长链非编码RNA在脑胶质瘤中差异表达的相关研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经胶质瘤是脑神经神经系统是最为常见的恶性肿瘤,致死率高、复发率高、死亡率高,目前对于胶质瘤的治疗方法包括手术治疗、化学药物治疗、放射治疗、新生物治疗等,然而预后的改善仍然较为有有限。胶质瘤治疗困难的主要原因包括:肿瘤细胞通常过度的增殖和广泛的组织浸润、发病位置难以进行手术切除、病理类型不易确定等。因此寻找有效的神经胶质瘤分子诊断标记和分子靶点,阻断肿瘤细胞的恶性增殖,提升治疗效率一直是研究的热点。长链非编码RNA是人类转录组中一大类重要的调控分子,是指那些长度大于200nt的非编码RNA,其序列上缺乏明显的有开放读码框,不能编码蛋白,可以在转录前、转录后和表观遗传学多个水平参与对靶基因的调控而发挥重要的生物学功能。已有研究证明lncRNA几乎涉及了生物体所有生理和病理过程,lncRNA的异常表达与临床上许多肿瘤及非肿瘤疾病关系密切,因此被寄望成为为肿瘤治疗的重要分子靶点,然而目前我们对于lncRNA在胶质瘤发生发展过程中的重要作用,仍知之甚少。
     本论文开展lncRNA的异常表达与脑胶质瘤的关联研究,具体选取了3种在其他实体肿瘤中被发现有重要功能的3种lncRNA,结肠癌差异表达(CRNDE)、尿路上皮癌抗原(UCA1)、肺腺癌转移相关转录因子1(MALAT1),利用荧光定量PCR检测,3种lncRNA在胶质瘤组织和癌旁组织中的表达差异,并将lncRNA的表达量变化情况与胶质瘤的病理分级和复发情况相关联,开展临床治疗。同时我们还在尝试在胶质瘤细胞中外源性过表达lncRNAUCA1,观察其对于肿瘤细胞增殖能力的影响,并探讨可能的作用机制。
Malignant glioma is a common and severe primary brain tumor with a high recurrencerate and an extremely high mortality rate within2years of diagnosis, even when surgical,radiological, and chemotherapeutic interventions are applied. There are a lot of reasons forfutile therapy on gliomas including: rapid the proliferation, soakage and metastasis of tumorcells, short course, difficult diagnosis of the disease in the early stage, complex lesion location,etc How to find the markers for the and molecular glioma diagnosis and neural targeteffectively for blocking the proliferation and metastasis of tumor cells, improving the therapyefficiency remain to be elucidate.
     LncRNA is most commonly defned as a non-protein-coding RNA molecule longer than200nucleotides. Evidence suggests that many lncRNAs involved in disease-associatedprocesses such as cancer initiation and progression. lncRNAs are becoming recognized as ahallmark feature of many types of diseases. Importantly, cancer-associated lncRNAs mayserve as diagnostic or predictive biomarkers of cancer and also provide a new therapeuticstrategy of selectively silencing cancer-associated lncRNAs. However, there are stillsignificant gaps in our current understanding of lncRNAfunction in glioma.
     To study of human long noncoding RNAs on glioma cell proliferation and explore itsmolecular mechanisms. Three cancer-associated lncRNAs including urothelial cancerassociated1(UCA1), metastasis-associated lung adenocarcinoma transcript1(MALAT1),colorectal neoplasia differentially expressed (CRNDE), were validate screened in40groupsof glioma and its adjacent tissue. Their relationship with the pathological type were alsosummarized. Constructed expression vector of UCA1, and exogenously expressed lncRNAUCA1in glioma cell U251. Using colony formation assay, CCK-8cell viability analysis,flow cytometry cell cycle, we tend to explore the influence of lncRNA UCA1on the gliomacell biological function and the possible mechanism.
