RFIC的ESD防护电路与优化设计技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于射频集成电路(RFIC)所独有的特点,如对噪声系数敏感、要求良好的匹配和合适的增益等等,与普通的模拟/数字集成电路不同,其静电防护(ESD)设计变得更加复杂和困难。本文主要研究了在深亚米CMOS技术条件下,RFIC的ESD保护设计及RFIC与ESD保护电路之间的协同优化问题,从ESD仿真测试平台的搭建、器件结构改进、带有ESD保护的匹配网络分析、ESD器件与RF电路协同设计(co-design)方法和消除ESD影响的电路措施改进等方面进行了分析研究。主要研究工作和成果如下:
     1.论文针对几种ESD保护器件的特点进行了对比研究,选择了结构简单、寄生参数少、放电效率高且开关参数易调节的LVTSCR器件。分析了深亚米器件在ESD大应力下的载流子传输特性,采用了载流子输运模型和碰撞电离模型,通过搭建TLP仿真测试平台,对90nm工艺条件下的LVTSCR的工作原理和特性进行了讨论,分析了几个主要参数对LVTSCR特性的影响。结果表明,本文中的LVTSCR器件的开启电压小于4V,与同等工艺条件下的ggNMOS试验结果相比较,具有相同水平的开启电压,而维持电压要小很多(1.1V对3.3V),因此具有更高的放电效率,适合深亚米条件下的RFIC输入/输出端的ESD保护。论文的研究成果为深亚米LVTSCR结构的ESD应力研究和TLP仿真测试的改进提供了理论依据。
     2.根据LVTSCR的电学特性,分析了不同偏置条件对其开关特性的影响,提出了结构改进方法以获得良好的开关参数。由于SCR类器件具有导通电阻很小但维持电压过低的问题,在应用中容易引起功能电路的闩锁或者ESD结构开启后不能自行关闭。基于提高维持电压即提高器件内部的导通电阻这一原则,在LVTSCR结构改进中采用了几种增大电流路径的办法,最终放弃器件原有的栅极,改为纵向的双槽结构进行限流从而获得了良好的效果,占用了较小的芯片面积。在此基础上,对槽深与维持电压的关系进行了量化分析,并对一定极限下此方法遇到的瓶颈进行了讨论。结果表明,通过结构改进,LVTSCR的维持电压达到了1.5V以上,使该器件可以满足大部分深亚米低压电路的ESD保护需求。
     3.由于在现有的RFIC设计技术中,缺乏ESD器件的模型(包括大应力模型和小信号模型),而现有的等效方法,在RF分析中忽略了太多的寄生效应,因此导致在增加ESD结构后核心电路的性能严重恶化,尤其当工作频率很高(>5GHz)时,寄生参数的细变化有可能带来端口不匹配、噪声变差或者增益降低。因此,本文建立了一种能够准确量化ESD结构参数并将其引入RF仿真的方法,该方法结合了器件级仿真、器件-电路混合模式仿真以及高频仿真的特点,对带有ESD保护的匹配网络提取S参数并建立查表模型,以引入RF设计中。其中, ESD结构的所有寄生效应在进行小信号分析时将全部被考虑进来,具有无损性,因此能过做到准确的仿真,使RFIC的性能得到最优化。通过一个5.25GHz窄带LNA-ESD设计,结合单/双向二级LVTSCR ESD保护网络,对这种co-design方法的可行性进行了验证,对比了不同ESD网络结构在加入前后及电路优化前后的性能,该结果与文献中的单向二级ggNMOS保护结构相比,在同样的器件尺寸下获得了原有二倍的HBM防护水平。
     4.本文利用电源电路中的反馈补偿电路结构,通过调节反馈信号的大小和相位,使得在ESD器件位置的原始信号和反馈信号相互抵消。利用这种补偿技术,在RFIC正常工作时,被保护端口的信号对于ESD结构不可见或部分可见,起到了一种屏蔽的效果,因此使得大面积的ESD器件能够应用于更高的频率范围。通过对改进的双槽结构LVTSCR组成的50Ω传输网络进行分析,结合第五章提出的co-design方法,对加入补偿电路前后的网络传输特性进行了分析和讨论。结果表明,反馈补偿电路能够在一定的频率范围内对ESD结构做到有效隔离,使电路的匹配效果得到改进,通过调整反馈电路的参数可以使其能够具有合适的中心频率和带宽,同时不会牺牲ESD防护的水平。这种方法使得原有的ESD保护结构的适用频率获得了几个GHz的提升。
     综上所述,本文以普通的模拟/数字IC ESD防护技术为基础,改进了针对LVTSCR器件的TLP仿真测试方法,对LVTSCR在大应力条件下的特性进行了分析和讨论,通过改进器件结构使其具有更合适的开关特性;提出了一种新的基于网络S参数提取的RF-ESD协同设计方法,和一种对ESD结构的反馈补偿措施,获得了一些有意义的结果,为RFIC的ESD设计提供了指导。
Due to the unique characteristics of radio frequency integrated circuit (RFIC), suchas the sensitivity to noise figure, requirement of good match and gain, different withordinary analog/digital integrated circuits, its electrostatic discharge (ESD) protectiondesign has become more complex and difficult. This dissertation studies the ESDprotection design of RFICs, and the optimization of the above two in condition of deepsub-micron CMOS technology. The content includes the construction of ESDsimulation testing platform, the improvement of device structure, the analysis of ESDprotection with matching network, co-design method of ESD devices with RF circuit,and how to eliminate the impact of ESD structure on the circuit. The major researchwork and results are as follows:
     1. In this dissertation, the characteristics of several ESD protection devices arestudied and compared, and the LVTSCR device which has a simple structure, lessparasitic effects, high discharging efficiency and easy-adjust switch parameters, isselected. In simulation, the novel carrier transport model and collision ionization modelare used to analyze of the carrier transport characteristics of deep submicron devicesunder ESD stress. With the TLP simulation test platform, the working principle andcharacteristics of the LVTSCR under90nm process are discussed, and the impact ofseveral parameters on the LVTSCR’s snapback characteristic is analyzed. The resultsshow that the turn-on voltage of LVTSCR is less than4V in this dissertation, which issimilar with the ggNMOS results under the same process, while its hold-on voltage ismuch lower than the latter (1.1V to3.3V). Therefore, the LVTSCR has higherdischarging efficiency, which is suitable for input protection of RFICs. The method alsoprovides a good reference and basis for TLP testing and standardization.
