镇泾地区长8段裂缝发育特征及其与开发关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鄂尔多斯盆地特低渗油藏普遍无边底水,属典型岩性油藏,其中位于盆地天环坳陷南端的镇泾区块长8油层组即为一个低丰度、特低渗,且平面和垂向上非均质性较强的油藏。镇泾区块的油气勘探评价工作始于1997年,但一直持续到2006年,该区仅在长8油层获大量油气显示,而未试获的工业油流;2007年开始对一批老井进行重复压裂而获得高产,并相继获得了一些高产油流井,从而打开了镇泾区块长8油层组的勘探开发局面。目前在研究区开采过程中仍表现出了地层能量不足,油井投产后日产液量和日产油量下降较快的特征,针对这一情况在ZJ5井区实施先导性注水试验,注水试验总体效果较好,但存在油井见效不均,部分井含水上升快,甚至发生水淹。对于镇泾区块长8油层组这种低产背景存在高产的特点,以及在生产中体现出的非均质性均表明了天然裂缝的发育对油气渗流起到了重要作用。因此研究长8油层组裂缝发育规律以及对生产影响,为下一步开发调整和井网部署提供重要依据。本文通过野外露头裂缝调查及钻井岩心裂缝观察,分析了裂缝类型、产状、裂缝发育密度、有效性等特征。并在此基础上,开展了成像测井裂缝识别,并识别出了连续高导缝、不连续高导缝、连续高阻缝、不连续高阻缝等四种类型裂缝,并对裂缝产状、裂缝特征参数进行了相关计算。通过分析裂缝在常规测井曲线上响应特征,计算了裂缝孔隙度、宽度参数,使用判别分析、R/S分析法、概率神经网络模型等多方法进行裂缝综合识别,最后结合岩心裂缝特征综合建立了基于常规测井的综合裂缝识别标准。在前人对该地区构造演化研究基础上,结合野外调查、岩心观察和测井解释结果,认为研究区裂缝走向主要有NEE-SWW、W-E、NE-SW三个优势方向,主要受到了燕山期和喜山期两期区域应力场的控制,其次天然裂缝的发育也受岩性、层厚、断层等因素的控制。在裂缝平面分布评价的基础上划分三类裂缝区:裂缝发育区、裂缝较发育区和裂缝不发育区。结合生产分析,认为在裂缝发育区,裂缝可以起到良好的导流作用,大规模压裂时,会沿NEE-SWW和NE-SW向的天然裂缝延伸,在后期注水开发中表现出沿裂缝线注水受效快,容易发生水淹,针对以上情况在裂缝发育区应保持注水井与角井的连线平行NEE-SWW走向,放大NEE-SWW裂缝方向井距,减缓角井水淹速度,缩小排距,提高侧向油井受效程度,同时控制注水井的注入压力和注入量,提高驱油效率;在裂缝次发育区,目前注水开发效果较好,油井受效较为均匀,在下步开发中应保持适中注入压力和注入量,维持地层能量,可以适当放大裂缝方向井距,有利于提高压裂规模和单井产量;在裂缝不发育区,注水生产表现出油井见效缓慢甚至不受效,生产井压裂后产液量和产能低,因此在进行裂缝不发育区开发时,应加大压裂强度,增强造缝能力,增加油井泄油面积,在注水时应加大注水压力和注入量,同时适当增加井网密度,改善油井不受效状况。研究区目的层裂缝系统对油藏开发的影响具有双重性,因此在进行开发方案的制定和调整时,应充分发挥裂缝优势,同时避免水淹水窜,从而能真正实现油藏的高效开发。
Low permeability reservoirs in Ordos basin generally do not have edge water and bottom water,and they belong to the lithologic deposit.Chang 8 formation of Zhenjing in the south of Tian huan depression is a reservoir with low bearing、low permeability and strong aeolotropism in planar and vertical scale.The exploration evaluation of Zhenjing block started in 1997.Only Chang 8 formation gained plenty of evidence of oil and gas until 2006,and there were not commercial oil and gas flow.Some old wells gained high production because of the use of refracturing in 2007,and some high production wells were drilled.As a result,the exploration and exploitation of Chang 8 formaiton in Zhenjing enter a new stage.In the exploitation,the producing energy is not enough,and daily fluid production rate and daily oil production declined sharply.Pilot flooding tracey is conducted in ZJ5 block,and the overall outcome is good.The effects on the oil wells are not uniform.The water saturation of some wells increase fast.Waterflooding can be seen in some wells.The natural fracture can affect the filtration of oil and gas,because there are aeolotropism in exploitation and discord in outcome.So,the study on fracture developmental discipline and its effect on production can provide significant foundation for the next adjustment of exploitation and well network.
