analysis of flowering pathway integrators in Arabidopsis. Plant Cell Physiol.46:292-299.
    125. Mori IC, Schroeder JI (2004). Reactive oxygen species activation of plant Ca2+ channels:a signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol.135:702-708.
    126. Mou Z, Fan W, Dong X (2003). Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935-944.
    127. Mouradov A, Cremer F, Coupland G (2002). Control of flowering time:interating pathways as a basis for diversity. Plant Cell 14 (Suppl):S111-S130.
    128. Mukhtar MS, Deslandes L, Auriac MC, Marco Y, Somssich IE (2008). The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. The Plant J.56:935-947.
    129. Mur LA, Kenton P, Atzorn R, Miersch O, Wasternack C (2006). The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol.140:249-262.
    130. Murata Y, Pei ZM,Mori IC, Schroeder JI (2001). Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abil-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13:2513-2523.
    131. Neill S, Desikan R, Hancock J (2002). Hydrogen peroxide signalling. Curr. Opin. Plant Biol.5: 388-395.
    132. Nemhauser JL, Hong F, Chory J (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126:467-475.
    133.Noctor G, Paepe RD, Foyer CH (2007). Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci.12:125-134.
    134. Ohme-Takagi M, Shinshi H (1995). Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell 7:173-182.
    135. Orrenius S, Gogvadze V, Zhivotovsky B (2007). Mitochondrial oxidative stress:implications for cell death. Annu. Rev. Pharmacol. Toxicol.47:143-183.
    136. Pei ZM, Kuchitsu K (2005). Early ABA signaling events in guard cells. J. Plant Growth Reg.24: 296-307.
    137. Pei ZM, Murata Y, Benning G, Thomine S, Klusener B, Allen GJ, Grill E, Schroeder JI (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731-734.
    138. Pineiro M, Gonez-Mena C, Schaffer R, Martinez-Zapater JM, Coupland G (2003). EARLY BLOTING IN SHORT DAYS is related to chromatin remodeling factors and regulates flowering in Arabidopsis by repressing FT. Plant Cell 15:1552-1562.
    139. Polidoros AN, Mylona PV, Scandalios JP (2001). Transgenic tobacco plants expressing the maize Cat2 gene have altered catalase levels that affect plant-pathogen interactions and resistance to oxidative stress. Transgenic Res.10:555-569.
    140. Powers HJ (2003). Riboflavin (vitamin B-2) and health. Am. J. Clin. Nutr.77:1352-1360.
    141. Pre M, Atallah M, Champion A, Vos MD, Pieterse CMJ, Memelink J (2008). The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol.147:1347-1357.
    142. Quesada V, Macknight R, Dean C, Simpson GG (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J.22:3142-3152.
    143. Renew S, Heyno E, Schopfer P, Liszkay A (2005). Sensitive detection and localization of hydroxyl radical production in cucumber roots and Arabidopsis seedlings by spin trapping electron paramagnetic resonance spectroscopy. Plant J.44:342-347.
    144. Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006). Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol.141:357-366.
    145. Rizhsky L, Davletova S, Liang H, Mittler R (2004). The zinc finger protein Zat12 is required for cytosolic ASCORBATE PEROXIDASE 1 expression during oxidative stress in Arabidopsis. J. Biol. Chem.279:11736-11743.
    146. Roje Sanja (2007). Vitamin B biosynthesis in plants. Phytochemistry 68:1904-1921.
    147. Said HM, Mohammed ZM (2006). Intestinal absorption of watersoluble vitamins:an update. Curr. Opin. Gastroenterol.22:140-146.
    148. Salome PA, Mcclung CR (2004). The Arabidopsis thaliana Clock. J. Biol. Rhythms.19:425-435.
    149. Samach A, Onouchi H, Gold SE, Ditta GS, Schwarz-Sommer Z, Yanofsky MF, Coupland G (2000). Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288:1613-1616.
    150. Sancar A (2000). Cryptochrome:the second photoactive pigment in the eye and its role in circadian photoreception. Annu. Rev. Biochem.69:31-67.
