1.25Gbps光接收机前置放大器设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会的发展,信息交换量与日俱增。近年来,以光波为载体、光纤为传输媒质的光纤通信异军突起,发展十分迅速,已成为信息高速公路的主体。光纤通信具有容量大、传输距离远、节省能源、抗干扰、抗辐射等诸多优点,开发具有自主知识产权、用于光纤传输的高速集成电路对我国的信息化建设具有重大意义。
     在用于光纤传输系统的几个功能电路中,构成光接收机前端放大电路的前置放大器是其中的一个关键电路。本课题的任务是采用HJTC0.18μm CMOS(3.3V器件,最小沟道长度为0.34μm)工艺实现适用于光纤传输系统国际同步数字体系的STM-8速率级(1.25Gbps)的前置放大器。
     作为光接收机的关键部分,前置放大器的性能在很大程度上决定了整个光接收机的性能。在高速光纤传输系统中,广泛采用跨阻前置放大器。本文采用三级反相放大器级联的跨阻放大器作为前置放大器的核心部分。利用SPICE仿真软件对前置放大器进行模拟,仿真结果显示:等效输入噪声电流谱密度为22.122pA/√Hz@940MHz,输入为2.51μA时,等效输入噪声电流为0.21μA ,灵敏度为-26dBm ,跨阻增益达到了65dB? ,带宽为976MHz,差分输出相位差为180°。
     整个前置放大器工作电压3.3V,包括DC-DC模块、跨阻放大器、自动增益控制、单端-双端转换等四个主要模块。为适应光纤传输信号的大动态范围需要,采用自动增益控制电路控制跨阻放大器的反馈电阻,以实现增益可调的形式来有效控制输出信号范围;单端-双端转换将跨阻放大器的单端输出转换为差动输出,以方便与后级的主放大器连接。最后,完成了前置放大器的版图设计并提取了寄生参数,进行了后仿真。仿真结果与前仿真符合较好,很好地完成了电流到电压的转换,信号的放大和差动输出功能。
With the rapid development of telecommunication networks, computer networks and Internet, it is urgent to build information super-highway. Optic-fiber communication systems are the principal parts of information super-highway for its merits such as great capacity, long transmit distance, economizing energy source, anti interference and anti radiation etc. Thus, it is very important to design high speed integrated circuits for optical transmission systems with independent property.
     In the building blocks of an optical transmission system, the pre-amplifier is one of the critical parts. The task of this project is to design a pre-amplifier for SDH STM-8(1.25Gbps) optical receiver using HJTC0.18μm(the device power supply is 3.3V, and the smallest effective channel length is 0.34μm) CMOS technology.
     The performance of pre-amplifier has great effect on the performance of optical receiver. Transimpedance pre-amplifiers is widely used in the high speed optical transmission systems. In this design, the transimpedance amplifier is configured on three identical stages as the core circuit of the pre-amplifier. The simulated results are presented finally with the help of SPICE software tool, and that show the performance of the pre-amplifier, equivalent input noise current density of 22.122 pA/√Hz @940MHz, equivalent input noise current is 0.21μA as the input signal current of 2.51μA, and the sensitivity is -26dBm, transimpedance of 65 dB?, bandwidth of 976MHz, and the differential output phase is different of 180o.
     The pre-amplifier plays its best performance when power supply is 3.3V. It includes these modules: DC-DC block, transimpedance amplifier, Automatic Gain Controller, Single to differential conversion circuits etc. In order to meet the requirement of optical communication single which have a large dynamic range, we adopte the AGC circuit to control the feedback resistance of the trans-impedance that regulate the gain of the transimpedance. That can control the output amplitude. Single to differential conversion circuits convert the single output of the transimpedance to differential output. That can easily connect the post-amplifier. In this paper, the design of the whole layout is finished, and the layout parameter is extracted. The validity of this CMOS pre-amplifier circuit is proved by the results of simulation. Current to voltage conversion, signal amplifying and differential output are realized very well.