     This paper use the information of field fractures and the observation of fracuture -s of cores to analyse the fr acuture type、attitude、density and validity etc.The FMI fracture identification is based on the previous work, and continued high electric conductivity fracuture、non-continued high electric conductivity fracuture、continued high electric resistivity fracture、non- continued high electric resistivity fracture are identified.Then,the fracture attitudes and parameters are calculated.Analysing the fractures respond to the conventional log,calculating fracture porosity and width,using the methods of discriminant a nalysis、R/S、PNN,this paper identify the fractures in comprehensive ways.At last,this paper establishes a comprehensive criterion of identification which is based on the conventional log.Based on the previous study of structural evolution about this area,combined with the field investigation、core observation and log interpretation,this paper concludes that the fracture aligements mainly are NEE-SWW、W- E、NE-SW.The aligements are controlled by the Yanshanian and Himalayan regional stress field.The development of natural fractures is controlledby the lithology、bed thickness、fault,etc. Based on the evaluation about distribution of fractures on the plane, the interested area could be divided as three areas, that is, the developed fracture area, the more developed fracture area, and the undeveloped area. Referring to the analysis of producing, this thesis believes that the fractures could play a good role for diversion in the developed fracture areas, and when being fractured, the natural fractures would be extended NEE-SWW and NE-SW. In the later waterflooding,the oil wells along with the fractures are easy to be affected. Because of this,the alignment of input well and corner well should be NEE-SWW, and increase the distance between the wells whose alignments are NEE-SWW.Meanwhile, slow the velocity of the waterflooding, decrease the well array spacing, enhance the response of lateral well,control the injection pressure and injection rate, increase the sweep efficiency. In the area where the fractures are not many, current waterflooding works well,the response of wells are equal. In the next exploitation, app licable injection pressure、injection rate and producing energy should be kept. The interspacing of wells along the fractures should be increased, so the fracturing scale and individual well producing rate will be enlarged. In the area where the fractures does not develop, the oil wells are not easy to be affected in the waterflooding, and the mass production and flow potential of producing wells are bad. Because of this,when the exploitation is made in the area where the fractures are not many, more fracturing should be done in order to enhance the capacity of creating fractures. Increase the drainable area、injection pressure and injection rate, and increase the well spacing density appropriately, change the condition that the oil wells are hard to be affected. The fractures system of the target stratum in the study area has dual effects on the exploitation, so when the adjustment and make of development plan are conducted, the fracture superiority must be utilized, and the waterflooding and channeling should be avoided. The exploitation with high efficiency can be achieved.
引文
[1]苏培东.贵州赤水地区二、三叠系储层构造解析及裂缝预测研究[D].成都:西南石油大学,2004.