     Using qRT-PCR to validate screened three lncRNAs in40groups of glioma and itsadjacent tissues, we found that the expression of MALAT1increase in75%HCC tissues, the percentage of lncRNA CRNDE and UCA1is65%and60%.Expression of three lncRNAswere significantly different in low-grade gliomas (WHO I-II level) and high-grade gliomas(WHO III-IV grade). The eukaryotic expression plasmid of lncRNA UCA1was successfullyconstructed. The Clone forming ability of glioma cell U251was increased by exogenouslyexpressed lncRNA UCA1; CCK-8detection showed that, lncRNA UCA1may accelerate theproliferation of U251; cell cycle analysis showed that, glioma cell with sexogenousexpression of UCA1, in G0/G1phase cells decreased, S phase increased relatively, but G2/Mhad no obvious change, it suggests that UCA1may promote tumor proliferation by affectingthe cell cycle. Our study demonstrates that the expression level was significantly increased3lncRNA CRNDE, MALTA1, UCA1in glioma tissues, and is associated with themalignantdegree of tumor, might be involved in the biological process of glioma cells; lncRNA UCA1can promote the proliferation of glioma cells by affecting the cell cycle.The research mayprovide a new idea on molecular diagnostic markers and potential therapeutic targets forglioma.
引文
1.李亮,边寰,张伟等.中枢神经系统神经上皮细胞肿瘤的流行病学研究.中华神经外科疾病研究杂志.2013.(05):435-438.
    2.Schwartzbaum JA, Fisher JL, Aldape KD, Wrensch M. Epidemiology and molecularpathology of glioma. Nature clinical practice. Neurology.2006.2(9):494-503; quiz1pfollowing516.
    3.周明卫,傅震,张岩松等.胶质瘤及脑脊液中端粒酶活性的检测.中华神经外科杂志.2001.(05):10-13.
    4.Hutterer M, Gunsilius E, Stockhammer G. Molecular therapies for malignant glioma.Wiener medizinische Wochenschrift (1946).2006.156(11-12):351-63.
    5.Laigle-Donadey F, Sanson M. Pattern of care of high-grade gliomas]. La Revue dupraticien.2006.56(16):1779-86.
    6.Nieder C, Astner ST, Grosu AL. Glioblastoma research2006-2010: pattern of citationand systematic review of highly cited articles. Clin Neurol Neurosurg.2012.114(9):1207-10.
    7.Yang P, Wang Y, Peng X, et al. Management and survival rates in patients with gliomain China (2004-2010): a retrospective study from a single-institution. J Neurooncol.2013.113(2):259-66.
    8.Ortega-Aznar A, Jimenez-Leon P, Martinez E, Romero-Vidal FJ. Clinico-pathologicaland molecular aspects of diagnostic and prognostic value in gliomas]. Revista de neurologia.
    2013.56(3):161-70.
    9.曾宪起,申长虹,浦佩玉,杨树源.应用替莫唑胺对照司莫司丁治疗恶性脑胶质瘤的疗效观察.中华神经外科杂志.2006.(04):204-207.
    10.Forst DA, Nahed BV, Loeffler JS, Batchelor TT. Low-Grade Gliomas. Oncologist.2014.
    11.Georges JF, Martirosyan NL, Eschbacher J, et al. Sulforhodamine101selectivelylabels human astrocytoma cells in an animal model of glioblastoma. J Clin Neurosci.2014.
    12.Vikhert TM, Korshunov AG. Monstro-cellular sarcoma of the brain]. Zhurnalvoprosy neirokhirurgii imeni N. N. Burdenko.1987.(4):40-4.
    13.Forsyth PA, Laing TD, Gibson AW, et al. High levels of gelatinase-B and activegelatinase-A in metastatic glioblastoma. J Neurooncol.1998.36(1):21-9.
    14.Gempt J, Soehngen E, Forster S, et al. Multimodal imaging in cerebral gliomas andits neuropathological correlation. Eur J Radiol.2014.
    15.Giovagnoli AR, Meneses RF, Silvani A, et al. Quality of life and brain tumors: whatbeyond the clinical burden. J Neurol.2014.
    16.李南云,周婧,周航波,马恒辉.脑多形性黄色瘤型星形细胞瘤的临床病理观察.中华病理学杂志.2006.(08):453-457.
    17.Gerosa M, Nicolato A, Foroni R. The role of gamma knife radiosurgery in thetreatment of primary and metastatic brain tumors. Curr Opin Oncol.2003.15(3):188-96.
    18.Niranjan A, Kano H, Khan A, et al. Radiosurgery for brain metastases from unknownprimary cancers. Int J Radiat Oncol Biol Phys.2010.77(5):1457-62.
