玫瑰红景天有效成分分离纯化及结构鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玫瑰红景天在中国和东欧国家是一种有名的传统药用植物,具有去疲劳、增强学习和记忆、兴奋中枢神经系统、提高工作效率、耐缺氧、改善睡眠、预防高原病、抗癌等多种生理功能,目前是一种很受欢迎的药食两用“适应原”植物。本文对该种植物中两种主要的活性成分的提取分离纯化工艺进行了系统的研究,同时对其中的一些植物化学成分进行了分离分析和结构鉴定,建立了不同红景天品种的指纹图谱,为玫瑰红景天资源的深度开发和在医药工业中的应用提供依据。
     1.在单因素实验的基础上,利用正交组合实验方法研究了三个主要提取因素对两种主要成分(salidroside和rosavin)提取率的影响,得到因素与得率的回归模型及三因素之间相互作用的响应面图。确定两成分提取的最佳工艺条件为:乙醇浓度为70% (v/v),料液比为1:10 (w/v),温度为75℃,提取二次,每次提取时间1h。在最优条件下,两成分的提取率分别为0.80%和0.37%。同时研究了提取过程的动力学和热力学,利用范德霍夫方程计算热力学参数(ΔH~0,ΔS~0和ΔG~0)。研究结果表明两种有效成分的浸出动力学据符合Fick第二定律导出的浸出数学模型,模型拟合得到salidroside和rosavin内扩散传质系数分别为0.75×10~(-9)(m~2/s)和0.41×10~(-9)(m~2/s);提取是一个吸热熵增过程,同时也是一个自发过程。
     2.利用静态吸附和动态解吸实验,通过比较不同树脂的吸附-解吸特性和分离选择性选出最适合分离纯化两主要活性成分的非极性树脂HPD-200,两成分在该树脂上的平衡吸附行为符合Langmuir模型。同时研究了HPD-200树脂上吸附动力学和吸附热力学,准一级、准二级反应模型和膜扩散传质模型用来拟合实验数据,结果吸附动力学可以用准二级动力学方程来描述;吸附过程是受膜扩散和内扩散步骤共同控制;吸附为放热、自发过程,升高温度不利于吸附反应的进行。此外,通过动态吸附和解吸实验,确定了最佳分离纯化工艺条件为:吸附:加样浓度为1.89mg/mL(salidroside)和0.24mg/mL (rosavin),加样量6.4 mL(样品溶液)/g(干树脂),柱床高度30cm,温度25℃,流速1BV/h;解吸:温度25℃,流速1BV/h,梯度洗脱的乙醇浓度和体积依次为:5%乙醇(2.5BV)、10%乙醇(2.5BV)、30%乙醇(2.5BV)、40%乙醇(2.5BV)、60%乙醇(2BV)。在最佳条件下,经过两次柱色谱分离,salidroside纯度从粗提物中的5.57%达到91.21%,总回收率48.82%;rosavin纯度从0.69%增加为15.37%,总回收率46.52%。在最佳分离条件下,进行了柱层析放大实验,结果salidroside和rosavin纯度分别为90.36%和16.02%,总回收率分别为44.75%和52.02%。
     3.对放大分离得到的粗salidroside进行结晶纯化,得到结晶的最佳工艺条件为:结晶溶剂乙醇,结晶溶液的浓度20.5mg/mL(w/v),结晶温度15℃,结晶时间16h。经过一步结晶,可以得到纯度为99.18%的salidroside单体。对放大分离得到的粗rosavin先后经过硅胶柱吸附和ADS-5C反相色谱方法来制备高纯度rosavin单体。确定了两步分离过程的最佳工艺条件。硅胶柱吸附色谱最佳工艺条件为:硅胶粒度200-300目,柱床高度25cm,加样量50 mg(粗rosavin)/g (硅胶),流动相氯仿-甲醇(4:1,v/v),流速l.5 mL/min,洗脱体积3BV。rosavin纯度从16.02%增加到50.17%、回收率为82.46%。ADS-5c反相色谱的最佳佳工艺条件为:加样量16.7 mg(样品)/g (树脂),洗脱剂50%乙醇,洗脱流速2BV/h,纯度最高可以达到98.73%,回收率为43.29%。此外,结合硅胶柱层析和制备反相HPLC方法,对大孔树脂分离salidroside和rosavin得到的其它馏分进行分离纯化,制备得到了19个单体化合物。
     4.通过UV、ESI-MS、1H-NMR 13C-NMR、DEPT-135和二维谱(1H-1H-COSY、HMQC、HMBC)等现代波谱分析方法,对其中15个单体化合物进行了结构鉴定,15个化合物分别鉴定为对-O-β-吡喃葡萄糖基-苯-2-丁酮, 6’-O-没食子酰-红景天苷,对-O-β-吡喃葡萄糖基-苯丙烯酸,7-甲氧基香豆素,苯乙基-6-O-β-葡萄糖苷,对羟基苯甲酸,红景天苷,肉桂醇-6‘-O-α-吡喃阿拉伯糖基-O-β-吡喃葡萄弹苷,肉桂醇-6’-O-α-吡喃木糖-O-β-吡喃葡萄弹苷,肉桂醇-6’-O-α-呋喃阿拉伯糖基-O-β-吡喃葡萄弹苷,肉桂醇-6-O-β-吡喃葡萄弹苷,对-羟基-苯乙醇,3, 7-二甲基-2, 6-二烯-1, 4-二辛醇,3, 7-二甲基-2, 6-二烯-1, 4-二辛醇-β-吡喃葡萄糖苷。其中,对-O-β-吡喃葡萄糖基-苯-2-丁酮,6’-O-没食子酰-红景天苷,对-O-β-吡喃葡萄糖基-苯丙烯酸、7-甲氧基香豆素为首次从玫瑰红景天分到的化合物。
     5.通过最佳化提取、分离、分析条件,建立了一种HPLC方法同时测定红景天中六种“适应原”活性成分,色谱条件为:色谱柱Purospher STAR C18;流动相甲醇(A)+ pH 5.6 20mmol/L乙酸铵水溶液(B);梯度程序40分钟内流动相由10A/90B变为100A/0B;流速1mL/min;柱温30℃;检测器二极管阵列(DAD),检测波长分别为276,250 and 205nm。该方法有好的线性,令人满意的精密度和回收率。然后新形成的方法用来分析不同品种不同产地的红景天样品,结果红景天样品中六种有效成分的含量范围分别为salidroside 0.16-11.14 mg/g;tyrosol 0-2.89 mg/g;rosarin 0-1.01 mg/g;rosavin 0-6.78 mg/g;rosin 0-1.51 mg/g;rosiridin 0-7.89 mg/g。六种成分的总量范围为1.3-12.88 mg/g。不同品种和产地的红景天样品所含六种适应源活性成分的种类和含量不同。新形成的方法也用来建立玫瑰红景天、狭叶红景天和高山红景天的HPLC指纹图谱,得到了19个共有峰,利用HPLC-MS方法对19个共有峰的分子量进行确证,其中,根据HPLC-MS提供的特征紫外光谱、分子量信息和一些结构方面的信息,有10个成分被鉴定。对指纹图谱进行相似度、聚类和主成分分析,结果表明同种红景天样品有好的相似性、不同品种间有较大的差异,指纹图谱可以区别不同品种的红景天。
Rhodiola rosea is a popular plant in traditional medical systems in Eastern Europe and China, with a reputation for eliminating fatigue, improving learning and memory, stimulating the nervous system, enhancing work performance, improving sleep, anti-hypoxia, preventing high altitude sickness and anti-cancer. At present, it is popular as medicine-food plant. In this study, the separation and purification of two major active compounds was investigated in detail. At the same time some monomers were prepared from the extract of R. rosea and their structures were eludicated. On the other hand, a HPLC method was established to determine the six major active compounds of Rhodiola samples from different origins and the established method was used to construct HPLC fingerprints of three species of Rhodiola. The present study can provided help for the deep development of Rhodiola resources and application in pharmaceutical industry.
     1. Based on the single factor experiments, the effect of three major factors, including temperature,ethanol concentration and solid-liquid ratio, on extraction yield of the two major target compounds from Rhodiola rosea was investigated to optimize the extraction process by central composite design. The regression equation and response surfaee figure from three factor interaction were presented and the obtained optimum extraction conditions were as follows: ethanol concentration 70% (v/v), solid-liquid ratio 1:10 (w/v, g/mL), extraction temperature 75℃, extraction twice 60 minutes for each time. Under the optimum extraction conditions, the yields of rosavin and salidroside can reach 0.80% and 0.37%, respectively. At the same time dynamics and thermodynamics of the extraction were investigated. Thermodynamic parameters, such as standard enthalpy (ΔH0), standard entropy (ΔS0) and standard Gibbs free energy (ΔG0), were evaluated by Van’t Hoff equation. The results showed that dynamic data of extraction were well fitted to mathematical model deduced on the basis of the Fick's Second Law and diffusion coefficients of salidroside and rosavin were 0.75×10-9 (m2/s) and 0.41×10-9(m2/s), respectively. The salidroside and rosavin extraction was a endothermic, entropy increase and spontaneous processes according to values ofΔH0,ΔS0 andΔG0.