     2.Based on the electrical characteristics of LVTSCR, the impact of the differentbias mode on the switching characteristics is analyzed, and the structural improvementsare presented. For the small turn-on resistance and low hold-on voltage, the SCRdevices in applications are tend to cause latch-up of circuit, or ESD structure unableturning itself off when ESD event is over. Increasing hold-on voltage means increasingthe turn-on resistance, thus several measures are used to increase the current path instructural improvements of LVTSCR, and a double-vertical-trench structure is proposed to limit the current, which obtains good results and occupies a small chip area. Then therelationship of trench depth with hold-on voltage is analyzed, and the bottleneck of thismethod encountered is discussed. The results show that the device is improved tomaintain a hold-on voltage above1.5V, which allows the device to meet the ESDprotection requirements of most of the deep sub-micron low-voltage applications.
     3. For the lack of ESD device models (including high stress model and small-signalmodel) in existing RFIC techniques, the equivalent method in RF-ESD analysis ignoresa lot of parasitic effects, which results in performance degradation of the core circuitand optimization difficulty when ESD protection is added, especially in high frequency(>5GHz) applications. The subtle change of the parasitic effects may cause themismatch of terminals, degradation of noise figure or gain. Therefore, a method toquantify the ESD structure accurately and introduce it to RF design is presented, whichincorporates the device-level simulation with the device-circuit mixed-mode simulationand high-frequency simulation. In this method, the approach of extracting S-parametersof ESD matching network and establishing table-lookup model to introduce in RFdesign is first used, and all the small-signal parasitic effects of ESD structure are takeninto account, thus accurate simulations can be done and the RFIC performance isoptimized. A5.25GHz narrow-band LNA-ESD design, combined with two-stageone-directional/dual-directional ESD protection based on LVTSCR, is used todemonstrate the feasibility of this co-design method. The RF performance of LNAbefore and after optimization with different ESD protection is discussed. Comparedwith two-stage one-directional ESD protection based on ggNMOS in the literature, theHBM protection level in this work is doubled with the device in same size.
     4. Using the feedback compensation circuit used in power supply, the originalsignal and the feedback signal in location of the ESD device will be cancelled eachother by adjusting the magnitude and phase of the feedback signal. With thecompensation technique, in normal working conditions of RFIC, the signal of theprotected port is invisible or partially visible to ESD structure, which plays a shieldingeffect, and therefore making large-size ESD device can be used in high frequency range.With improved dual-trench LVTSCR and the proposed co-design method, theperformance of50Ω transmission line with and without the compensation circuit isdiscussed. The results show that the feedback compensation circuit can effectivelyseparate the ESD structure with transmission line in a certain frequency range, thusimproves the matching of the circuit. It can get an appropriate center frequency andbandwidth by adjusting the parameters of the feedback circuit, which does not sacrifice the ESD protection level. With this approach, the application frequency of an ESDprotection is upgraded for several GHz.
     In summary, based on ordinary analog/digital IC ESD protection technology, theTLP simulation test method for LVTSCR device is improved, and the LVTSCR’scharacteristics in condition of great stress are analyzed, and device structure is improvedto get good switching parameters. A new RF-ESD co-design method based onS-parameters extracting and a feedback compensation measure are proposed, and somemeaningful results are obtained, which provides guidance for the RFIC ESD design.