    [2] Price N J.Fault and Joint Development in Btittle and Semi-brittle Rock[M].London:Pergamon Press,1966
    [3] G H Murry.Quantitative fracture study-Sanish poo , Imckenzie County , North Dakota.AAPG,1968,52(1):57
    [4] G H Murry.Quantitative fracture study-Sanish poo,Fracture-controlled.AAPG,Bulletin Reprint Series 21,1977
    [5] E M.斯麦霍夫.裂缝性油气储层勘探的基本理论与方法[M].北京:石油工业出版社,1985
    [6] T.D.VanGolf-Racht.裂缝性油藏工程基础[M].北京:石油工业出版社,1989
    [7] Narr W,Lerch I A.Method for estimating fracture density in core[J].AAPG Bulletin,1984,68(5):637-648
    [8] Neison R A Geologic analysis of naturally fractured reservoirs.1985
    [9] Peck I,Barton C C ,Gordon R R M icrostructure and the resistance of rock to fracture[J].Journal of Geophysical Research 1985,90(13):533-546
    [10] T H irata Fractal d in ension of fault susten on Japan fractal structure in rock geometry at various scales Journal of Pure and Appl[J].Geophysics,1989,131:131-157
    [11] Velde B , Duboes J etc Fractal analysis of fracture in rocks the Cantor’s Dustm ethod[J].Tectonphysics,1990,57(3):61-68
    [12] Velde B.Structure of surface cracks in soil and muds[J].Tectonphysics 1999,93(1-2):101-124
    [13] Matthew A.d’Alessio、Stephen J,Martel.Fault terminations and barriers to fault growth[J].Journal of Struction Geology,2004,26:1885-1896
    [14] Barton,C.C,Lapointe,P.R.,Fractal in petroleum geology and earth science processes [M].New York,1995:23-89
    [15]李辉,肖克,伍友佳,等.裂缝研究方法综述[J].内蒙古石油化工,2006,07:80-82
    [16]周文.裂缝性油气储集层评价方法[M].成都:四川科学技术出版社,1998
    [17]苏培东,秦启荣,黄润秋.储层裂缝预测研究现状与展望[J],西南石油学院学报,2005,27(5):14-18
    [18]曾锦光.应用构造面主曲率研究油气藏裂缝问题[J].力学学报,1982.
    [19]曾锦光.构造裂缝的理论分析研究[A].中国南方油气勘查新领域探索论文集[C].北京:地质出版社,1988.
    [20]王允诚.裂缝性致密油气储集层[M].北京:地质出版社,1992.
    [21]殷有泉.有限单元方法及其在地学中的应用[M].北京:地震出版社,1987
    [22]陈子光.岩石力学性质与构造应力场[M].北京:地质出版社,1986
    [23]安欧.构造应力场[M].北京:地震出版社,1992
    [24]宋惠珍,黄立人.地应力场综合研究[M].北京:石油工业出版社,1990.
    [25]秦启荣,黄润秋.构造应力场数值模拟在哈密凹陷四道沟地区T2k储层裂缝预测中的应用[J],山地学报
    [26]秦启荣.川中油气区东缘大安寨储层裂缝成因机制初探[J].天然气工业,1998,18(3):90-92
    [27]衰士义,宋新民,冉启权.裂缝性油藏开发技术[M].北京:石油工业出版社,2004
    [28]赵阳升,马宇,段康廉.H岩层裂缝分形分布相关规律研究H[J].岩石力学与工程学报,2002年02期
    [29]何光明,高如曾.H分形理论在裂缝预测中的尝试H[J].石油物探,1993年02期
    [30]窦齐丰,彭仕宓,黄述旺.柴达木盆地红柳泉油田储层沉积相研究-针对下干柴沟组下段油藏上砂组层段[J].西安石油学院学报(自然科学版):2003年01期