     2. In static and dynamic experiments, according to adsorption and desorption properties and selectivity of different resins, HPD-200 was selected to separation and purification of the two major active compounds (salidroside and rosavin) and its adsorption isotherm was well fitted to Langmuir equation. Its adsorption kinetics and thermodynamics for the two compounds were also studied. Sorption data were fitted to pseudo-first-order, pseudo-second-order, intra-particle diffusion models, and found that adsorption kinetics can be described according to the pseudo-second-order model. The intra-particle diffusion model showed a double contribution of the surface and pore diffusivities to the sorption process. The sorption process was a exothermic and spontaneous processes and high temperature was not favorable to adsorption. Dynamic adsorption and desorption tests were carried to optimize the separation process. The optimum separation conditions were as follow: On adsorption, the loading volume was 6.4 mL(sample)/g resin (on dry weight), the concentrations of two comounds in feed solution 1.89mg/mL(salidroside) and 0.24 mg/mL (rosavin), respectively, temperature 25℃,bed height 30 cm, flow rate 1BV/h; on desorption, temperature was 25℃, gradient elution step was firstly 5% and 10%ethanol, respectively, for 2.5 BV, then 30% ethanol for 2.5 BV, and 40% ethanol for 2.5 (BV), finally 60% ethanol for 2BV. After two adsorption and desorption runs, the purity of salidroside and rosavin was increased from 5.57% and 0.69% in Rhodiola rosea crude extract to 91.21% and 15.37% with a overall recovery of 48.82% and 46.52%, respectively. On the base of the conditions optimized above, large-scale preparation of salidroside and rosavin was carried out to allow production of a salidroside-rich fraction with a purity of 90.36% and a overall recovery of 44.75, and a rosavin-rich fraction with a content of 16.02% and a overall recovery of 52.02%.
     3. Crystallization was performed to purify the salidroside-rich fraction from the large-scale preparation. The optimum crystallization conditions were determined as follows: the salidroside concentration in ethanol solution (w/v) was 20.5mg/mL, temperature 15℃, time 16 h, under which, salidroside crystals with a above 99.18% purity were obtained. The rosavin-rich fraction in large-scale preparation was subsequently subjected to intermediate purification on a silica gel column and a final purification on a ADS-5c resin column . The optimum conditions on the silica gel column were as follows. Silica gel size was 200-300 mesh; packed bed height 25cm; sample amounts 50mg (sample)/g (silica gel); mobile phase chloroform-methanol (4:1, v/v); flow rate 1.5mL/min; elution volume 3BV. After the intermediate purification, the purity of crude rosavin was increased to 50.17 % from 16.02% with a recovery of 82.46%. The optimum conditions on the ADS-5c column were determined as follow. The sample amount was 16.7 mg (sample)/g (dry ADS-5c resin);elution solution 50% ethanol; flow rate 2BV/h. After the final purification, a rosavin monomer with a purity of 98.73% was obtained. In addition, from eluates obtained in the separation process of salidoside and rosavin by macroporous resins, 19 monomers were prepared by silica gel column chromatography and preparative reversed phase high performance liquid phase chromatography after clarification on macroporous resin.
     4. By UV, HPLC-ESI-MS, 1DNMR (1H-NMR, 13C-NMR, DEPT-135) and 2DNMR (1H-1H-COSY, HMQC and HMBC),15 monomers were elucidated as 4-[4-(β-D- glucopyranosyloxy)phenyl]-2-butanone, [4 - (β-glucopyranosyloxy) phenyl-2-propenoic acid, 2-(4-hydroxyphenyl)ethyl-6-(3,4,5-trihydroxybenzoate)-β-D-glucopyranoside(6’-O-Galloylsalidroside), 7-methoxy-Coumarin, epigallocatechin-3-O-gallate(EGCG),α-phenyl-taloside, 4-hydroxyl-benzoicacid, 3-phenyl-2-propenyl6-O-L-arabinofuranosyl-β-glucopyranoside, 3-phenyl-2-propenyl6-O-L-arabinopyranosyl-β-glucopyranoside, 3-phenyl-2-propenyl 6-O-L- xylopyranosyl-β-glucopyranoside,3-phenyl-2-propenyl-β-glucopyranoside, 2,7-dimethylocta -2,6-diene-1,4-diol (rosiridol), 2,7-dimethylocta-2-6-diene -1,4-diol1-O-β- D-glucopyranoside (rosiridin), 7-methoxycoumarin, p-hydroxyl-phenethylalcohol (tyrosol), of these compounds, 4-[4-(β-D-glucopyranosyloxy)phenyl]-2-butanone,6’-O-galloylsalidroside, 4-[4-(β-glucopyranosyloxy)phenyl]-2-propenoic acid, 7-methoxycoumarin were first identified in Rhodiola rosea.
     5. By optimizing the extraction, separation and analytical conditions, a sensitive and accurate high performance liquid chromatographic method has been developed for the simultaneous determination of six active compounds in different species of Rhodioa L. The analysis was performed on a Purospher STAR C18 column at 30℃using 20mmol/L aqueous ammonia acetate / methanol gradient system at a flow rate of 1.0mLmin-1 and photodiode array detection (DAD ) at wavelengths 276, 250 and 205 nm, respectively. The method showed good linearity and satisfactory accuracy and recoveries. The newly established HPLC-DAD quantitative method was subsequently utilized to simultaneously determine the quantities of the six active constituents in the samples. The results showed that the contents of the six active compounds ranged from 0.16-11.14 mg/g, 0-2.89 mg/g and 0-1.01 mg/g, 0-6.78 mg/g, 0-1.51 mg/g, 0-7.89 mg/g. The total content of the six active compounds ranged from 1.20-22.88 mg/g and there was a wide variation in content and species of the six active compounds in the samples with different varieties and habitats. Then, the HPLC method was used to conduct fingerprints of three species of Rhodiola. The characteristic analytical fingerprints of them showed 19 common peaks, and molecular weight of 19 peaks were determined by HPLC-ESI-MS method, out of these, according to the characteristic UV spectra, the information of molecular weight and structure provided by ESI–MS, 10 compounds were identified. The resulting fingerprints were examined by similarity analysis, cluster analysis and principal component analysis. The results indicated that there was a good similarity between the same variety of Rhodiola and vice versa, the chromatographic fingerprint can efficiently distinguish Rhodiola from different varieties.
引文
[1] Brown R P, Gerbarg P L, Ramazanov Z. Rhodiola rosea: A phytomedicinal overview[J]. HerbalGram. 2002, (56):40-52.
    [2] Fu K J, Hideaki O. Crassulaceae[J]. Flora of China, 2001, 8:202-68.
    [3]王钢力,陈德昌.红景天属植物化学及药理研究进展[J].植物资源与环境, 1994, 3(3):54-57.
    [4] Mell C D. Dyes, Tannins, perfumes, and medicines from Rhodiola rosea[J]. Textile Colorist, 1938,60(715):483-484.
    [5] Krylov G V. Herbs for Life[M]. Novosibirsk, Russia:Academic Press, 1969.264-265
    [6] Qu Z W.红景天的研究进展[J].中华实用中西医杂志, 2005, 18(7):1063-1066.
    [7] Saratik A S, Krasnov E A, Chnikina L A, et al. Rhodioloside a new glycoside from Rhodiola rosea and its pharmacological properties[J]. Pharmazie, 1968, 23(7):392-395.
    [8] Wiedenfeld H, Dumaa M, Malinowski M, et al. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida[J]. Pharmazie, 2007, 62(4):308-311.
    [9] Ali Z, Fronczek F R, Khan I A. Phenylalkanoids and monoterpene analogues from the roots of Rhodiola rosea[J]. Planta Med, 2008, 74(2):178-81.
    [10] Yu P, Hu C, Meehan E J, et al. X-ray cyrstal structure and antioxidant activity of salidroside, a phenylethanoid glycoside[J]. Chem Biodivers, 2007, 4(3):508-13.
    [11]张奕,刘永刚.红景天苷抗大鼠肝星状细胞氧应激脂质过氧化作用的研究[J].中药材, 2005, 28(9):794-796.
    [12] Panossian A, Nikoyan N, Ohanyan N, et al. Comparative study of Rhodiola preparations on behaviorol despair of rats[J]. Phytomedicine, 2008, 15(1-2):84-91.