引文
[1.1] Ludwig R. RF Circuit Design: Theory and Applications. Upper Saddle River:Prentice Hall,2000:1-2
    [1.2] Lee T H. The Design of CMOS Radio-Frequency Integrated Circuits. NewYork: Cambridge University Press,1998:1-2
    [1.3] Voldman S H. ESD RF Technology and Circuits. New York: John Wiley&Sons,2006:61
    [1.4] Pierco R, Li Z, Torfs G, et al. Diode String with reduced Clamping-Voltage forESD-Protection of RF-Circuits. Electronics Letters,2012,48(6):317-318
    [1.5] Galy P, Jimenez J, Meuris P, et al. ESD RF Protections in Advanced CMOSTechnologies and its Parasitic Capacitance Elvaluation. IC Design&Technology,2011,1-4
    [1.6] Chen H Y, Suo Y, Kuo C T, et al. Analysis of Electrostatic DischargeSuppressors with Ultra-Low Capacitance used for IC Protection. Journal ofElectrostatics,2011,69:604-610
    [1.7] Voldman S H. ESD Circuits and Device. New York: John Wiley&Sons,2006:12
    [1.8] Dabral S and Maloney T. Basic ESD and I/O design. New York: John Wiley&Sons,1998:17-20
    [1.9] Duvvury C, Anderson W, Gieser H, et al. ESD in Silicon Integrated Circuits.New York: John Wiley&Sons,2002.
    [1.10]特劳德曼R R著. CMOS技术中的闩锁效应——问题及解决方法.北京:科学出版社,1996:6-11
    [1.11] Wang A Z and Tsay C H. A New Design Methodology using Simulation forOn-Chip ESD Protection Designs for Integrated Circuits. Solid-State andIntegrated Circuit Technology,1998,509-512
    [1.12] Polgreen T L and Chatterjee A. Improving the ESD Failure Threshold ofSilicided NMOS Output Transistor by Ensuring Uniform Current Flow. IEEETransactions on Electron Device,1992,29(2),379-388
    [1.13] Notermans G. On the Use of N-well Resistors for Uniform Triggering of ESDProtection Elements. Electrical Overstress/Electrostatic Discharge Symposium,1997,221-229
    [1.14] Chen J Z, Amerasekera A, and Duvvury C. Design Methodology forOptimizing Gate Driven ESD Protection Circuits in Submicron CMOSProcesses. Electrical Overstress/Electrostatic Discharge Symposium,1997,230-239
    [1.15] Amerasekera A, C Duvvury, Reddy V, et al. Substrate Triggering and SilicideEffects on ESD Performance and Protection Circuit Design in Deep SubmicronCMOS Processes. Electron Devices Meeting,1995,547-550
    [1.16] Amerasekera A, Chang M C, Seitchik J A, et al. Self-heating effects in basicsemiconductor structures. IEEE Transactions on Electron Device,1993,40(10):1836-1844
    [1.17] Amerasekera A, S Ramaswamy, Chang M C, et al. Modeling MOS snapbackand parasitic bipolar action for circuit-level ESD and high current simulations.Reliablility Physics Symposium,1996,318-326
    [1.18] Glaser U, Esmark K, Streibl M S, et al. SCR Operation Mode of Diode Stringsfor ESD Proction. Microelectronics Reliability,2007,47:1044-1053
    [1.19] Franke S B, Stadler W, Esmark K, et al. Transient Latch-Up: ExperimentalAnalysis and Device Simulation. Microelectronics Reliability,2005,45:297-304
    [1.20] Zhang B, Chai C C, and Yang Y T. A Novel ESD Protection Circuit Applied inHigh-Speed CMOS IC. Solid-State and Integrated Circuit Technology,2008,345-348
    [1.21] Ker M D, Chen T Y, and Wu C Y. CMOS On-Chip ESD Protection Designwith Substrate-Triggering Technique. Electronics Circuits and Systems,1998,273-276
    [1.22] Chan M, Yuen S S, Ma Z J, et al. Comparison of ESD Protection Capability ofSOI and Bulk CMOS Output Buffers. Reliability Physics Symposium,1994,292-298
    [1.23] Ker M D, Chang H H, Wang C C, et al. Dynamic-Floating-Gate Design forOutput ESD Protection in a0.35-μm CMOS Cell Library. Circuit and Systems,1998,216-219
    [1.24] Lee J W and Li Y. Effective Electrostatic Discharge Protection Circuit DesignUsing Novel Fully Silicided N-MOSFETs in Sub-100-nm Device era. IEEETransactions on Nanotechnology,2006,5(3):211-215
    [1.25] Ker M D, Chen S H, and Chuang C H. ESD Failure Mechanisms of Analog I/OCells in0.18-μm CMOS Technology. IEEE Transactions on Device andMaterials Reliability,2006,6(1):102-111
    [1.26] Chang H H and Ker M D. Improved Output ESD Protection by Dynamic GateFloating Design. IEEE Transactions on Electron Device,1998,45(9):2076-2078