引文
1纪越峰,赵荣华,顾畹仪,李国瑞.光纤数字通信实用基础.科学文献技术出版社,2002:7~12
    2赵梓森等.中国通信学会主编.光纤通信工程(修订本).人民邮电出版社,2001:4~8
    3王廷尧等编著.光通信设备基础.天津科学技术出版社,2003:7~10
    4王志功.“光纤通信系统超高速集成电路计”中国科学基金,2000年第三期,pp.161~166
    5 Anders K. Petersen, Ty Yoon, Freddie Williams, Jr. Martin R. Sandor. Front-end CMOS Chipset for 10Gb/s Communication. 2002 IEEE Radio Frequency Integrated Circuits Symposium , pp.93~96
    6 C.N. Gupta, J.B. Evans, G.J. Minden. Reconfigurable ATM Transmitter/receiver Implementation. Electronics Letters. 1993,29(24): 2139~2140
    7 Hai Tran, Florin Pera, Douglas S. Dorin Viorel, Sorin P. Voinigescu. 6-k/spl Omega/ 43-Gb/s differential transimpedance-limiting amplifier with auto-zero feedback and high dynamic range. Solid-State Circuits. 2004,39(10): 1680~1689
    8 R.G. Meyer, R.A. Blausehild. A Wide-Band Low Noise Monolithic Transimpedance Amplifier. IEEE. Solid-State Circuits. 1986, 21(4): 5330~5331
    9 Chris T. Armijo and R. G. Meyer. A New Wide-Band Darlington Amplifier. IEEE J. Solid-State Circuits. 1989, 24(4): 1105~1109
    10 Eric Persson. Power Electronic Design and Layout Techniques for Improved Performance and Reduced EMI. Power Electronics in Transportation. 1994,10: 79~82
    11 Chrisanthopoulos, G. Souliotis, I. Haritantis. Differential Current amplifiers with improved dynamic range, Proc. of Electronics, Circuit, Systems (ICECS.99). 1999, 1: 501~504
    12 K. Phang, D.A. Johns. A CMOS optical preamplifier for wireless infrared communications. Circuits and Systems II. 1999,46(7): 852~859
    13 Behzad Razavi. A 622 Mb/s 4.5 pA/√Hz CMOS transimpedance amplifier [for optical receiver front-end]. Solid-State Circuits Conference, 2000. Digest of Technical Papers. ISSCC. 2000 IEEE International. 2000: 162~163, 453
    14 Sung Ming Park, Hoi-Jun Yoo. 1.25-Gbps regulated cascode CMOS transimpedance amplifier for Gigabit Ethernet applications. IEEE Journal of Solid-Stage Circuits. 2004,39(1): 112~121
    15 Sung Min Park, Hoi-Jun Yoo. 2.5 Gbit/s CMOS transimpedance amplifier for optical communication applications. Electronics Letters. 2003,39(2): 211~212
    16 Christian Kromer Gion Sialm, Thomas Morf Martin L. Schmatz Frank Ellinge Daniel Erni and Heinz J?ckel. A Low-Power 20-GHz 52-dB Transimpedance Amplifier in 80-nm CMOS. IEEE JOURNAL OF SOLID-STATE CIRCUITS. 2004, 39(6):885~894
    17王国全. 10Gbit/s GaAs跨阻前置放大器,电子器件. 2005, 28(2): 248~250
    18黄璐,冯军,王欢,盛志伟,王志功. 2.5Gb/s 0.35μm CMOS单片集成光接收机电路设计与实现.高技术通讯. 2005, 15(7): 49~52
    19金杰,冯军,王志功. 10Gb/s 0.18um CMOS光接收前置放大器.光通信技术:2003,12:44~46
    20敖育红,胡少六,郑兆青.光通信系统中前置跨阻放大器的研究和设计电子技术:2003,6:31~33
    21王志功.光纤通信集成电路设计.高等教育出版社. 2003:296~314
    22李履信,沈建华.光纤通信系统.机械工业出版社. 2003: 95~113
    23张明德,孙小菡.光纤通信原理与系统.东南大学出版社. 2003: 145~156
    24 T. Muoi. Receiver Design for High-Speed Optical-Fiber Systems. Lightwave Technology. 1984,2(3): 243~267
    25 Mark D. McDonald, Daniel J. Millicker, StevenW Nordblom. A Silicon Biploar Chipset for Fiber-Optical Application to 2.5Gb/s. Selected Areas in Communications, 1991,9(5): 664~672
    26 Reinhold Ludwig, Pavel Bretchko. RF Circuit Design Theory and Applications (影印版).科学出版社. 2002: 352~357, 620~630
    27孙强,周虚.光纤通信系统及其应用.北京交通大学出版社. 2004: 82~87
    28谢嘉奎宣月清冯军.电子线路线性部分(第四版).高等教育出版社.1999:148~151, 230~233
    29 Behzad Razavi. RF Microelectronics. Pearson Education, Inc. 1998: 166-206
    30 Behzad Razavi.模拟CMOS集成电路设计.陈贵灿,程军,张瑞智.西安交通大学出版社. 2003: 220~221, 176~178