    [13] Song E K, Kim J H, Kim J S, et al. Hepatoprotective phenolic constituents of Rhodiola sachalinensis on tacrine-induced cytotoxicity in Hep G2 cells[J]. Phytother Res, 2003, 17(5):563-565.
    [14] Yu S, Liu L, Wen T, et al. Development and validation of a liquid chromatographic/electrospray ionization mass spectrometric method for the determination of salidroside in rat plasma: Application to the pharmacokinetics study[J]. J Chromatogr B, 2008, 861(1):10-15.
    [15] Zhang L, Yu H, Sun Y, et al. Protective effects of salidroside on hydrogen peroxide-induced apoptosis in SH-SY5Y human neuroblastoma cells[J]. Eur J Pharmacol, 2007, 564(13):18-25.
    [16]王华姚文兵钱云飞,等.红景天苷对NaCN及缺糖诱导PC12细胞凋亡的保护作用[J].中国药科大学学报, 2007, 38(3):273-276.
    [17]肖何陈嘉勤林喜秀,复方紫河车对大强度训练后体成分改变的调控作用[J].中国组织工程研究与临床康复, 2007, 11(52):10519-10521.
    [18] Vivancos M, Moreno J J. Effect of resveratrol, tyrosol and beta-sitosterol on oxidised low-density lipoprotein-stimulated oxidative stress, arachidonic acid release and prostaglandin E2 synthesis by RAW 264.7 macrophages[J]. Br J Nutr, 2008, 99(6):1199-1207.
    [19] Covas M I, Miro C E, Fito M, Farre A M, et al. Bioavailability of tyrosol, an antioxidant phenoliccompound present in wine and olive oil, in humans[J]. Drugs Exp Clin Res, 2003, 29(6):203-206.
    [20] Maimeskulova L A, Maslov L N. The anti-arrhythmia action of an extract of Rhodiola rosea and of n-tyrosol in models of experimental arrhythmias[J]. Eksp Klin Farmakol, 1998, 61(2):37-40.
    [21] Bu Y, Rho S, Kim J, et al. Neuroprotective effect of tyrosol on transient focal cerebral ischemia in rats[J]. Neurosci Lett, 2007, 414(3):218-221.
    [22] Petsalo A, Jalonen J, Tolonen A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2006, 1112(2):224-231.
    [23] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Flavonoids of the epigeal part of Rhodiola rosea. I[J]. Chem NatComp, 1984, 20(5):623-624.
    [24] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Flavonoids of the rhizomes of Rhodiola rosea III[J]. Chem Nat Comp, 1984, 20(3):367-368.
    [25] Zapesochnaya G G, Kurkin V A, Shchavlinskii A N. Flavonoids of the epigeal part of Rhodiola rosea. II. Structures of new glycosides of herbacetin and of gossypetin[J]. Chem Nat Comp, 1986, 21(4):464-473.
    [26] Yousef G G, Grace M H, Cheng D M, et al. Comparative phytochemical characterization of three Rhodiola species[J]. Phytochemistry, 2006, 67(21):2380-2391.
    [27] Zapesochnaya G G, Kurkin V A. Glycosides of cinnamyl alcohol from the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1983, 18(6):685-688.
    [28] Tolonen A, Pakonen M, Hohtola A, et al. Phenylpropanoid glycosides from Rhodiola rosa[J]. Chem Pharm Bull, 2003, 51(4): 467-470.
    [29] Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration[J]. Phytother Res, 2005, 19(10):819-838.
    [30] Kurkin V A, Dubishchev A V, Titova IN, et al. Neurotropic properties of certain plant extracts containing phenylpropanoids[J]. Rastit Resur, 2003, 39(3):115-122.
    [31] Kurkin V A, Dubishchev A V, Ezhkov V H, et al. Nootropic activity of some phytopreparations and phenylpropanoids[J]. Rastit Resur, 2007, 43(2):76-88.
    [32] Kurkin V A, Dubishchev A V, Ezhkov V N, et al. Antidepressant activity of some phytopharmaceuticals and phenylpropanoids[J]. Pharm Chem J, 2006, 40(11):614-619.
    [33] Skopinska R E, Hartwich M, Siwicki A K, et al. The influence of Rhodiola rosea extracts and rosavin on cutaneous angiogenesis induced in mice after grafting of syngeneic tumor cells[J]. Cent Eur J Immunol, 2008, 3(3):102-107.
    [34] Rohloff J. Volatiles from rhizomes of Rhodiola rosea L[J]. Phytochemistry, 2002, 59(6):655-661.
    [35] Kurlin V A, Zapesochnaya G G. Terpenoids of the rhizomes of Rhodiola linearifolia[J]. Chem Nat Comp, 1986, (5):643.
    [36] Ma G, Li W, Dou D, et al. Rhodiolosides A-E, monoterpene glycosides from Rhodiola rosea[J]. Chem Pharm Bull, 2006, 54(8):1229-1233.
    [37] Sokolov S Y, Boiko V, Zapesochnaya G G, et al. Comparative examination of stimulant properties of some phenylpropanoids[J]. Khim Farm Zhu, 1990, 24(10):66-8.
    [38] Akgul Y, Ferreira D, Abourashed E A, et al. Lotaustralin from Rhodiola rosea roots[J]. Fitoterapia. 2004, 75(6):612-4.
    [39] Pooja, A K R, Khanum F, Bawa A S. Phytoconstituents and antioxidant potency of rhodiola rosea - A versatile adaptogen[J]. J Food Biochem, 2006, 30(2):203-214.
    [40]阮晓,侯平,王强,等.新疆6种红景天属植物中微量元素和氨基酸含量分析[J].光谱学与光谱分析, 2001, 21(4):544.
    [41] Komar V V, Karpliuk Z V, Kit S M, et al. Macro- and microelement composition of root extracts of Rhodiola rosea[J]. Farm Zh, 1980, (3):58-60.
    [42] Briskin D P. Medicinal plants and phytomedicines. Linking plant biochemistry and physiology to human health[J]. Plant Physiol, 2000, 124(2):507-514.
    [43] Xu J F, Liu C B, Han A M, et al. Strategies for the improvement of salidroside production in cell suspension cultures of Rhodiola sachalinensis[J]. Plant Cell Rep. 1998, 17(4):288-93.
    [44] Wu S, Zu Y, Wu M. High yield production of salidroside in the suspension culture of Rhodiola sachalinensis[J]. J Biotechnol, 2003, 106(1):33-43.
    [45] Zhang C, Yu H, Lu M, et al. Enzymic synthesis of salidroside: Purification and characterization of salidrosidase from Aspergillas niger[J]. Process Biochem, 2005, 40(9):3143-3147.
    [46] Patov S A, Punegov V V, Kuchin A V. Synthesis of the Rhodiola rosea glycoside rosavin[J]. Chem Nat Compd, 2006, 42(4):397-399.
    [47] Lazarev N V. Experimental data on evaluation of far east Shizandra as a stimulator[M]. Leningrad:Military Publishing of the Ministry of Defence of USSR, 1946. 62-68.
    [48] Brekhman I I, Dardymov I V. New substances of plant origin which increase non-specific resistance[J]. Ann Rev Pharmacol 1969, 9:419-430.
    [49] Panossian. A, Gabrielian. E, Wagner H. On the mechanism of action of plant adaptogens with particular references on cucurbitacin R diglucoside[J]. Phytomedicine, 1999, 6(3):147-155.
    [50] Panossian. A, Oganessian. A, Ambartsumian. M, et al. Effects of heavy physical exercise and adaptogens on nitric oxide content in human saliva[J]. Phytomedicine, 1999, 6(1):17-26.
    [51] Panossian. A, Wikman. G, Wagner. H. Plant adaptogens III. Earlier and more recent aspects and concepts on their mode of actions[J]. Phytomedicine. 1999, 6(4):287-300.
    [52] Boon-Niermeijer EK, Vanden B A, Wikman G, et al. Phyto-adaptogens protect against environmental stress-induced death of embryos from the freshwater snail Lymnaea stagnalis[J]. Phytomedicine, 2000, 7(5):389-99.
    [53] Saratikov A S, Marina T F, Firsanova L L. Effect of Salidrasid on Turnover of Catecholamines in Brain[J]. Vopr Med Khimii, 1978, 24(5):624-8.
    [54] Zotova. MI. The effect of Rhodiola rosea extract on mental working activity in man[M]. In Collection of Reports at 3rd Scientific Conference of Physiologists, Biochemists and Pharmacologists of Western Siberia, Tomsk, 1965. 298-299.
    [55] Komar. V V, Kit S M, Sitschuk L V, et al. The effect of carpatian Rhodiola rosea on human mental activity[J]. Farm Zh. 1981, 36(4):62-64.