    19.Giovagnoli AR, Meneses RF, Silvani A, et al. Quality of life and brain tumors: whatbeyond the clinical burden. J Neurol.2014.
    20.Wang Y, Pan L, Sheng XF, Chen S, Dai JZ. Nimotuzumab, a humanized monoclonalantibody specific for the EGFR, in combination with temozolomide and radiation therapy fornewly diagnosed glioblastoma multiforme: First results in Chinese patients. Asia Pac J ClinOncol.2014.
    21.Gilbert MR, Dignam JJ, Armstrong TS, et al. A randomized trial of bevacizumab fornewly diagnosed glioblastoma. N Engl J Med Overseas Ed.2014.370(8):699-708.
    22.Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant andadjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomisedphase III study:5-year analysis of the EORTC-NCIC trial. Lancet Oncol.2009.10(5):459-66.
    23.Linz U. Commentary on Effects of radiotherapy with concomitant and adjuvanttemozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phaseIII study:5-year analysis of the EORTC-NCIC trial (Lancet Oncol.2009;10:459-466). Cancer.2010.116(8):1844-6.
    24.Tang JY, Lee JC, Chang YT, et al. Long noncoding RNAs-related diseases, cancers,and drugs. ScientificWorldJournal.2013.2013:943539.
    25.Maruyama R, Suzuki H. Long noncoding RNA involvement in cancer. BMB Rep.2012.45(11):604-11.
    26.Guil S, Esteller M. Cis-acting noncoding RNAs: friends and foes. Nat Struct Mol Biol.2012.19(11):1068-75.
    27.Qi P, Du X. The long non-coding RNAs, a new cancer diagnostic and therapeuticgold mine. Mod Pathol.2013.26(2):155-65.
    28.Wapinski O, Chang HY. Long noncoding RNAs and human disease. Trends Cell Biol.2011.21(6):354-61.
    29.Scaruffi P. The transcribed-ultraconserved regions: a novel class of long noncodingRNAs involved in cancer susceptibility. ScientificWorldJournal.2011.11:340-52.
    30.Sun M, Kraus WL. Minireview: Long noncoding RNAs: new "links" between geneexpression and cellular outcomes in endocrinology. Molecular endocrinology (Baltimore,Md.).2013.27(9):1390-402.
    31.Bhan A, Mandal SS. Long Noncoding RNAs: Emerging Stars in Gene Regulation,Epigenetics and Human Disease. ChemMedChem.2014.
    32.Paralkar VR, Weiss MJ. Long noncoding RNAs in biology and hematopoiesis. Blood.2013.121(24):4842-6.
    33.Sen R, Ghosal S, Das S, Balti S, Chakrabarti J. Competing Endogenous RNA: TheKey to Posttranscriptional Regulation. ScientificWorldJournal.2014.2014:896206.
    34.Geisler S, Coller J. RNA in unexpected places: long non-coding RNA functions indiverse cellular contexts. Nat Rev Mol Cell Biol2013;14:699-712.
    35.Lin ST, Huang Y, Zhang L, et al. MicroRNA-23a promotes myelination in the centralnervous system. Proc Natl Acad Sci U S A2013;110:17468-73.
    36.Calaway JD, Lenarcic AB, Didion JP, et al. Genetic architecture of skewed Xinactivation in the laboratory mouse. PLoS Genet2013;9:e1003853.
    37.Wan G, Hu X, Liu Y, et al. A novel non-coding RNA lncRNA-JADE connects DNAdamage signalling to histone H4acetylation. EMBO J2013;32:2833-47.
    38.Jia W, Chen W, Kang J. The functions of microRNAs and long non-coding RNAs inembryonic and induced pluripotent stem cells. Genomics Proteomics Bioinformatics2013;11:275-83.
    39.Berghoff EG, Clark MF, Chen S, et al. Evf2(Dlx6as) lncRNA regulatesultraconserved enhancer methylation and the differential transcriptional control of adjacentgenes. Development (Cambridge, England)2013;140:4407-16.
    40.Gao L, Mai A, Li X, et al. LncRNA-DQ786227-mediated cell malignanttransformation induced by benzo(a)pyrene. Toxicol Lett2013;223:205-10.