    151. Sancar A (2004). Regulation of the mammalian circadian clock by cryptochrome. J. Biol. Chem. 279:34079-34082.
    152. Sandoval FJ, Roje S(2005). An FMN hydrolase is fused to a riboflavin kinase homolog in plants. J. Biol. Chem.280:38337-38345.
    153. Sandoval FJ, Zhang Y, Roje S (2008). Flavin nucleotide metabolism in plants:monofunctional enzymes synthesize FAD in plastids. J. Biol. Chem.283:30890-30900.
    154. Schlaich NL (2007). Flavin-containing monooxygenases in plants:looking beyond detox. Trends Plant Sci.12:412-418.
    155. Schranz ME, Quijada P, Sung SB (2002). Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457-1468.
    156. Schultheiss H, Dechert C, Kogel KH, Huckelhoven R (2003). Functional analysis of barley RAC/ROP G-protein family members in susceptibility to the powdery mildew fungus. Plant J.36: 589-601.
    157. Searle I, Coupland G (2004). Induction of flowering by seasonal changes in photoperiod. EMBO J. 23:1217-1222.
    158. Shirasu K, Nakajima H, Rajasekhar VK, Dixon RA, Lamb CJ (1997). Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell9:261-270.
    159. Shumyantseva VV, Bulko TV, Petushkova NA, Samenkova NF, Kuznetsova GP, Archakov AI (2004). Fluorescent assay for riboflavin binding to cytochrome P450-2B4. J. Inorg. Biochem.98: 365-370.
    160. Simpson GG (2004). The autonomous pathway:epigenetic and post-transctriptional gene regulation in the control of Arabidopsis flowering time. Curr. Opin. Plant Biol.7:570-574.
    161. Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C (2003). FY is an RNA 3,end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113: 777-787.
    162. Souza ACS, Kodach L, Gadelha FR, Bos CL, Cavagis ADM, Aoyama H, Peppelenbosch MP, Ferreira CV (2006). A promising action of riboflavin as a mediator of leukaemia cell death. Apoptosis 11:1761-1771.
    163. Spoel SH, Koornneef A, Claessens SMC, Korzelius JP, Pelt JAV, Mueller MJ, Buchala AJ, Metraux JP, Brown R, Kazan K, Loon LCV, Dong X, Pieterse CMJ (2003). NPR1 modulates cross-talk between salicylateand jasmonate-dependent defense pathways through a novel function in the cytosol. Plant Cell 15:760-770.
    164. Stadler R, Wright KM, Lauterbach C, Amon G, Gahrtz M, Feuerstein A, Oparka KJ, Sauer N (2005). Expression of GFP-fusions in Arabidopsis companion cells reveals non-specific protein trafficking into sieve elements and identifies a novel postphloem domain in roots. Plant J.41: 319-331.
    165. Stahmann KP, Revuelta JL, Seulberger H (2000). Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical RIB production. Appl. Microbiol Biotechnol.53:509-516.
    166. Starkov AA, Fiskum G (2003). Regulation of brain mitochondrial H2O2 production by membrane potential and NAD(P)H redox state. J. Neurochem.86:1101-1107.
    167. Storey KB, Dent ME, Storey JM (1999). Gene expression during estivation in spadefoot toads, Scaphiopus couchii:Upregulation of riboflavin binding protein in liver. J. Exp. Zool. Part A:Comp. Exp. Biol.284:325-333.
    168. Strayer C, Oyama T, Schultz TF, Raman R, Somers DE, Mas P, Panda S, Kreps JA, and Kay SA (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289:768-771.
    169. Subramanian S, Adiga PR (1998). Identification and mapping of linear antigenic determinants of chicken riboflavin carrier protein. Biochim. Biophys. Acta 1429:74-82.
    170. Suhita D, Raghavendra AS, Kwak JM, Vavasseur A (2004). Cytoplasmic alkalization precedes reactive oxygen species production during methyl jasmonate- and abscisic acid-induced stomatal closure. Plant Physiol.134:1536-1545.