    [56] Shevtsov V A, Zholus B I, Shervarly V I, et al. A randomized trial of two different doses of a SHR-5 Rhodiola rosea extract versus placebo and control of capacity for mental work[J]. Phytomedicine, 2003, 10(2-3):95-105.
    [57] Krasik E D, Morozova E S, Petrova K P, et al. Therapy of asthenic conditions: clinical perspectives ofapplication of Rhodiola rosea extract (golden root). In Proceedings of Modern Problems in Psycho-Pharmacology, Avrutskiy GY (ed.) Siberian Branch of Russian Academy of Sciences: Kemerovo, 1970. 298-330.
    [58] Darbinyan V, Kteyan A, Panossian A, Gabrielian E, Wikman G, Wagner H. Rhodiola rosea in stress induced fatigue - A double blind cross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty[J]. Phytomedicine, 2000, 7(5):365-371.
    [59] De Bock K, Eijnde B O, Ramaekers M, Hespel P. Acute Rhodiola rosea intake can improve endurance exercise performance[J]. Int J Sport Nutr Exerc Metab, 2004, 14(3):298-307.
    [60] Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L extract in mice[J]. Phytother Res, 2007, 21(1):37-43.
    [61] Petkov V D, Yonkov D, Mosharoff A, et al. Effects of alcohol aqueous extract from Rhodiola-rosea roots on learning and memory[J]. Acta Physiol Pharmacol Bulg, 1986, 12(1):3-16.
    [62] Kurkin V A, Dubishchev A V, Ezhkov V N, et al. Nootropic activity of some phytopreparations and phenylpropanoids[J]. Rastit Resur, 2007, 43(2):76-88.
    [63] Battistelli M, De Sanctis R, De Bellis R, et al. Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytic behaviour. Eur J Histochem, 2005, 49(3):243-54.
    [64] Lee E J, Kwon Y I, Shetty K,et al. Antioxidant activity of Rhodiola rosea extract on human low-density lipoprotein oxidation and DNA strand scission[J]. Food Sci Biotechnol, 2004, 13(6):814-820.
    [65] Kim S H, Hyun S H, Choung S Y. Antioxidative effects of Cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice[J]. Biofactors, 2006, 26(3):209-219.
    [66] Molokovskii D S, Davydov V V, Tyulenev V V. Effect of Adaptogenic phytopharmaceuticals in experimental alloxan diabetes[J]. Probl Endokrinol, 1989, 35(6):82-87.
    [67] Salikhova R A, Aleksandrova I V, Mazurik V K, et al. Influence of Rhodiola rosea extracts on the yield of mutation alterations and DNA repair in bone marrow cells[J]. Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya, 1997, (4):22-24.
    [68] Udintsev S N, Shakhov V P. The Inhibitory Effect of partial-hepatectomy on the growth-rate of Ehrlich tumor and Pliss Lymphosarcoma[J]. Vopr Onkol, 1989, 35(9):1072-1075.
    [69] Bocharova O A, Matveev B P, Baryshnikov A I, et al. The effect of a Rhodiola rosea extract on the incidence of recurrences of a superficial bladder cancer [J]. Urol Nefrol, 1995, (2):46-47.
    [70] Udintsev S N, Shakhov V P. The Role of humoral-factors of regenerating liver in the development of experimental-tumors and the effect of Rhodiola-rosea extract on this Process[J]. Neoplasma, 1991, 38(3):323-331.
    [71] Udintsev S N, Krylova S G, Fomina T I. On the potentiating effect of hepatoprotectors of plant origin on adriamycin administered for liver metastases from Ehrlich adenocarcinoma in mice[J]. Vopr Onkol. 1992, 38(12):1217-1222.
    [72]Majewska A, Hoser G, Furmanowa M, et al. Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells[J]. J Ethnopharmacol, 2006, 104(3):433-436.
    [73]Yaremii I N, Grigor'eva N F. Hepatoprotector properties of a liquid extract from Rhodiola rosea[J]. Eksp Klin Farmakol, 2002, 65(6):57-59.
    [74]Maslov L N, Lishmanov Y B. Cardioprotective and antiarrhythmic properties of rhodiolae roseae[J]. Eksp Klin Farmakol, 2007, 70(5):59-67.
    [75]Lishmanov I B, Maslova L V, Maslov L N, et al. The anti-arrhythmia effect of Rhodiola rosea and its possible mechanism[J]. Biull Eksp Biol Med, 1993, 116(8):175-176.
    [76]Lishmanov Y B, Naumova A V, Afanas'ev S A, et al. Contribution of the opioid system to realization of inotropic effects of Rhodiola rosea extracts in ischemic and reperfusion heart damage in vitro[J]. Eksp Klin Farmakol, 1997, 60(3):34-36.
    [77]Gerasimova H D. Effect of Rhodiola rosea extract on ovarian functional activity. Proc. of Scientific Conference on Endocrinology and Gynecology. Sverdlovk, Russia. 1970, 46-48.
    [78]Saratikov A S, Krasnov E A. The influence of Rhodiola on endocrine glands and the liver: [Rhodiola rosea is a valuable medicinal plant (Golden Root)]. Tomsk:Tomsk State University. 1987, 180-193.
    [79]Eagon P K, Elm M S. Anticipated and unanticipated estrogenicity of several medicinal botanicals. Proceedings of the American Association for Cancer Research Annual Meeting. 2002,43:1075.
    [80]Saratikov A S, EA. K. Stimulative properties of Rhodiola rosea[M]. Tomsk:Tomsk State University, 1987.
    [81]Kurkin. V A, Zapesochnaya. G G. Chemical composition and pharmacological characteristics of Rhodiola rosea (review). J Med Plants, 1985, 12(3):1231-1245.
    [82]Udintsev S N, Schakhov V P. Decrease of cyclophosphamide haematotoxicity by Rhodiola rosea root extract in mice with Ehrlich and Lewis transplantable tumors[J]. Eur J Cancer, 1991, 27 (9):1182.
    [83] Kaufmann B, Christen P. Recent Extraction Techniques for Natural Products: Microwave-assisted Extraction and Pressurised Solvent Extraction[J]. Phytochem Anal, 2002, 13(2):105-13.
    [84]林鹏程,卢永昌,祁米香,等.大花红景天中红景天甙最佳提取工艺的初步研究[J].青海医学院学报, 2004, 25(02):112-115.
    [85]孟玉彩,赵文,郭潇,等.蔷薇红景天中原花青素提取与纯化研究[J].农业工程技术, 2007, (7):48-51.
    [86]范明辉,许时婴.高山红景天中有效成分的微波辅助提取[J].天然产物研究与开发, 2008, 20(02):353-356.
    [87]聂建群,王保兴,汪旭,等.微波辅助提取大花红景天中红景天苷的工艺研究[J].食品研究与开发, 2006, 27(5):35-38.
    [88]王莉,鲁建江,刘志勇.微波能辅助提取红景天根多糖及含量测定的研究[J].中医药学刊, 2002, 20(2):227-53.
    [89]苏波,王晓,姜艳,等.红景天甙提取工艺的优化研究[J].精细石油化工进展,2007, 8(3):22-5.
    [90]吴少雄,郭祀远,李琳,等.超声波法提取大花红景天有效成分的工艺研究[J].食品科技, 2006, 1(01):46-49.
    [91]王洋,张璞,于涛,等.高效液相色谱法测定红景天甙含量方法的研究[J].植物研究, 2001, 21(01):113-115.
    [92]王晓勤. HPLC测定6种青海产红景天植物中红景天苷的含量.中国药学杂志, 2000, 35(8):513-4.
    [93]毕会敏,张守勤,刘长姣.纤维素酶提取红景天总黄酮的研究[J].天然产物研究与开发, 2006,(5):818-821.
    [94]王化田,祖元刚,毛子军.超临界CO2萃取红景天中红景天苷、苷元酪醇的研究[J].植物研究, 2004, 24(04):462-465.
    [95] Zhang S Q, Bi H M, LiuC J, Extraction of bio-active components from Rhodiola sachalinensis under ultrahigh hydrostatic pressure[J]. Sep Purif Technol, 2007, 57(2): 277-282.
    [96] Kwon M, Qadir S A, Han J, et al. Effect of high pressure on extracts of Rhodiola sachalinensis in cytotoxicity and anticancer activity[J]. J Biotechnol, 2008, 136(S1): S468-S469
    [97]王化田,龚钢明.大孔树脂纯化红景天甙工艺的研究[J].食品科学, 2007, 28(2):117-119.
    [98]包文芳,吴维春,张薇.国产玫瑰红景天水溶性成分的分离与鉴定[J].中国药物化学杂志, 2000,10(37):209-210.
    [99]黄海松,徐环昕,刘坐镇,等.种球溶胀法制备有机聚合物色谱填料及其在纯化红景天苷中的应用.华东理工大学学报(自然科学版) [J],2007, 33(4):485-488
    [100] Han X, Zhang T, Wei Y, et al. Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography[J]. J Chromatogr A, 2002, 971(1-2):237-241.