    [1.27] Ker M D. Whole-Chip ESD Protection Design with Efficient VDD-to-VSSESD Clamp Circuits for Submicron CMOS VLSI. IEEE Transactions onElectron Device,1999,46(1):173-183
    [1.28] Azais F, B Caillard, Dournelle S, et al. A New Multi-Finger SCR-BasedStructure for Efficient On-Chip ESD Protection. Microelectronics Reliability,2005,45:233-243
    [1.29] Vashchenko V A and Hopper P. Bipolar SCR ESD Devices. MicroelectronicsReliability,2005,45:457-471
    [1.30] Brennan C J, Chang S, Woo M, et al. Implementation of Diode and BipolarTriggered SCRs for CDM Robust ESD Protection in90nm CMOS ASICs.Microelectronics Reliability,2007,47:1030-1035
    [1.31] Semenov O, Sarbishael H, Axelrad V, et al. Novel Gate and SubstrateTriggering Techniques for Deep Sub-Micron ESD Protection Devices.Microelectronics Journal,2006,37:526-533
    [1.32] Ker M D, Chang H H, and Wu C Y. A Gate-Coupled PTLSCR/NTLSCR ESDProtection Circuit for Deep-Submicron Low-Voltage CMOS IC’s. IEEEJournal of Solid-State Circuit,1997,32(1):38-51
    [1.33] Juliano P A and Rosenbaum E. A Novel SCR Macro model for ESD CircuitSimulation. Electron Devices Meeting,2001,14.3.1-14.3.4
    [1.34] Salcedo J A, Liou J J, and Bernier J C. Design and Integration of NovelSCR-Based Devices for ESD Protection in CMOS/BiCMOS Technologies.IEEE Transactions on Electron Devices,2005,52(12):2682-2689
    [1.35] Russ C C, Mergens M P J, Verhaege K G, et al. GGSCRs: GGNMOSTriggered Silicon Controlled Rectifiers for ESD Protection in DeepSub-Micron CMOS Process. Electrical Overstress/Electrostatic DischargeSymposium,2001,22-31
    [1.36] Wang A Z H, Feng H G, Zhan R Y, et al. A Review on RF ESD ProtectionDesign. IEEE Transactions on Electron Devices,2005,52(7):1304-1311
    [1.37] Salcedo J A, Liou J J, Liu Z, et al. TCAD Methodology for Design of SCRDevices for Electrostatic Discharge (ESD) Applications. IEEE Transactions onElectron Devices,2007,54:822-832
    [1.38] Zhu Z W, Hao Y, Ma X H, et al. Investigation of snapback stress induced gateoxide defect for NMOSFET’s in90nm technology. Acta Physica Sinica,2007,56(2):1075-1081
    [1.39] Aliaj B, Vashchenko V, Cui Q, et al.2.5-Dimensional Simulation for AnalyzingPower Arrays Subject to ESD Stresses. EOS/ESD Symposium,2009,1-7
    [1.40] Feng H G, Chen G, Zhan R, et al. A Mixed-Mode ESD Protection CircuitSimulation-Design Methodology. IEEE Journal of Solid-State Circuits,2003,38(6):995-1006
    [1.41] Druen S, Streibl M, Zangl F, et al. Chip-Level ESD Simulation for FailDetection and Design Guidance. Reliability Physics Symposium Proceedings,2004,603-604
    [2.1] MIL-STD-883E, Method3015.7. Electrostatic Discharge SensitivityClassification. Dept. of Defense, Test Method Standard, Microcircuits,1989
    [2.2] Roozendaal L J V, Amerasekera E A, Bos P, et al. Standard ESD testing.EOS/ESD symposium,1990,119-130
    [2.3] Verhaege K, Roussel P, and Groesenecken G. Analysis of HBM ESD Testersand Specifications Using4th Order Lumped Element Model. EOS/ESDsymposium,1993,129–138
    [2.4] ESD Association WG5.1, ESD STM5.1-2001: Standard Test Method forElectrostatic Discharge Sensitivity Testing-Human Body Model (HBM)Component Level,2001
    [2.5] JEDEC Solid State Technology Association, JESD22-A114-B: ElectrostaticDischarge (ESD) Sensitivity Testing Human Body Model (HBM),2000
    [2.6] Automotive Electronics Council, Human Body Model Electrostatic DischargeTest; AEC-Q100-002-REV-C,2001
    [2.7] ESD Association WG5.2, ESD STM5.2-1998: Standard Test Method forElectrostatic Discharge Sensitivity Testing-Machine Model (MM) ComponentLevel,1998
    [2.8] JEDEC Solid State Technology Association, JESD22-A115-A: ElectrostaticDischarge (ESD) Sensitivity Testing Machine Model (MM),1997
    [2.9] Automotive Electronics Council, Machine Model Electrostatic Discharge Test;AEC-Q100-03Rev E,2001
    [2.10] EIAJ-Standard, IC-121-1988, Testing Method20: Electrostatic DestructiveTest Electrostatic Discharge,1988
    [2.11] Bossard P, Chemelli R, and Unger B. ESD damage from TriboelectricallyCharged IC Pins. EOS/ESD symposium,1980,17-22
    [2.12] Chaine M, Verhaege K, Avery L, et al. Investigation into Socketed CDM(SDM) Tester Parasitics. EOS/ESD symposium,1998,301–310,.