    171. Sung S, Amasino RM (2004). Vernalization and epigenetics:how plants remember winter. Curr. Opin. Plant Biol.7:4-10.
    172. Tada Y, Spoel SH, Mukhtar KP, Mou Z, Song J, Wang C, Zuo J, Dong X (2008). Plant immunity requires conformational charges of nprl via s-nitrosylation and thioredoxins. Science 321:952-956.
    173. Tadege M, Sheldon CC, Helliwell CA (2001). Control of flowering time by FLC orthologues in Brassica napus. Plant J.28:545-553.
    174. Taheri P, Hofte M (2006). RIB induces resistance in rice against rhizoctonia sheath diseases by activating signal transduction pathways leading to upregulation of rice cationic peroxidase and formation of lignin as a structural barrier. Commun. Agric. Appl. Biol. Sci.71:255-258.
    175. Tamaki S, Matsuo S, Wong HL, Yokoi S, Shimamoto K (2007). Hd3a protein is a mobile flowering signal in rice. Science 316:1033-1036.
    176. Tang W, Charles TM, Newton RJ (2005). Overexpression of the pepper transcription factor CaPFl in transgenic Virginia pine (Pinus Virginiana Mill.) confers multiple stress tolerance and enhances organ growth. Plant Mol. Biol.59:603-617.
    177. Thain SC, Vandenbussche F, Laarhoven LJJ, Dowson-Day MJ, Wang ZY, Tobin EM, Harren FJM, Millar AJ, Straeten DVD (2004). Circadian rhythms of ethylene emission in Arabidopsis. Plant Physiol.136:3751-3761.
    178. Torres MA, Dangl JL (2005). Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr. Opin. Plant Biol.8:397-403.
    179. Torres MA, Dangl JL, Jones JD (2002). Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 99:517-522.
    180. Umezawa T, Fujita M, Fujita Y, Shinozaki YK, Shinozakil K (2006). Engineering drought tolerance in plants:discovering and tailoring genes to unlock the future. Curr. Opin. Biotechnol.17: 113-122.
    181. Valenti D, Vacca RA, de Pinto MC, De GL, Marra E, Passarella S (2007). In the early phase of programmed cell death in tobacco bright yellow 2 cells the mitochondrial adenine nucleotide translocator, adenylate kinase and nucleoside diphosphate kinase are impaired in a reactive oxygen species-dependent manner. Biochim. Biophys. Acta 1767:66-78.
    182. Valverde F, Mouradov A, Soppe W, Ravenscroft D, Samach A, Coupland G (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303:1003-1006.
    183. Van BF, Dat JF (2006). Reactive oxygen species in plant cell death. Plant Physiol.141:384-390.
    184. van der Merwe JA, Dubery IA (2006). Benzothiadiazole inhibits mitochondrial NADH:ubiquinone oxidoreductase in tobacco. J. Plant Physiol.163:877-882.
    185. Vanhanen S, West M, Kroon JTM, Lindner N, Casey J, Cheng Q, Elborough KM, Slabas AR (2000). A consensus sequence for long-chain fatty-acid alcohol oxidases from candida identifies a family of genes involved in lipid v-oxidation in yeast with homologues in plants and bacteria. J. Biol. Chem.275:4445-4452.
    186. Verslues PE, Agarwal M, Katiyar A, S, Zhu J, Zhu JK (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J.45: 523-539.
    187. Verslues PE, Zhu JK (2005). Before and beyond ABA:upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochem. Soc. Trans.33:375-379.
    188. Vidal G, Ribas-Carbo M, Garmier M, Dubertret G, Rasmusson AG, Mathieu, Foyer CH, Paepe RD (2007). Lack of respiratory chain complex I impairs alternative oxidase engagement and modulates redox signaling during elicitor-induced cell death in tobacco. Plant Cell 19:640-655.
    189. Wang MB, Peter MW(2001). Application of gene silencing in plants. Curr. Opin. Plant Biol.5: 146-150.
    190. Wang XF, Zhang DP (2008). Abscisic acid receptors:multiple signal-perception sites. Ann. Bot. (London) 101:311-317.
    191. Wang ZY and Tobin EM (1998). Constitutive expression of the Circadian Clock Associated 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93:1207-1217.