    [31]丁中一,钱祥麟,霍红,等.H构造裂缝定量预测的一种新方法--二元法[J].H石油与天然气地质,1998(1)
    [32]周新桂,操成杰,袁嘉音.储层构造裂缝定量预测与油气渗流规律研究现状和进展[J].地球科学进展,2003,18(3):398-404
    [33]周新桂,邓宏文.储层构造裂缝定量预测研究及评价方法[J].地球学报,2003,24(2):175-180
    [34]张泓.鄂尔多斯盆地中新生代构造应力场[J].华北地质矿产杂志,1996,13(1):87-92
    [35]周新桂.鄂南镇-泾地区构造应力与储层裂缝系统发育规律研究[R],华北分公司勘探开发研究院,中国地质科学院地质力学研究所2005
    [36]张抗,鄂尔多斯断块构造和资源[M].陕西科学技术出版社,1989
    [37]张吉森,杨奕华,王少飞,等.鄂尔多斯地区奥陶系沉积及其与天然气的关系[J].天然气工业,1995年02期
    [38]张泓.鄂尔多斯盆地中新生代构造应力场.华北地质矿产杂志[J],1996,11(1):87-92
    [39]孙少华,李小明,龚革联等.鄂尔多斯盆地构造热事件研究[J].科学通报,1997,42(3):306-309
    [40]雷振宇,张朝军,杨晓萍.鄂尔多斯盆地含油气系统划分及特征[J].勘察家,2000,5(3):75-82
    [41]张功成,徐宏.中国含油气构造[M].石油工业出版社.1989.(1):261-290
    [42]高山林,韩庆军,杨华等.鄂尔多斯盆地燕山运动及其与油气关系[J].长春科技大学学报,2000,30(4):354-358
    [43]曾联波,郑聪斌.陕甘宁盆地延长统区域裂缝的形成及其油气地质意义[J].中国区域地质.1999,18(4):391-396
    [44]刘和甫,汪泽成,熊保贤.中国中西部中、新生代前陆盆地与挤压造山带耦合分析[J].地学前缘.2000,7(3):55-72
    [45]任战利.鄂尔多斯盆地热演化史与油气关系的研究[J].石油学报,1996,17(1):17-24
    [46]郑旭明,李良,刘德汉.应用矿物包裹体研究鄂尔多斯盆地古生界热史和油气演化阶段[J].矿物岩石地球化学通报,1997,16(1):47-50
    [47]邓瑞,郭海敏.常规测井亦可有效识别裂缝[J].中围石油石化,2006(19):62-63
    [48]邓瑞,郭海敏.裂缝性储层的常规测井识别方法[J].勘探地球物理进展,2007(2):107-110
    [49] Sibbit A.M,Faivre O.裂缝岩石的双侧向测井响应[A].宋兰琴译.测井分析家协会第二十六届年会论文集[C] .北京:石油工业出版社,1989
    [50]罗贞耀.用侧向资料计算裂缝张开度的初步研究[J].地球物理测井,1990,14(2):83-92
    [51]陈科贵,穆曙光,魏彩茹.一种评价碳酸盐岩储层裂缝参数的测井新模型[J].西南石油学院学报,2003,25(1):6-8.
    [52]马魁勇,双感应-聚焦测井在低阻油藏中的应用[J].内蒙古石油化工,2009,08
    [53]袁士义.裂缝性油藏开发技术[M].石油工业出版社,2005,5
    [54]谭廷栋.裂缝性油气藏测井解释模型与评价方法[M].石油出版社,1987
    [55]陈琼,王伟,葛辉.成像测井技术现状及进展[J] .国外测井技术,2007,22(3),8-10
    [56]邓瑞,郭海敏.常规测井亦可有效识别裂缝[J].中围石油石化,2006(19):62-63
    [57]邓瑞,郭海敏.裂缝性储层的常规测井识别方法[J].勘探地球物理进展.2007(2):107-110
    [58]谭延栋.裂缝性油藏测井资料定量解释[J].石油与天然气地质,1987(2):171-175
    [59]刘兴刚,张旭.测井裂缝参数估算方法研究[J].天然气工业,2003(4):31-34
    [60]林纯增张舫.泥浆侵入特性的测井应用[J],测井技术,2002.26(4):341-345
    [61]孙霞.分形原理及其运用[M].安徽:中国科技大学出版社,2003
    [62]胡宗全.R/S分析在储层垂向非均质性和裂缝评价中的应用[J].石油实验地质,2000(4):382-386.
    [63]模式识别与智能计算——MAtlab技术实现[M].北京,电子工业出版社,2009
    [64]赵琛.用概率神经网络对混凝土拱坝进行损伤位置识别的研究(D).浙江大学,2005
    [65]用概率神经网络对桩-承台进行损伤识别(D).兰州理工大学,2007
    [66]贾焕军.油气层神经网络识别方法研究(D).大庆石油学院,2003
    [67]赵佳白.概率神经网络的改进研究及其在股票预测上的应用(D).暨南大学,2007
    [68]韩福成,何应付.裂缝性低渗透油气藏压裂经压力动态特征[J].特种油气藏,2008,15(4):63-65
    [69]王江,王玉英.水力压裂裂缝方向对油井含水动态的影响[J].2004,27(1):54-57
    [70]王道富.鄂尔多斯盆地特地渗透油田开发[M],北京,石油工业出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700