    [2.13] ESD Association, ESD STM5.3.1-1999: Standard Test Method forElectrostatic Discharge Sensitivity Testing-Charged Device Model (CDM)Component Level,1999
    [2.14] JEDEC Solid State Technology Association, JESD22-C101-A: Field-InducedCharged Device Model Test Method for Electrostatic Discharge-WithstandThresholds of Microelectronic Components,2000
    [2.15] Automotive Electronics Council, Charged Device Model ElectrostaticDischarge Test; AEC-Q100-011Rev A,2001
    [2.16] Notermans G, Jong P D, and Kuper F. Pitfalls When Correlating TLP, HBMand MM Testing. EOS/ESD Symposium,1998,170-176.
    [2.17] Chu C Y and Worley E R. Ultra Low Impedance Transmission Line Tester.EOS/ESD Symposium,1998,311–319.
    [2.18] Barth J E, Verhaege K, Henry L G, et al. TLP Calibration, Correlation,Standards, and New Techniques. IEEE Transactions on Electronics PackagingManufacturing,2001,24(2):99-108
    [2.19] Ker M D and Chang W J. ESD Protection Design with On-Chip ESD Bus andHigh-Voltage-Tolerant ESD Clamp Circuit for Mixed-Voltage I/O Buffers.IEEE Solid-State Circuit,2008,55(6):1409-1416
    [2.20] Wang A Z, Feng H G, Zhan R Y, et al. ESD Protection Design for RFIntegrated Circuits: New Challenges. IEEE2002Custom Integrated CircuitsConference,2002,22(1):1
    [2.21] Mergens M P J, Russ C C, Verhaege K G, et al. Speed OptimizedDiode-Triggered SCR (DTSCR) for RF ESD Protection of Ultra-Sensitive ICNodes in Advanced Technologies. IEEE Transactions on Device and MaterialsReliability,2005,5(3):532
    [2.22] Voldman S. ESD Protection and RF Design. Tutorial Notes of the ElectricalOverstress/Electrostatic Discharge (EOS/ESD) Symposium,2001
    [2.23] Leroux P and Steyart M. High performance5.25GHz LNA with on-chipinductor to provide ESD protection. IEEE Transactions Electron DeviceLetters,2001,37(7):467-469
    [2.24] Janssens J. Deep submicron CMOS cellular receiver front-ends. Ph. D thesis,K. U. Leuvens, Belgium, July,2001
    [2.25] Leroux P, Janssens J, and Steyaert M. A0.8dB NF ESD-protected9mWCMOS LNA. Proceedings of the IEEE International Solid State CircuitsConference,2001,410-411
    [2.26] Leroux P and Steyaert M. A high performance5.25GHz LNA with an on-chipinductor to provide ESD protection. IEEE Electron Device Letters,2001,37(5):467-469
    [2.27] Leroux P and Steyaert M. LNA-ESD Co-design for fully integrated CMOSwireless receivers. Dordecht, The Netherlands: Springer,2005
    [2.28] Hynoven S, Joshi S, and Rosenbaum E. Comprehensive ESD protection for RFinputs. Proceedings of the Electrical Overstress/Electrostatic Discharge(EOS/ESD) Symposium,2003,188-194
    [2.29] Hynoven S, Joshi S, and Rosenbaum E. Cancellation technique to provide ESDprotection for multi-GHz RF inputs. IEEE Transactions Electron DeviceLetters,2003,39(3):284-286
    [2.30] Hynoven S and Rosenbaum E. Diode-based tuned ESD protection for5.25GHz CMOS LNAs. Proceedings of the Electrical Overstress/ElectrostaticDischarge (EOS/ESD) Symposium,2003,188-194
    [2.31] Ker M D and Lee C M. ESD protection design for GHz RF CMOS LNA withnovel impedance isolation technique. Proceedings of the ElectricalOverstress/Electrostatic Discharge (EOS/ESD) Symposium,2003,204-213
    [3.1] Duvvury C. ESD On-Chip Protection in Advanced Technologies. Tutorial inEOS/ESD symposium.2003
    [3.2] Chatterjee A and Polgreen T. A Low-Voltage Triggering SCR for On-Chip ESDProtection at Output and Input Pads. IEEE Electron Device Letters,1999,12(1):21-22
    [3.3] Mergens M P J, Russ C C, Verhaege K G, et al. Speed OptimizedDiode-Triggered SCR (DTSCR) for RF ESD Protection of Ultra-Sensitive ICNodes in Advanced Technologies. IEEE Transactions on Device and MaterialsReliability,2005,5(3):532-542
    [3.4] Vashchenko V A, Concannon A, Beek M T, et al. High Holding VoltageCascaded LVTSCR Structures for5.5-V Tolerant ESD Protection Clamps.IEEE Transactions on Device and Materials Reliability,2004,4(2):273-280
    [3.5] Chatterjee A and Polgreen T. A Low-voltage Triggering SCR for On-chip ESDProtection at Output and Input Pads. IEEE Electron Device Letters,1991,12(1):21-22
    [3.6] Zhou P, Hajjar J J, Righter A W, et al. Modeling Snapback of LVTSCRDevices for ESD Circuit Simulation Using Advanced BJT and MOS Models.EOS/ESD Symposium,2007,3A.3-1-3A.3-10
    [3.7] Concannon A, Vashchenko V A, Beek M T, et al. A Device Level NegativeFeedback in the Emitter Line of SCR Structures as a Method to RealizeLatch-up Free ESD Protection. IEEE41st Annual International ReliabilityPhysics Symposium,2003:105-111
    [3.8] ATLAS user’s manual. Silvaco International, Santa Clara, USA,2010
    [3.9]叶良修著.半导体物理学.北京:高等教育出版社,2007
    [3.10] Diaz C H, Kang S M, and Duvvury C. Simulation of Electrical OverstressThermal Failures in Integrated Circuits. IEEE Transactions on Electron Device,1994,41(3):359-366