    [101] Wang H Y, Guo Y L. Rapid analysis of the volatile compounds in the rhizomes of Rhodiold sachalinensis and Rhodiola sacra by static headspace-gas chromatography-tandem mass spectrometry[J]. Anal Lett, 2004, 37(10):2151-61.
    [102] Hethelyi E B, Korany K, Galambosi B, et al. Chemical composition of the essential oil from rhizomes of Rhodiola rosea L. grown in Finland[J]. J Essent Oil Res, 2005, 17(6):628-9.
    [103] Zhou G B, Guan Y Q, Chen H Z, et al. Simultaneous determination of pharmacologically active ingredients in Rhodiola by capillary chromatography with electrochemical detection[J]. J Chromatogr A, 2007, 1142(2):236-239.
    [104] Yue M E, Jiang T F, Shi Y P. Determination of gallic acid and salldroside in rhodiola and its preparation by capillary electrophoresis[J]. J Anal Chem, 2006, 61(4):365-368.
    [105] Suo Y R, Wang HL, Li YL, You JM, Wang HQ. Analysis of five pharmacologically active compounds from Rhodiola for natural product drug discovery with capillary electrophoresis[J]. Chromatographia, 2004, 60(9-10):589-595.
    [106] Kurkin V A. Phenylpropanoids from medicinal plants: distribution, classification, structural analysis, and biological activity[J]. Chem Nat Comp, 2003, 39(2):123-153.
    [107] Kucinskaite A, Poblocka O L, Krauze B M, et al. Use of SPE-TLC for quality control of Rhodiola rosea extracts[J]. J Planar Chromatogr-Mod, 2007, 20(2):121-125.
    [108] Wang Q, Fang Y. Analysis of sugars in traditional Chinese drugs[J]. J Chromatogr B, 2004, 812:309-324.
    [109] Dubichev A G, Kurkin V A, Zapesochnaya G G, et al. Chemical composition of the rhizomes of the Rhodiola rosea by the HPLC method[J]. Chem Nat Comp, 1991, 27(2):161-164.
    [110] Ganzera M, Yayla Y, Khan I A. Analysis of the marker compounds of Rhodiola rosea l. (Golden root) by reversed phase high performance liquid chromatography[J]. Chem Pharm Bull, 2001,49(4):465-467.
    [111] Tolonen A, Hohtola A, Jalonen J. Liquid chromatographic analysis of phenylpropanoids from Rhodiola rosea extracts[J]. Chromatographia, 2003, 57(9-10):577-579.
    [112] Tolonen A, Hohtola A, Jalonen J. Comparison of electrospray ionization and atmospheric pressure chemical ionization techniques in the analysis of the main constituents from Rhodiola rosea extracts by liquid chromatography/mass spectrometry[J]. J Mass Spectrom, 2003, 38(8):845-853.
    [113] Huang H, Liang M, Jiang P, et al. Quality evaluation of Rhodiola crenulata: Quantitative and qualitative analysis of ten main components by HPLC[J]. J Liq Chromatogr Related Technol, 2008, 31(9):1324-36.
    [1] Fu KJ,Hideaki O. Crassulaceae[J]. Flora of China, 2001, 8:202-268.
    [2] Kurkin V A, Zapesochnaya G G, Klyaznika V G. Flavonoids of the rhizomes of Rhodiola rosea. I. Tricin glucosides[J]. Chem Nat Comp, 1983, 18(5):550-552.
    [3] Zapesochnaya G G, Kurkin V A. Glycosides of cinnamyl alcohol from the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1983, 18(6):685-688.
    [4] Zapesochnaya G G, Kurkin V A. The flavonoids of the rhizomes of Rhodiola rosea. II. A flavonolignan and glycosides of herbacetin[J]. Chem Nat Comp. 1983, 19(1):21-29.
    [5] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Flavonoids of the rhizomes of Rhodiola rosea. III[J]. Chem Nat Comp. 1984, 20(3):367-368.
    [6] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Terpenoids of the rhizomes of Rhodiola rosea[J].Chem Nat Comp. 1986, 21(5):593-597.
    [7] Kurlin V A, Zapesochnaya G G. Terpenoids of the rhizomes of Rhodiola linearifolia[J]. Chem Nat Comp,1987, 22(5):607.
    [8] Kurkin V A. Phenylpropanoids from medicinal plants: Distribution, classification, structural analysis, and biological activity[J]. Chem Nat Comp, 2003, 39(2):123-153.
    [9] Tolonen A, Pakonen M, Hohtola A, et al. Phenylpropanoid glycosides from Rhodiola rosea[J]. Chem Pharm Bull, 2003, 51(4):467-470.
    [10] Tolonen A, Gyorgy Z, Jalonen J, et al. LC/MS/MS identification of glycosides produced by biotransformation of cinnamyl alcohol in Rhodiola rosea compact callus aggregates[J]. Biomed Chromatogr, 2004, 18(8):550-558.
    [11] Egger P, Dambrosio M, Aiello N, et al. Active constituents profiling of Rhodiola rosea L[J]. Planta Medica, 2007, 73(9):907-911.
    [12] Sugimoto K, Nakagawa K, Hayashi S. Rhodiola extract as active oxygen scavenger and skin care preparation and deodorant[P]. JP, 2002020301-A. 2002-01-23.
    [13] Lee E J, Kwon Y I, Shetty K, et al. Antioxidant activity of Rhodiola rosea extract on human low-density lipoprotein oxidation and DNA strand scission[J]. Food Sci Biotechnol, 2004, 13(6):814-820.
    [14] Kurkin V A, Kulagin O L, Dodonov N S, et al. Antioxidant activity of some tonic and hepatoprotective phytopreparations containing flavonoids and phenylpropanoids[J]. Rastit Resur, 2008, 44(1):122-130.
    [15] Garifullina G G, Ishmuratova M M, Fakhrutdinova E I, et al. Antioxidizing activity of extractions from roots and rhizomes of Rhodiola rosea L. and R. iremelica Boriss[J]. Rastit Resur, 1998,34(3):69-74.
    [16] Majewska A, Grazyna H, Miroslawa F, et al. Antiproliferative and antimitotic effect, S phase accumulation and induction of apoptosis and necrosis after treatment of extract from Rhodiola rosea rhizomes on HL-60 cells[J]. J Ethnopharmacol. 2006, 103(1):43-52.
    [17] Udintsev S N, Krylova S G, Fomina T I. On the potentiating effect of hepatoprotectors of plant origin on adriamycin administered for liver metastases from Ehrlich adenocarcinoma in mice[J]. Vopr Onkologii (St Petersburg), 1992, 38(10-12):1217-1222.
    [18] Udintsev S N, Shakhov V P. The Inhibitory Effect of partial-hepatectomy on the growth-rate of Ehrlich Tumor and Pliss Lymphosarcoma[J]. Vopr Onkologii, 1989, 35(9):1072-1075.
    [19] Udintsev S N, Fomina T I, Lishmanov Y B, et al. Potentiation of antitumor-activity of rat regenerating Liver with Rhodiola Rosea extract[J]. Vopr Onkologii. 1989, 35(5):618-620.
    [20] Kim S H, Hyun S H, Choung S Y. Antioxidative effects of cinnamomi cassiae and Rhodiola rosea extracts in liver of diabetic mice[J]. Biofactors, 2006, 26(3):209-219.
    [21] Dvornik A S, Pererva T P, Moisa L M, et al. Escherichia coli - bacteriophage .lambda. system use in studies on antimutagenic effects of plant extracts[J]. Biopolimery i Kletka, 2000, 16(1):69-74.
    [22] Salikhova R A, Aleksandrova I V, Mazurik V K, et al. Influence of Rhodiola rosea extracts on the yield of mutation alterations and DNA repair in bone marrow cells[J]. Patologicheskaya Fiziologiya i Eksperimental'naya Terapiya, 1997, (4):22-24.
    [23] Darbinyan V, Kteyan A, Panossian A, et al. Rhodiola rosea in stress induced fatigue - A double blindcross-over study of a standardized extract SHR-5 with a repeated low-dose regimen on the mental performance of healthy physicians during night duty[J]. Phytomedicine, 2000, 7(5):365-371.
    [24]杨伟,赵斌,彭红卫,等一种红景天饮料及其制备方法[P].中国专利, CN101305827. 2008.11.19.
    [25] Spasov A A, Wikman G K, Mandrikov V B, et al. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR-5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen[J]. Phytomedicine, 2000, 7(2):85-89.
    [26] Kurkin V A, Dubishchev A V, Ezhkov V N, et al. Antidepressant activity of some phytopharmaceuticals and phenylpropanoids[J]. Khim Farm Zh, 2006, 40(11):33-38.