    41.Zhou HL, Luo G, Wise JA, et al. Regulation of alternative splicing by local histonemodifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res2014;42:701-13.
    42.Prensner JR, Iyer MK, Sahu A, et al. The long noncoding RNA SChLAP1promotesaggressive prostate cancer and antagonizes the SWI/SNF complex. Nat Genet2013;45:1392-8.
    43.Bolisetty MT, Graveley BR. Circuitous route to transcription regulation. Mol Cell2013;51:705-6.
    44.Loayza-Puch F, Agami R. Lncing protein translation to metastasis. EMBO J2013;32:2657-8.
    45.Hu G, Tang Q, Sharma S, et al. Expression and regulation of intergenic longnoncoding RNAs during T cell development and differentiation. Nat Immunol2013;14:1190-8.
    46.Kallen AN, Zhou XB, Xu J, et al. The imprinted H19lncRNA antagonizes let-7microRNAs. Mol Cell2013;52:101-12.
    47.Franklin JL, Rankin CR, Levy S, et al. Malignant transformation of colonic epithelialcells by a colon-derived long noncoding RNA. Biochem Biophys Res Commun2013;440:99-104.
    48.Lv J, Liu H, Huang Z, et al. Long non-coding RNA identification over mouse braindevelopment by integrative modeling of chromatin and genomic features. Nucleic Acids Res2013;41:10044-61.
    49.Li J, Xuan Z, Liu C. Long non-coding RNAs and complex human diseases. Int J MolSci2013;14:18790-808.
    50.Tani H, Torimura M. Identification of short-lived long non-coding RNAs as surrogateindicators for chemical stress response. Biochem Biophys Res Commun2013;439:547-51.
    51.Zhang Y, Zhang XO, Chen T, et al. Circular intronic long noncoding RNAs. Mol Cell2013;51:792-806.
    52.Orom UA, Shiekhattar R. Long noncoding RNAs usher in a new era in the biology ofenhancers. Cell2013;154:1190-3.
    53.Li X, Wu Z, Mei Q, et al. Long non-coding RNA HOTAIR, a driver of malignancy,predicts negative prognosis and exhibits oncogenic activity in oesophageal squamous cellcarcinoma. Br J Cancer2013;109:2266-78.
    54.Wu Y, Ai Z, Yao K, et al. CHIR99021promotes self-renewal of mouse embryonicstem cells by modulation of protein-encoding gene and long intergenic non-coding RNAexpression. Exp Cell Res2013;319:2684-99.
    55.Marina DB, Shankar S, Natarajan P, et al. A conserved ncRNA-binding proteinrecruits silencing factors to heterochromatin through an RNAi-independent mechanism.Genes Dev2013;27:1851-6.
    56.Paliwal A, Temkin AM, Kerkel K, et al. Comparative anatomy of chromosomaldomains with imprinted and non-imprinted allele-specific DNA methylation. PLoS Genet2013;9:e1003622.
    57.Pastori C, Peschansky VJ, Barbouth D, et al. Comprehensive analysis of thetranscriptional landscape of the human FMR1gene reveals two new long noncoding RNAsdifferentially expressed in Fragile X syndrome and Fragile X-associated tremor/ataxiasyndrome. Hum Genet2014;133:59-67.
    58.Tuck AC, Tollervey D. A transcriptome-wide atlas of RNP composition revealsdiverse classes of mRNAs and lncRNAs. Cell2013;154:996-1009.
    59.Bird A. Genome biology: not drowning but waving. Cell2013;154:951-2.
    60.Beckedorff FC, Ayupe AC, Crocci-Souza R, et al. The intronic long noncoding RNAANRASSF1recruits PRC2to the RASSF1A promoter, reducing the expression of RASSF1Aand increasing cell proliferation. PLoS Genet2013;9:e1003705.
    61.Gumireddy K, Li A, Yan J, et al. Identification of a long non-coding RNA-associatedRNP complex regulating metastasis at the translational step. EMBO J2013;32:2672-84.
    62.Yang F, Yi F, Han X, et al. MALAT-1interacts with hnRNP C in cell cycleregulation. FEBS Lett2013;587:3175-81.
    63.Lv J, Cui W, Liu H, et al. Identification and characterization of long non-codingRNAs related to mouse embryonic brain development from available transcriptomic data.PLoS One2013;8:e71152.