    192. Wasylewski M (2000). Binding study of RIB-binding protein with RIB and its analogues by differential scanning calorimetry. J. Protein Chem.19:523-528.
    193. Wigge PA, Kim MC, Jaeger KE, Busch W, Schmid M, Lohmann JU, Weigel D (2005). Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309:1056-1059.
    194. Wu L, Zhang Z, Zhang H, Wang XC, Huang R (2008). Transcriptional modulation of ethylene response factor protein JERF3 in the oxidative stress response enhances tolerance of tobacco seedlings to salt, drought, and freezing. Plant Physiol.148:1953-1963.
    195. Xiao S, Dai L, Liu F, Wang Z, Peng W, Xie D (2004). COS1:an Arabidopsis coronatine insensitivel suppressor essential for regulation of jasmonate-mediated plant defense and senescence. Plant Cell 16:1132-1142.
    196. Xie Z, Ruas P, Shen QJ (2005). Regulatory networks of the phytohormone abscisic acid. Vitam. Horm.72:235-269.
    197. Xiong L, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14:S165-S183.
    198. Yan L, Loukoianov A, Blechl A, Tranquilli G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004). The wheat VRN2 gene is a flowering repressor downregulated by vernalization. Science 303:1640-1644.
    199. Yanovsky MJ, Mazzella MA, Casal JJ (2000). A quadruple photoreceptor mutant still keeps track of time. Curr. Biol.10:1013-1015.
    200. Yao N, Tada Y, Sakamoto M, Nakayashiki H, Park P, Tosa Y, Mayama S (2002). Mitochondrion oxidative burst involve in apoptotic response in oats. Plant J.30:567-579.
    201. Ye Z, Rodriguez R, Tran A, Hoang H, Santos D, Brown S, Vellanoweth RL (2000). The developmental transition to flowering represses ascorbate peroxidase activity and induces enzymatic lipid peroxidation in leaf tissue in Arabidopsis thaliana. Plant Sci.158:115-127.
    202. Yoshida R, Umezawa T, Mizoguchi T, Takahashi S, Takahashi F, Shinozaki K (2006). The regulatory domain of SRK2E/OST1/SNRK2.6 interacts with ABI1 and integrates ABA and osmotic stress signals controlling stomatal closure in Arabidopsis. J. Biol. Chem.281:5310-5318.
    203. Zhang S, Yang X, Sun M, Sun F, Deng S, Dong H (2009). Riboflavin-induced priming for pathogen defense in Arabidopsis thaliana. J. Integ. Plant Biol.51:167-174.
    204. Zhang X, Zhang L, Dong F, Gao J, Galbraith DW, Song CP (2001). Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol.126:1438-1448.
    205. Zheng DB, Lim HM, Pene JJ, WhiteⅢ HB (1988). Chicken riboflavin-binding protein. J. Biol. Chem.263:11126-11129.
    206. Zeevaart JA (2008). Leaf-produced floral signals. Curr. Opin. Plant Biol.11:541-547.
    207.杜秀敏,殷文璇,赵彦修,张慧(2001).植物中活性氧的产生及清除机制.生物工程学报17:121-125.
    208.贾琴(2007).核黄素受体蛋白对植物开花转型和抗病防卫调控作用的初步研究.硕士学位论文,南京农业大学.
    209.彭建令(2003).两类激发子(harpins和核黄素)启动植物抗病防卫和生长信号传导的分子遗传学解析.博士学位论文,南京农业大学.
    210.彭建令,赵静,潘小玫,董汉松(2002).核黄素启动植物生长信号通路的初步研究.南京农业大学学报25:33-36.
    211.王颖(2004).中华鳖核黄素受体基因的克隆和在转基因植物中的表达.硕士学位论文,南京农业大学.
    212.夏侯珍珠(2007).核黄素受体蛋白与HpaGxoo蛋白对植物生长与防卫反应的影响.硕士学位论文,南京农业大学.
    213.种康,雍伟东,谭克辉(1999).高等植物春化作用研究进展.植物学通报16:481-487.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700