    [27]吴永强,姚文兵,高向东,等.红景天提取物对小鼠记忆获得性障碍的改善作用[J].中国药科大学学报, 2004, 35(1):69-72.
    [28] Spasov A A, Mandrikov V B, Mironova I A. Effect of rhodaxon preparation on the psychophysiological and physical adaptations of students to learning load[J]. Eksp Klin Farmakol, 2000, 63(1):78-81.
    [29] Petkov V D, Yonkov D, Mosharoff A, et al. Effects of alcohol aqueous extract from Rhodiola rosea L. roots on learning and memory[J]. Acta Physiol Pharmacol Bulg, 1986, 12(1):13-16.
    [30] Panossian A, Hambartsumyan M, Hovhanissyan A, et al. Adaptogens modify stress response by suppressing the increase of p-SAPK, nitric oxide and cortisone in the blood of rabbits[J]. Planta Med, 2006, 72(11):968-970.
    [31] Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L. extract in mice[J]. Phytother Res, 2007, 21(1):37-43.
    [32] Lishmanov I B, Maslova L V, Maslov L N, et al. The anti-arrhythmia effect of Rhodiola rosea and its possible mechanism[J]. Biull Eksp Biol Med, 1993, 116(8):175-176.
    [33] Maimeskulova L A, Maslov L N. Antiarrhythmic effect of phytoadaptogens[J]. Eksp Klin Farmakol, 2000, 63(4):29-31.
    [34] Maslov L N, Lishmanov Y B. Cardioprotective and antiarrhythmic properties of Rhodiolae roseae[J]. Eksp Klin Farmakol, 2007, 70(5):59-67.
    [35] Khanum F, Bawa A S, Singh B. Rhodiola rosea: A versatile adaptogen[J]. Comprehensive Reviews in Food Science and Food Safety, 2005, 4(3):55-62.
    [36] Kelly G S. Rhodiola rosea: a possible plant adaptogen[J]. Altern Med Rev, 2001, 6(3):293-302.
    [37]帕孜来提·拜合提,祖丽皮亚·尤努斯,阿不都拉·阿巴斯.蔷薇红景天色素的提取及稳定性的研究[J].食品科学, 2005, 19(3):134-137.
    [38]李成,杨长青,朱彩凤,等.红景天多糖提取工艺的研究[J].时珍国医国药, 2006, 17(10):139-140.
    [39]李辰,陈东生,陈娟,等.红景天中红景天苷和酪醇提取工艺研究[J].中药材, 2006, 29(11):580-583.
    [40]孔智红,黄振山,杨安平.红景天中总黄酮提取工艺的优选[J].现代医药卫生, 2008, 24(4):577-578.
    [41]中华人民共和国卫生部药典委员会编,中华人民共和国药典[M](一部).北京:人民卫生出版社,1995.
    [42] Ponomaryov V D. Medicinal herbs extraction. Medicina[M]. Moscow, 1976.
    [43] Frank T, Downey J, Gupta S. quickly screen solvent for organic solids chemical engeering progress[J]. 1999, 95(12):41-61.
    [44] Fiori L. Grape seed oil supercritical extraction kinetic and solubility data: Critical approach and modeling[J]. J Supercritical Fluids. 2007, 43(1):43-54.
    [45] Guerrero M S, Torres J S, Nunez M J. Extraction of polyphenols from white distilled grape pomace: Optimization and modeling[J]. Bioresour Technol. 2008, 99(5):1311-13118.
    [46] Akdes D H, Sutrisno, N I. Extraction of astaxanthin from giant tiger (Panaeus monodon) shrimp waste using palm oil: Studies of extraction kinetics and thermodynamic[J]. Bioresour Technol, 2008, 99(10) : 4414-4419.
    [1]张奕,刘永刚.红景天苷抗大鼠肝星状细胞氧应激脂质过氧化作用的研究[J].中药材, 2005, 28(9):794-796.
    [2]张文生,朱陵群,牛福玲,等.红景天苷对缺氧/缺糖损伤神经细胞的保护作用[J].中国中药杂志, 2004, 29(5):459-462.
    [3]胡敏,于金德.红景天苷对心血管系统作用的研究[J].国外医学心血管疾病分册, 2003, 30(5):298-300.
    [4]马莹,颜天华,王秋娟,等.红景天苷对犬冠状动脉结扎所致心肌缺血的保护作用.中国药科大学学报, 2007, 38(6):553-557.
    [5]王晓东,刘永刚,苏薇薇.红景天苷对小鼠实验性肝损伤的保护作用[J].中药材, 2004, 27(3):198-199.
    [6]张奕,刘永冈.红景天苷抗肝纤维化的实验研究[J].中国药房, 2006, 17(11):813-814.
    [7]马莉,蔡东联,黎怀星,王莹,裴素萍,宋立华.红景天苷对小鼠抗疲劳作用的体内研究.武警医学. 2007,18(11):818-820.
    [8]曲智威.红景天的研究进展.中华实用中西医杂志. 2005,18 (7):1063-1065.
    [9]戚玮琳,李勇,陆洪芬,等.红景天抑制乳腺癌血管新生的作用及其机制[J].上海中医药杂志, 2007, 41(7):62-65.
    [10]宋月英,齐刚,李亚萍,等.红景天苷对全脑缺血再灌注损伤大鼠脑组织肿瘤坏死因子-A表达的影响[J].中草药, 2006, 37(6):907-908.
    [11]苗艳波,师海波,孙英莲,等.高山红景天总甙的抗衰老作用[J].中药药理与临床, 2004, 20(5):20-21.
    [12]李颖崔,丽潘力,栗振宝.红景天素抗大鼠心肌衰老作用的实验研究[J].中国老年学杂志, 2001, 21(1):55-57.
    [13] Goldstein M S, Chen C W, Mammone T, et al. Cosmetic compositions comprising UV-protective r osavin[P]. US patent, 2006002871 A1.2006-01-05.
    [14] Kurkin V A, Dubishchev A V, Ezhkov V H, et al. Nootropic activity of some phytopreparations and phenylpropanoids[J]. Rastitel'nye Resursy, 2007, 43(2):76-88.
    [15] Sokolov S Y, Ivashin V M, Zapesochnaya G G,et al. Studies of neurotropic activity of new compounds isolated from Rhodiola rosea[J]. Khim Farm Zhu, 1985 19(11):1367-1371.
    [16] Duh C Y, Phoebe C H J, et al. Plant anticancer agents.XLII. Cytotoxic constituents from Wikstroemia elliptica. J Nat Prod, 1986, 49(4):706-708.
    [17] Skopinska R E, Hartwich M, Siwicki A K, et al. The influence of Rhodiola rosea extracts and rosavin on cutaneous angiogenesis induced in mice after grafting of syngeneic tumor cells[J]. Central Eur J Immunol, 2008, 33 (3):102-107.
    [18] Kurkin V A, Dubishchev A V, Ezhkov V N, et al. Antidepressant activity of some phytopharmaceuticals and phenylpropanoids[J]. Pharm Chem J, 2006, 40(11):614-9.
    [19]包文芳,吴维春,张薇.国产玫瑰红景天水溶性成分的分离与鉴定[J].中国药物化学杂志, 2000,10(3):209-210.
    [20] Zapesochnaya G G, Kurkin V A. Glycosides of cinnamyl alcohol from the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1983,18(6):685-688.
    [21] Han X, Zhang T, Wei Y, et al. Separation of salidroside from Rhodiola crenulata by high-speed counter-current chromatography[J]. J Chromatogr A, 2002, 971(1-2):237-241.
    [22] Tang Z g, Zhou R q, Duan Z t. Adsorption and desorption behaviour of taurine on macroporous adsorption resins[J]. J ChemTechnol Biotechnol, 2001, 76(7):752-756.
    [23] Fu Yj, Zu Yg, Liu W, et al. Optimization of luteolin separation from pigeonpea Cajanus cajan L. Millsp leaves by macroporous resins[J]. J Chromatogr A, 2006, 1137(2):145-152.
    [24] Fu B Q, Liu J, Li H, et al. The application of macroporous resins in the separation of licorice flavonoids and glycyrrhizic acid[J]. J Chromatogr A, 2005, 1089(1-2):18-24.
    [25] Langmuir I, The adsorption of gases on plane surfaces of glass, mica and platinum[J]. J Am Chem Soc, 1918, 40:1361-1403.
    [26] Freundlich H M F. Over the adsorption in solution[J]. J Phys Chem, 1906, 57:385-470.
    [27] Periasamy K, Namasvayam C. Process development for removal and recovery of cadmium from waste water by a low cost adsorbent:Adsorption rate and equilibrium studies[J]. Ind Eng Chem Res, 1994,33(2):317-320.