    [3.11] Barth J E, Verhaege K, Henry L G, et al. TLP Calibration, Correlation,Standards, and New Techniques. IEEE Transactions on Electronics PackagingManufacturing,2001,24(2):99-108
    [3.12] Zhu Z W and Hao Y. A Characterization Simulation of a deep Sub-MicronGGNMOSFET under TLP Stress. Journal of Semiconductors,2005,26(10):1968-1974
    [3.13] Zhu Z W, Hao Y, Ma X H, et al. Investigation of Snapback Stress InducedGate Oxide Defect for NMOSFET’s in90nm Technology. Acta Physica Sinica,2007,56(2):1075-1081
    [3.14] Maloney T and Khurana N. Transmission Line Pulsing Techniques for CircuitModeling of ESD Phenomena. EOS/ESD Symposium Proceedings,1985:49
    [3.15] Lee J C, Hoque M A, Croft G D, et al. A Method for Determining aTransmission Line Pulse Shape that Produces Equivalent Results to HumanBody Model Testing Methods. EOS/ESD Symposium Proceedings,2000:97-104
    [3.16] Salman A A, Gauthier R, Putnam C, et al. ESD-Induced Oxide Breakdown onSelf-Protecting GG-nMOSFET in0.1-μm CMOS Technology. IEEETransactions on Device and Materials Reliability,2003,3(3):79-84
    [3.17] Rivenc J, Garcia J V, Matossian P, et al. An Overview of the Technical PolicyDeveloped by Renault to Manage ESD Risks in Airbags. Industry ApplicationsConference,2004,1294-1301
    [3.18] Sluis O V, Silfhout R B R, Engelen R A B, et al. A Numerical Method forEfficient Failure Modeling of Three-Dimensional Bond Pad Structures.Electronic Components and Technology Conference,2007,235-241
    [3.19] Hsu C T, Chen S C, Chen Y H, et al. Cumulative Electrostatic DischargeInduced Degradation of Power-Rail ESD Clamp Device in High-VoltageCMOS/DMOS Technologies. IEEE,2008,49-52
    [3.20] Salamero C, Nolhier N, Bafleur M, et al. Efficient TCAD Methodology forESD Failure Current Prediction of Smart Power ESD Protection. PowerSemiconductor Devices&IC’s,2005,115-118
    [3.21] Reggiani S, Gnani E, Rudan M, et al. Experimental Extraction of the ElectronImpact-Ionization Coefficient at Large Operating Temperatures. ElectronDevice Meeting,2004,407-410
    [3.22] Vashchenko V A, Lindorfer P, and Hopper P. Implementation of High VTTurn-on in Low-Voltage SCR Devices. Electrical Overstress/ElectrostaticDischarge Symposium,2005,1-6
    [3.23] Ker M D and Hsu K C. Native-NMOS-Triggered SCR with Faster Turn-onSpeed for Effective ESD Protection in a0.13-μm CMOS Process. IEEETransactions on Device and Materials Reliability,2005,5(3):543-554
    [3.24] Shan Y, He J, and Hu B. PLDD/NHALO-Assisted Low-Trigger SCR forHigh-Voltage Tolerant ESD Protection in Foundry CMOS Process withoutExtra Mask. Electronics Letters,2009,45(1):40-42
    [4.1] Wang A Z, Feng H G, Zhan R Y, et al. ESD Protection Design for RFIntegrated Circuits: New Challenges. IEEE Custom Integrated CircuitsConference,2002,22(1):411-418
    [4.2] Concannon A, Vashchenko V A, Beek M T, et al. A Device Level NegativeFeedback in the Emitter Line of SCR Structures as a Method to RealizeLatch-up Free ESD Protection. Reliability Physics Symposium Proceeding,2003:105-111
    [4.3] Mergens M P J, Russ C C, Verhaege K G, et al. Speed OptimizedDiode-Triggered SCR(DTSCR) for RF ESD Protection of Ultra-Sensitive ICNodes in Advanced Technologies. IEEE Transactions on Device and MaterialsReliability,2005,5(3):532-542
    [4.4] Arora N. MOSFET Models for VLSI Circuit Simulation: Theory and Practice.Springer-Verlag, Wien New York,1993:54
    [4.5] Wang A Z H, Feng H G, Zhan R Y, et al. A Review on RF ESD ProtectionDesign. IEEE Transactions on Electron Devices,2005,52(7):1304-1311
    [4.6] Ker M D and Kuo B J. ESD Protection Design for Broadband RF Circuits withDecreasing-Size Distributed Protection Scheme.2004IEEE Radio FrequencyIntegrated Circuits Symposium,2004:383-386
    [4.7] Wang X, Fan S Q, Zhao H, et al. Whole-Chip ESD Protection Design for RFand AMS ICs. Tsinghua Science and Technology,2010,15(3):265-274
    [4.8] Brennan C J, Chang S, Woo M, et al. Implementation of Diode and BipolarTriggered SCRs for CDM Robust ESD Protection in90nm CMOS ASICs.Microelectronics Reliability,2007,47:1030-1035
    [4.9] Ng K K and Lynch W T. The Impact of Intrinsic Series Resistance onMOSFET Scaling. IEEE trans. Electron Device,1987,34(3):503-511
    [4.10] Jiao C and Yu Z P. A Robust Novel Technique for SPICE Simulation of ESDSnapback Characteristic. Solid-State and Integrated Circuit Technology,2006,1367-1369
    [4.11] Richier C, Salome P, Mabboux G, et al. Investigations on Different ESDProtection Strategies Devoted to3.3V RF Applications (2GHz) in a0.18-μmCMOS Process. Proceedings of the Electrical Overstress/ElectrostaticDischarge (EOS/ESD) Symposium,2000,251-259
    [4.12] Worley E R and Bakulin A. Optimization of Input Protection for High SpeedApplications. Proceedings of the Electrical Overstress/Electrostatic Discharge(EOS/ESD) Symposium,2002,62-72.