    64.Liu Y, Hauser MA, Akafo SK, et al. Investigation of known genetic risk factors forprimary open angle glaucoma in two populations of African ancestry. Invest Ophthalmol VisSci2013;54:6248-54.
    65.Han BW, Chen YQ. Potential pathological and functional links between longnoncoding RNAs and hematopoiesis. Sci Signal2013;6:re5.
    66.Luo H, Sun S, Li P, et al. Comprehensive characterization of10,571mouse largeintergenic noncoding RNAs from whole transcriptome sequencing. PLoS One2013;8:e70835.
    67.Dimond A, Fraser P. Molecular biology. Long noncoding RNAs Xist in threedimensions. Science (New York, N.Y.)2013;341:720-1.
    68.Wang L, Shi S, Wang L, et al. Role of PRNCR1in the castration resistant prostatecancer]. Xi bao yu fen zi mian yi xue za zhi=Chinese journal of cellular and molecularimmunology2013;29:789-93.
    69.Yang L, Lin C, Jin C, et al. lncRNA-dependent mechanisms ofandrogen-receptor-regulated gene activation programs. Nature2013;500:598-602.
    70.Schmitt AM, Chang HY. Gene regulation: Long RNAs wire up cancer growth. Nature2013;500:536-7.
    71.Shiekhattar R. The Yin and Yang of enhancer-like RNAs. EMBO J2013;32:2533-4.
    72.Lu L, Sun K, Chen X, et al. Genome-wide survey by ChIP-seq reveals YY1regulation of lincRNAs in skeletal myogenesis. EMBO J2013;32:2575-88.
    73.Chiyomaru T, Yamamura S, Fukuhara S, et al. Genistein inhibits prostate cancer cellgrowth by targeting miR-34a and oncogenic HOTAIR. PLoS One2013;8:e70372.
    74.Redon S, Zemp I, Lingner J. A three-state model for the regulation of telomerase byTERRA and hnRNPA1. Nucleic Acids Res2013;41:9117-28.
    75.Yan L, Yang M, Guo H, et al. Single-cell RNA-Seq profiling of humanpreimplantation embryos and embryonic stem cells. Nat Struct Mol Biol2013;20:1131-9.
    76.Iio A, Takagi T, Miki K, et al. DDX6post-transcriptionally down-regulatesmiR-143/145expression through host gene NCR143/145in cancer cells. Biochim BiophysActa2013;1829:1102-10.
    77.Ng SY, Bogu GK, Soh BS, et al. The long noncoding RNA RMST interacts withSOX2to regulate neurogenesis. Mol Cell2013;51:349-59.
    78.Montjean D, Ravel C, Benkhalifa M, et al. Methylation changes in mature spermdeoxyribonucleic acid from oligozoospermic men: assessment of genetic variants and assistedreproductive technology outcome. Fertil Steril2013;100:1241-7.
    79.Goodell MA. Parental permissions: H19and keeping the stem cell progeny undercontrol. Cell Stem Cell2013;13:137-8.
    80.Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates bothactivation and repression of immune response genes. Science (New York, N.Y.)2013;341:789-92.
    81.Arita T, Ichikawa D, Konishi H, et al. Circulating long non-coding RNAs in plasmaof patients with gastric cancer. Anticancer Res2013;33:3185-93.
    82.Sun L, Luo H, Bu D, et al. Utilizing sequence intrinsic composition to classifyprotein-coding and long non-coding transcripts. Nucleic Acids Res2013;41:e166.
    83.Han TW, Jan LY. Making antisense of pain. Nat Neurosci2013;16:986-7.
    84.Sun M, Kraus WL. Minireview: Long noncoding RNAs: new "links" between geneexpression and cellular outcomes in endocrinology. Molecular endocrinology (Baltimore, Md.)2013;27:1390-402.
    85.Kitagawa M, Kitagawa K, Kotake Y, et al. Cell cycle regulation by long non-codingRNAs. Cell Mol Life Sci2013;70:4785-94.
    86.Adamson DN, Lim HN. Rapid and robust signaling in the CsrA cascade viaRNA-protein interactions and feedback regulation. Proc Natl Acad Sci U S A2013;110:13120-5.