    [28] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J]. Process Biochem, 1999, 34(5):451-465.
    [29]Weber W J, Morris J C. Equilibrium and capacities for adsorption on carbon[J]. J Sanit Eng Div ASCE, 1963, 89(53):31-59.
    [30] Q. Sun, L. Yang. The adsorption of lead and copper from aqueous solution on modified peat-resin particles[J]. Water Res, 2003, 37 (7):1535-1544.
    [31] Vermohlen K, Lewandowski H, Narres H D, et al. Adsorption of polyelectrolytes on oxides-the influence of ionic strength,molar mass,and Ca2+ ions[J]. Colloids Surf A, 2000, 163(1): 45-53.
    [32] Sankar M, Sekaran G, Sadulla S, et al. Removal of diazo and triphenylmethane dyes from aqueous solutions through an adsorption process[J]. J Chem Technol Biotechnol, 1999, 74(4):337-344.
    [33] Merk W, Fritz W, Schlunder U. Competitive adsorption of two dissolved organics onto activated carbon III adsorption kinetics in fixed beds[J]. Chem Eng Sci, 1980, 36(4) :743-757
    [34] Liapis A I, Rippin D W T. The simulation of binary adsorption in activated carbon columns using estimates of diffusion resistance within the carbon particles derived from batch e xperiments[J]. Chem Eng Sci, 1978, 33(5) :593-600
    [35] Won S W, Kin H J, Choi S H, et al. Performance, kinetics and equilibrium in biosorption of anionic dye reactive black 5 by the waste biomass of Corynebacterium glutamicum as a low-cost biosorbent[J]. Chem Eng J, 2006, 121(1):37-43
    [36] Hüeyin P, Ilhan U, Fuat G. Kinetics and thermodynamics of the adsorption of some dyestuffs from aqueous solution by poplar sawdust[J]. Bioresource Technol.2008, 99(6): 2009–2017
    [37] Celik M S. Adsorption of ethoxylated sulfonate and nonionic on coal[J]. J Colloid Interf Sci, 1989, 129 (2): 428–433.
    [38] Y?ld?z N, Erol M, Aktas Z, et al. Adsorption of aromatic hydrocarbons on BTEA-bentonites[J].Adsorpt Sci Technol, 2004, 22 (2) :145–154.
    [39] Ouiazzanea S, Messnaouia B, Abderafia S, et al. Estimation of sucrose crystallization kinetics from batch crystallizer data[J]. J Cryst Growth, 2008, 310(4):798-803.
    [40] Woranee P, Paisan K, Amornchai A. Optimization and nonlinear control of a batch crystallization process[J]. J Chin Inst Chem Eng, 2008, 39(3):249-256.
    [1] Zapesochnaya G G, Kurkin V A, Shchavlinskii A N. Flavonoids of the epigeal part of Rhodiola rosea II Structures of new glycosides of herbacetin and of gossypetin[J]. Chem Nat Comp, 1986, 21(4):464-473.
    [2] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Flavonoids of the epigeal part of Rhodiola rosea. I[J]. Chem Nat Comp, 1984, 20(5):623-624.
    [3] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Flavonoids of the rhizomes of Rhodiola rosea III[J]. Chem Nat Comp, 1984, 20(3):367-368.
    [4] Kurkin V A, Zapesochnaya G G, Klyaznika V G. Flavonoids of the rhizomes of Rhodiola rosea I[J]. Tricin glucosides. Chem Nat Comp. 1983,18(5):550-552.
    [5] Zapesochnaya G G, Kurkin V A. The flavonoids of the rhizomes of Rhodiola rosea II. A flavonolignan and glycosides of herbacetin[J]. Chem Nat Comp, 1983,19(1):21-29.
    [6] Zapesochnaya G G. Structures of flavonoids from Rhodiola algida III[J]. Chem Nat Comp. 1979, 14(4):443-444.
    [7] Petsalo A, Jalonen J, Tolonen A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2006, 1112(2):224-231.
    [8] Tolonen A, Pakonen M, Hohtola A, Jalonen J. Phenylpropanoid glycosides from Rhodiola rosea. Chemical & Pharmaceutical Bulletin. 2003,51(4):467-470.
    [9] Zapesochnaya G G, Kurkin V A. Glycosides of cinnamyl alcohol from the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1983, 18(6):685-688.
    [10] Ali Z, Fronczek F R, Khan I A. Phenylalkanoids and monoterpene analogues from the roots of Rhodiola rosea[J]. Planta Med, 2008, 74(2):178-181.
    [11] Wiedenfeld H, Dumaa M, Malinowski M, et al. Phytochemical and analytical studies of extracts from Rhodiola rosea and Rhodiola quadrifida[J]. Pharmazie, 2007, 62(4):308-311.
    [12] Ssaratik A S, Krasnov E A, Chnikina L A, et al. Rhodioloside a new glykoside from Rhodiola rosea and its pharmacological properties[J]. Pharmazie, 1968, 23(7):392-394.
    [13] Yousef G G, Grace M H, Cheng D M, et al. Comparative phytochemical characterization of three Rhodiola species[J]. Phytochemistry, 2006, 67(21):2380-2391.
    [14] Fan W Z, Tezuka Y, Kadota S.Prolyl endopeptidase inhibitory activity of fourteen kampo formulas and inhibitory constituents of Tokaku-joki-to[J]. Chem Pharm Bull, 2000, 48(7):1055-1061.
    [15] Murakami T, Tanaka K. New phenolic glycosides in Rheum rhizome[J]. Yakugaku Zasshi, 1973, 93(6): 733-736.
    [16] Ikemoto T, Yokota T. Lasting effect of raspberry ketone glucoside on whitening[J]. Fragrance Journal, 2002, 30(5):39-43.
    [17] Yokota T, Ikemoto T, Sasaki, M et al. Lasting effect of raspberry ketone glucoside on whitening[J]. Nippon Keshohin Gijutsusha Kaishi, 2001, 35(2): 120-126.
    [18]愈文胜,陈新民,杨磊,等.大花红景天多元酚类化学成分的研究[J].天然产物研究与开发, 1992, 4(2):23-28.
    [19] Nonaka G, Nishimura H, Nishioka I. Tannins and related compounds IV. Seven new phenol glucoside gallates from Quercus stenophylla Makino[J]. Chem. Pharm. Bull, 1982, 30(6): 2061-7.
    [20] Kim J, Kim H H, Kim S G, et al. Antioxidative compounds from Quercus salicina blume stem. Arch. Pharmacal Res, 2008, 31(3): 274-278.
    [21] Rasmussen S, Wolff C R. 4'-O-.beta.-D-glucosyl-cis-p-coumaric acid-a natural constituent of Sphagnum fallax cultivated in bioreactors[J]. Phytochemistry, 1996, 42(1):81-87.
    [22] Klosterman H J, Smith F, Clagett C O. The constitution of linocinnamarin[J]. J Am Chem Soc, 1955, 77: 420-421.
    [23]张勉,张朝凤,王峥涛.侧茎橐吾化学成分的研究[J].药学学报, 2005, 40 (6) : 529 - 532
    [24]宋卫霞,吉腾飞,司伊康,等.新疆一枝蒿化学成分的研究[J].中国中药杂志, 2006, 31(21):1790-1792
    [25] Ahmad A, Misra L N. Isolation of herniarin and other constituents from Matricaria chamomilla flowers[J]. Int. J. Pharmacogn, 1997, 35(2): 121-125.
    [26] Kawaii S, Tomono Y, Katase E, etal. Effect of coumarins on HL-60 cell differentiation[J]. Anticancer Res, 2000, 20(4): 2505-2512.
    [27] Kayser O, Kolodziej H. Antibacterial activity of simple coumarins. Structural requirements for biological activity. Z. Naturforsch., C: J. Biosci. FIELD Full Journal Title:Zeitschrift fuer Naturforschung, C: Journal of Biosciences, 1999,54(3/4): 169-174.
    [28] Kawaii S T, Yasuhiko O, Kazunori S, et al. Antiproliferative effect of isopentenylated coumarins on several cancer cell lines[J]. Anticancer Res, 2001, 21(3B): 1905-1911.
    [29] Torres R F, Francesca M, Brenda U, et al. Antioxidant activity of coumarins and flavonols from the resinous exudate of Haplopappus multifolius[J]. Phytochemistry, 2006, 67(10): 984-987.
    [30] Davis A L, Cai Y, Davies A P, et al. 1H and 13C NMR assignments of some green tea polyphenols. magnetic resonance in chemistry, 1996, 34(1):887-890.
    [31] Tori K, Seo S, Yoshimura Y, et al. Glycosidation shifts in carbon-13 NMR spectroscopy: carbon-13 signal shifts from aglycone and glucose to glucoside[J]. Tetrahedron Lett, 1977, (2):179-182.