    31 S. B. Alexander and SPIE“Optical Communication Receiver Design”The - 51 -Society of Photo-Optical Instrumentation Engineers, 1997:72~74
    32 T. Yoon and B. Jalali. 622 Mbit/s CMOS Limiting Amplifier with 40 dB Dynamic Range. Electronic Lett. 1996, 32:1920~1922
    33 Lee, Myunghee,“A quasi-monolithic optical receiver using a standard digital CMOS technology,”Ph.D. Thesis, School of Electrical and Computer Engineering, Georgia Institute of Technology, 1996:30~31
    34 D. J. H. Maclean,“Optical Line Systems”John Wiley & Sons, 1996:42~43
    35 www.maxim-ic.com.cn/ max3657:9
    36 Harry T. Weston, Mihai Banu, San-Chin Fang, Philip W. Diodato, Thomas D. Stanik, Paul A. Wilford, Frank M. Hsu. A Submicrometer NMOS Multiplexer-Demultiplexer Chip Set for 622.08-Mb/s SONET Applications. Solid-State Circuits. 1992,27(2): 1041~1049
    37 M. Ingels, M. Steyaert. A 1 Gb/s, 0.7um CMOS Optical Receiver with Full Rail-to-Rail Output Swing. IEEE J. of Solid-State Circuits. 1999, 34: 971~977
    38 Sung Min Park, Member, IEEE, Jaeseo Lee, and Hoi-Jun Yoo, Member, IEEE. 1-Gb/s 80-dB Fully Differential CMOS Transimpedance Amplifier in Multichip on Oxide Technology for Optical Interconnects. IEEE JOURNAL OF SOLID-STATE CIRCUITS. 2004, 39(6): 971~974
    39 L. Bouzerara , M. B. Guermaz, H. Escid, and M. T. Belaroussi. High Bandwidth and Low Noise Optimized Transimpedance Amplifier in 0.8 um CMOS Techno-logy. PROC. 24th INTERNATIONAL CONFERENCE ON MICROELEC-TRONICS (MIEL 2004). NIS, SERBIA AND MONTENEGRO, 2004:555~558
    40 Kerstin Schneider and Horst Zimmermann, Senior Member, IEEE. Three-Stage Burst-Mode Transimpedance Amplifier in Deep-Sub-um CMOS Technology. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAP-ERS, 2006, 53(7):1458~1467
    41 Carolien Hermans, Student Member, IEEE, and Michiel S. J. Steyaert, Fellow, IEEE. A High-Speed 850-nm Optical Receiver Front-End in 0.18-um CMOS. IEEE JOURNAL OF SOLID-STATE CIRCUITS. 2006, 41(7):1606~1614
    42童诗白,华成英.模拟电子技术基础.第三版.高等教出版社, 2001:323~325
    43毕涵,李征帆,施丹. 5.5GHz 23dB CMOS限副放大器的电路设计.电子学与计算机. 2004,21(2): 102~104
    44田俊,王志功,梁帮立,胡艳,章丽,熊明珍,施毅,郑有抖. 1.25Gbs低功耗CMOS光接收机限幅放大器.固体电子学研究与进展. 2004, 24(3): 313~317
    45 Hu Y, Wang Z G, Feng J. 5Gbs 0.25um CMOS limiting amplifier. Chinese Journal of Semiconductors, 2003,24(12): 1250~1254
    46毕涵,李征帆,赵霞.一种5.5GHz 30-dB低成本CMOS宽带限幅放大器.电子学. 2003,33(5): 395~398,402
    47 Hara S, Tokumitsu T, Tanaka T. Broadband monolithic microwave active inductor and its application tominiaturized wide-band amplifiers. IEEE Trans Microwave TheoryTech. 1988, 36(12): 1920~1924
    48施丹,李征帆,毕涵.一种4GHz、23dB CMOS宽带限幅放大器的设计与实现.电子学与计算机. 2005,22(4): 53~56
    49 J.D. Bruce, H.W. Li, M.J. Dallabetta, R.J. Baker. Analog Layout Using ALAS. IEEE Journal of Solid-State Circuits. 1996, 31(2): 271~274
    50 Eric Persson. Power Electronic Design and Layout Techniques for Improved Performance and Reduced EMI. Power Electronics in Transportation. 1994,10: 79~82
    51 D. B. Estreich and R. W. Dutton. Modeling Latch-Up in CMOS Integrated Circuits and Systems. IEEE Trans. CAD, Vol.CAD-1, Oct.1982:157~162
    52 David A.Johns, Ken Martin.模拟集成电路设计.曾朝阳,赵阳,方顺等译.机械工业出版社, 2005: 81~83
    53 Christopher Saint,Judy Saint. IC MaskDesign:Essential Layout Techniques.The McGraw-Hill Companies,Inc.2002:96~121
    54 R. W. Brodersen, P. R. Gray, and D. A. Hodges. MOS Switched-Capacitor Filters. Proc. IEEE. 1979, 67:61~75
    55卢宝骅.双极模拟IC版图与线路图同一性验证.电子技术. 2002,30(4): 46~48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700