    87.Keller C, Kulasegaran-Shylini R, Shimada Y, et al. Noncoding RNAs preventspreading of a repressive histone mark. Nat Struct Mol Biol2013;20:994-1000.
    88.Niemczyk M, Ito Y, Huddleston J, et al. Imprinted chromatin around DIRAS3regulates alternative splicing of GNG12-AS1, a long noncoding RNA. Am J Hum Genet2013;93:224-35.
    89.Zhang H, Nestor CE, Zhao S, et al. Profiling of human CD4+T-cell subsets identifiesthe TH2-specific noncoding RNA GATA3-AS1. J Allergy Clin Immunol2013;132:1005-8.
    90.Sandberg K, Samson WK, Ji H. Decoding noncoding RNA: da Vinci redux. Circ Res2013;113:240-1.
    91.Jiang J, Jing Y, Cost GJ, et al. Translating dosage compensation to trisomy21. Nature2013;500:296-300.
    92.Venkatraman A, He XC, Thorvaldsen JL, et al. Maternal imprinting at the H19-Igf2locus maintains adult haematopoietic stem cell quiescence. Nature2013;500:345-9.
    93.Tang L, Zhang W, Su B, et al. Long noncoding RNA HOTAIR is associated withmotility, invasion, and metastatic potential of metastatic melanoma. Biomed Res Int2013;2013:251098.
    94.Holdt LM, Hoffmann S, Sass K, et al. Alu elements in ANRIL non-coding RNA atchromosome9p21modulate atherogenic cell functions through trans-regulation of genenetworks. PLoS Genet2013;9:e1003588.
    95.Qi X, Xie S, Liu Y, et al. Genome-wide annotation of genes and noncoding RNAs offoxtail millet in response to simulated drought stress by deep sequencing. Plant Mol Biol2013;83:459-73.
    96.Liu D, Xu B, Chen S, et al. Long non-coding RNAs and prostate cancer. J NanosciNanotechnol2013;13:3186-94.
    97.Cheng W, Zhang Z, Wang J. Long noncoding RNAs: new players in prostate cancer.Cancer Lett2013;339:8-14.
    98.Basu S, Muller F, Sanges R. Examples of sequence conservation analyses capture asubset of mouse long non-coding RNAs sharing homology with fish conserved genomicelements. BMC Bioinformatics2013;14Suppl7:S14.
    99.Smith MA, Gesell T, Stadler PF, et al. Widespread purifying selection on RNAstructure in mammals. Nucleic Acids Res2013;41:8220-36.
    100.Bhartiya D, Pal K, Ghosh S, et al. lncRNome: a comprehensive knowledgebase ofhuman long noncoding RNAs. Database (Oxford)2013;2013:bat034.
    101.Park SM, Park SJ, Kim HJ, et al. A known expressed sequence tag, BM742401, is apotent lincRNA inhibiting cancer metastasis. Exp Mol Med2013;45:e31.
    102.Ren S, Liu Y, Xu W, et al. Long noncoding RNA MALAT-1is a new potentialtherapeutic target for castration resistant prostate cancer. J Urol2013;190:2278-87.
    103.Tang JY, Lee JC, Chang YT, et al. Long noncoding RNAs-related diseases, cancers,and drugs. ScientificWorldJournal2013;2013:943539.
    104.Eun B, Sampley ML, Van Winkle MT, et al. The Igf2/H19muscle enhancer is anactive transcriptional complex. Nucleic Acids Res2013;41:8126-34.
    105.Revelles O, Millard P, Nougayrede JP, et al. The carbon storage regulator (Csr)system exerts a nutrient-specific control over central metabolism in Escherichia coli strainNissle1917. PLoS One2013;8:e66386.
    106.Flintoft L. Non-coding RNA: Ribosomes, but no translation, for lincRNAs. Nat RevGenet2013;14:520.
    107.Nishimoto Y, Nakagawa S, Hirose T, et al. The long non-coding RNAnuclear-enriched abundant transcript1_2induces paraspeckle formation in the motor neuronduring the early phase of amyotrophic lateral sclerosis. Mol Brain2013;6:31.
    108.Staedtler F, Hartmann N, Letzkus M, et al. Robust and tissue-independentgender-specific transcript biomarkers. Biomarkers2013;18:436-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700