    [32]卢希贤,郑俊明,王志清,等.国产红景天苷的研究-红景天苷的提取分离和鉴定[J].中草药, 1980, 11(4):147-148.
    [33] Tolonen A, Pakonen M, Hohtola A, et al. Phenylpropanoid glycosides from Rhodiola rosea[J]. Chem Pharm Bull, 2003, 51(4):467-470.
    [34] Kurkin V A, Zapesochnaya G G, Shchavlinskii A N. Terpenoids of the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1986, 21(5):593-597.
    [1] Ali Z, Fronczek F R, Khan I A. Phenylalkanoids and monoterpene analogues from the roots of Rhodiola rosea[J]. Planta Med, 2008, 74(2):178-181.
    [2] Petsalo A, Jalonen J, Tolonen A. Identification of flavonoids of Rhodiola rosea by liquid chromatography-tandem mass spectrometry[J]. J Chromatogr A, 2006, 1112(2):224-231.
    [3] Tolonen A, Pakonen M, Hohtola A, et al. Phenylpropanoid glycosides from Rhodiola rosea[J]. Chem Pharm Bull, 2003, 51(4):467-470.
    [4] Troshchenko A T, Kutikova G A. Rhodioloside from Rhodiola rosea and Rh. quadrifida I[J]. Chem Nat Comp, 1968, 3(4):204-207.
    [5] Zapesochnaya G G, Kurkin V A. The flavonoids of the rhizomes of Rhodiola rosea II[J]. A flavonolignan and glycosides of herbacetin. Chem Nat Comp, 1983, 19(1):21-29.
    [6] Kurkin V A, Zapesochnaya G G, Klyaznika V G. Flavonoids of the rhizomes of Rhodiola rosea I[J]. Tricin glucosides. Chem Nat Comp, 1983, 18(5):550-552.
    [7] The Russian Federation Ministry of Health and Medical Industry. Russian National Pharmacopoeia.liquid extract of Rhodiola rosea root and rhizome[M].Moscow, 1983.
    [8] Linh P T; Kim Y H; Hong S P, et al. Quantitative determination of salidroside and tyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography[J]. Arch pharm res 2000, 23(4):349-52.
    [9] Kurkin V A, Zapesochnaya G G. Chemical composition and pharmacological properties of Rhodiola rosea[J]. Chem Pharm J (Moscow). 1986, 20(10):1231-1244.
    [10] Zapesochnaya G G, Kurkin V A. Glycosides of cinnamyl alcohol from the rhizomes of Rhodiola rosea[J]. Chem Nat Comp, 1983, 18(6):685-688.
    [11] Dubichev A G, Kurkin V A, Zapesochnaya G G, et al. Chemical composition of the rhizomes of the Rhodiola rosea by the HPLC method[J]. Chem Nat Comp,1991, 27(2):161-164.
    [12] Panossian A, Wagner H. Stimulating effect of adaptogens: An overview with particular reference to their efficacy following single dose administration[J]. Phytother Res. 2005, 19(10):819-838.
    [13] Perfumi M, Mattioli L. Adaptogenic and central nervous system effects of single doses of 3% rosavin and 1% salidroside Rhodiola rosea L extract in mice. Phytother Res, 2007, 21(1):37-43.
    [14] Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration[J]. Phytother Res, 2005, 19(10):819-838.
    [15] Kurkin V A, Dubishchev AV , Ezhkov V N, et al. Nootropic activity of some phytopreparations and phenylpropanoids[J]. Rastitel'nye Resursy. 2007,43(2):76-88.
    [16] Barnaulov O D, Limarenko A Y, Kurkin V A, et al. Comparative estimation of biological activity of the compounds isolated from Rhodiola L. species[J]. Khim Farm Zhu, 1986, 20(9):1107-10012.
    [17] Sokolov S Y, Zapesochnaya G G, Rvantsova N V, et al. Comparative examination of stimulant properties of some phenylpropanoids[J]. Khim Farm Zhu, 1990, 24(10):66-68.
    [18] Sokolov S Y, Ivashin V M, Zapesochnaya G G, et al. Studies of neurotropic activity of new compounds isolated from Rhodiola rosea[J]. Khim Farm Zhu, 1985, 19(11):1367-1371.
    [19] Rohloff J. Volatiles from rhizomes of Rhodiola rosea L. Phytochemistry, 2002, 59(6):655-661.
    [20] Hethelyi E B, Korany K, Galambosi B, et al. Chemical composition of the essential oil from rhizomes of Rhodiola rosea L. grown in Finland[J]. J Essent Oil Res, 2005, 17(6):628-629.
    [21] Yue M E, Jiang T F, Shi Y P. Determination of gallic acid and salldroside in rhodiola and its preparation by capillary electrophoresis[J]. J Anal Chem, 2006, 61(4):365-368.
    [22] Zhou G B, Guan Y Q, Chen H Z, et al. Simultaneous determination of pharmacologically active ingredients in Rhodiola by capillary chromatography with electrochemical detection[J]. J Chromatogr A, 2007, 1142(2):236-239.
    [23] Cui S Y, Hu X L, Chen X G, et al. Determination of p-tyrosol and salidroside in three samples of Rhodiola crenulata and one of Rhodiola kirilowii by capillary zone electrophoresis. Anal Bioanal Chem, 2003, 377(2):370-374.
    [24]安丰,果德安.薄层—紫外法测定8种红景天属植物中红景天甙的含量[J].中草药, 1994, 25(9):466-467.
    [25] Kucinskaite A, Poblocka O L, Krauze B M, et al. Use of SPE-TLC for quality control of Rhodiola rosea extracts[J]. J Planar Chromatogr-Mod Tlc, 2007, 20(2):121-125.
    [26] Mao Y, Li Y, Yao N. Simultaneous determination of salidroside and tyrosol in extracts of Rhodiola L.by microwave assisted extraction and high-performance liquid chromatography[J]. J Pharm Biomed Anal. 2007, 45(3):510-515.
    [27] Tolonen A, Hohtola A, Jalonen J. Liquid chromatographic analysis of phenylpropanoids from Rhodiola rosea extracts[J]. Chromatographia, 2003, 57(9-10):577-579.
    [28] Linh P T, Kim Y H, Hong S P, et al. Quantitative determination of salidroside and tyrosol from the underground part of Rhodiola rosea by high performance liquid chromatography[J]. Arch Pharm Res, 2000, 23(4):349-352.
    [29]翟旭峰,郭晓蕾,黄泽华.大花红景天中红景天苷的含量测定[J].湖南中医杂志, 2008,24(1):79-81.
    [30] Wang H L, Li Y L, Ding C X, et al. Determination of five pharmacologically active compounds extracted from Rhodiola for natural product drug discovery with HPLC-APCI-MS. J Liq Chromatogr Relat Technol, 2006, 29(6):857-868.
    [31]郭亚东,马涛,杨光宇,等.高效液相色谱法测定长鞭红景天中红景天苷和酪醇含量[J].食品科学, 2006, 27(11):447-448.
    [32] Tolonen A, Gyorgy Z, Jalonen J, et al. LC/MS/MS identification of glycosides produced by biotransformation of cinnamyl alcohol in Rhodiola rosea compact callus aggregates[J]. Biomed Chromatogr, 2004, 18(8):550-558.
    [33] Xu C J, Liang Y Z, Chau F T, et al. Pretreatments of chromatographic fingerprints for quality control of herbal medicines[J]. J Chromatogr A, 2006, 1134(12):253-259.
    [34] Li W, Deng Y, Dai R, et al. Chromatographic fingerprint analysis of Cephalotaxus sinensis from various sources by high-performance liquid chromatography-diodearray detection-electrospray ionization-tandem mass spectrometry[J]. J Pharm Biomed Anal, 2007, 45(1):38-46.
    [35] Chen Y, Zhu S B, Xie M Y, et al. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods[J]. Anal Chim Acta, 2008, 623(2):146-156.
    [36]吴启勋,安燕,高锦红,等.青藏高原红景天药材的高效液相色谱指纹图谱研究[J].西南民族大学学报(自然科学版), 2006, 74(1):72-76.
    [37]李维卫,胡凤祖,陈世龙,师治贤.青藏高原红景天药材的HPLC指纹图谱.西北植物学报. 2004,22(9):1744-1746.
    [38]张桂燕,张早华,储戟农.红景天注射剂指纹图谱的HPLC研究[J].中成药, 2004, 26(4):259-261.
    [39] Yurdanur A, Daneel F, Ehab A, et al. Lotaustralin from Rhodiola rosea roots[J]. Fitoterapia, 2004, 75:612-614.
    [40] Yousef G G, Grace M H, Cheng D M, et al. Comparative phytochemical characterization of three Rhodiola species[J]. Phytochemistry, 2006, 67(21):2380-2391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700