    [4.13] Voldman S. ESD Protection and RF Design. Tutorial Notes of the ElectricalOverstress/Electrostatic Discharge (EOS/ESD) Symposium,2001
    [4.14] Richier C, Salome P, Mabboux G, et al. Investigations on Different ESDProtection Strategies Devoted to3.3V RF Applications (2GHz) in a0.18-μmCMOS Process. Proceedings of the Electrical Overstress/ElectrostaticDischarge (EOS/ESD) Symposium,2000,251-259
    [4.15] Ker M D, Lo W Y, Lee C M, et al. ESD Protection Design for900MHz RFReceiver with8kV HBM ESD Robustness. Proceedings of the IEEE RadioFrequency Integrated Circuit (RFIC) Symposium,2002,427-430.
    [4.16] Lee C M and Ker M D. Investigation of RF Performance of Diodes for ESDProtection in GHz RF Circuits. Proceedings of the Taiwan ElectrostaticDischarge Conference (T-ESDC),2002,45-50.
    [4.17] Ginzton E, Hewlett W R, Jasberg J H, et al. Distributed Amplification.Proceedings of the IRE,1948,956-969.
    [4.18] Sarma D G. On Distributed Amplification. Proceedings of the Institute ofElectrical Engineering,1955,102(5):689-697.
    [4.19] Majidi A R, Nishimoto C K, Riaziat M, et al. A5-100GHz InP CoplanarWaveguide MMIC Distributed Amplifier. IEEE Transactions on MicrowaveTheory and Techniques,1990,38(12):1986-1994.
    [4.20] Sullivan P J, Xavier B A, and Ku W H. An Integrated CMOS DistributedAmplifier Utilizing Packaging Inductance. IEEE Transactions on MicrowaveTheory and Techniques,1997,45(10):1969-1977.
    [4.21] Hynoven S, Joshi S, and Rosenbaum E. Comprehensive ESD Protection for RFInputs. Proceedings of the Electrical Overstress/Electrostatic Discharge(EOS/ESD) Symposium,2003,188-194.
    [4.22] Hynoven S, Joshi S, and Rosenbaum E. Cancellation Technique to ProvideESD Protection for Multi-GHz RF Inputs. IEEE Transactions of ElectronDevice Letters,2003,39(3):284-286.
    [4.23] Vashchenko V A, Scholz M, Jansen P, et al. Turn-Off Characteristics of theCMOS Snapback ESD Protection Devices–New Insights and Its Implications.EOS/ESD Symposium,2006,45, IB.2-1-IB.2-7
    [4.24] Yeo K S, Kong Z H, Ma J G, et al. ESD Robust and Area-EfficientCircle-Type Layout Design ofr CMOS Output Buffers. Journal ofElectrostatics,2004,61:189-196
    [4.25] Lee J H, Wu Y H, Peng K R, et al. The Embedded SCR NMOS and LowCapacitance ESD Protection Device for Self-protection Scheme and RFApplication. IEEE Custom Integrated Circuits Conference,2002:93-96
    [5.1] Ker M D and Lin K H. Design on ESD protection scheme for IC withpower-down-mode operation. IEEE Journal of Solid-State Circuits,39(8),2004:1379-1382
    [5.2] Ito C, Banerjee K, and Dutton R W. Analysis and Design of Distributed ESDProtection Circuit for High-Speed Mixed-Signal and RF ICs. IEEETransactions on Electron Devices,2002,49(8):1444-1454
    [5.3] Ker M D and Chang H H. How to safely apply the LVTSCR for CMOSwhole-chip ESD protection without being accidentally triggered on. Journal ofElectrostatics,47(4),1999:215-248
    [5.4] Huang B J, Wang C H, Chen C C, et al. Design and Analysis for a60-GHzLow-Noise Amplifier with RF ESD Protection. IEEE Transactions onMicrowave Theory and Techniques,57(2),2009:298-305
    [5.5] Raczkowski K, Thijs S, Tseng J C, et al.60GHz Low Noise Amplifiers with1kV CDM Protection in40nm LP CMOS. Silicon Monolithic IntegratedCircuits in RF Systems,2012,9-12
    [5.6] Lin C Y, Chu L W, and Ker M D. Design and Implementation of ConfigurableESD Protection Cell for60-GHz RF Circuits in a65-nm CMOS Process.Microelectronics Reliability,2011,51:1315-1324
    [5.7] Lin C Y, Ker M D, and Hsiao Y W. Design of Differential Low-NoiseAmplifier with Cross-Coupled-SCR ESD Protection Scheme. MicroelectronicsReliability,2010,50:831-838
    [5.8] Wang X, Guan X K, Fan S Q, et al. ESD-Protected Power Amplifier Design inCMOS for Highly Reliable RF ICs. IEEE Transactions on IndustrialElectronics,2011,58(7):2736-2743
    [5.9] Vassilev V, Thijs S, Segura P L, et al. ESD-RF co-design methodology for thestate of the art RF-CMOS blocks. Microelectronics Reliability,2005,45:255-268
    [5.10] Romanescu A, Ferrari P, Arnould J D, et al. Modeling a SCR-based ProtectionStructure for RF-ESD Co-Design Simulations. Microwave Symposium Digest,2011,1-4
    [5.11] Ker M D and Kuo B J. ESD Protection Design for Broadband RF Circuits withDecreasing-Size Distributed Protection Scheme.2004IEEE Radio FrequencyIntegrated Circuits Symposium,2004:383-386
    [5.12] Feng H G, Chen G, Zhan R Y, et al. A Mixed-mode ESD Protection CircuitSimulation-Design Methodology. IEEE Journal of Solid-State Circuits,38(6),2003:995-1006
    [5.13] Liu J, Lin L, Wang X, et al. Tunable Low-Voltage Dual-Directional ESDProtection for RFICs. Radio and Wireless Symposium,2011,279-282
    [5.14] Jin H, Dong S R, Miao M, et al. Whole Chip ESD Protection for2.4GHz LNA.Electron Devices and Solid-State Circuits,2011,1-2
    [5.15] Lee T H. The Design of CMOS Radio-Frequency Integrated Circuits. NewYork: Cambridge University Press,1998:294
    [5.16] Zhang X Y, Yu Z P, and Dutton R W. A Quasi-Mixed-Mode MOSFET Modelfor Simulation and Prediction of Substrate Resistance under ESD Stress andLayout Variations. Simulation of Semiconductor Process and Device,1999,211-214
    [5.17] Sarro J D and Rosenbaum E. A Scalable SCR Compact Model for ESD CircuitSimulation. IEEE Transactions on Electron Devices,2010,57(12):3275-3286
    [5.18] Salerno R, Tiebout M, Paule H, et al. ESD-protected CMOS3-5GHzWideband LNA+PGA Design for UWB. Proceedings of ESSCIRC, Grenoble,France,2005,219-222
    [5.19] Streibl M, Zangl F, Esmark K, et al. High Abstraction Level PermutationalESD Concept Analysis. Microelectronics Reliability,2005,45:313-321
    [5.20] Lou L, Liou J J, Dong S, et al. Silicon Controlled Rectifier (SCR) CompactModeling Based on VBIC and Gummel-Poon Models. Solid-State Electronics,2009,53:195-203
    [5.21] Wang X, Fan S, Zhao H, et al. Whole-Chip ESD Protection Design for RF andAMS ICs. Tsinghua Science and Technology,2010,15(3):265-274
    [6.1] Opris I E. Bootstrapped Pad Protection Structure. IEEE Journal of Solid-StateCircuits,1998,33(2):300-301
    [6.2] Galal S and Razavi B. Broadband ESD Protection Circuits in CMOSTechnology. IEEE International Solid-State Circuits Conference,2003,38(12):2334-2340
    [6.3] Hyvonen S, Joshi S, and Rosenbaum E. Comprehensive ESD Protection for RFInputs. EOS/ESD Symposium,2003,1-7
    [6.4] Ker M D and Hsiao Y W. On-Chip ESD Protection Strategies for RF Circuitsin CMOS Technology. Solid-State and Integrated Circuit Technology,2006,1680-1683
    [6.5] Soldner W, Streibl M, Hodel U, et al. RF ESD Protection Strategies: Codesignvs. Low-C Protection. Microelectronics Reliability,2007,47:1008-1015
    [6.6] Glaser U, Schneider J, Streibl M, et al. Base Pushout Driven Snapback inParasitic Bipolar Devices between Different Power Domains. ReliabilityPhysics Symposium Proceedings,2004,387-392
    [6.7] Yeh C T and Ker M D. Study of Intrinsic Characteristics of ESD ProtectionDiodes for High-Speed I/O Applications. Microelectronics Reliability,2011, inpress

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700