覆冰输电线路脱冰动力响应及机械式除冰方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在特定的温度和风等自然条件下,输电线上的覆冰会融化脱落,从而引起电线的上下振动和横向摆动。输电线覆冰脱落可能引起闪络、跳闸、烧伤电线等电气事故,甚至导致金具损坏、断线、杆塔折损、倒塔等机械事故,严重影响输电线路的安全运行。因此对输电线路脱冰动力响应问题及其除冰技术的研究具有重要的理论意义和工程实用价值。
     本论文首先研究并获得了利用ABAQUS有限元软件模拟输电线路覆冰脱落动力响应的数值模拟方法。通过将桁架单元设置为材料不可压缩,得到模拟覆冰导线的索单元,进一步利用等效密度和等效惯性加速度的方法模拟输电线路的覆冰荷载、风荷载以及导地线的脱冰荷载等,利用文献中脱冰跳跃模拟实验结果验证了方法的正确性。
     以某500kV同塔双回输电线路为研究对象,采用数值方法对塔线体系在覆冰、脱冰以及风荷载组合工况下的安全性进行全面地研究。首先建立包括输电杆塔、导地线、绝缘子串和间隔棒等金具在内的塔线耦合体系精细有限元模型。数值计算塔线体系覆冰后的应力分布,模拟得到覆冰脱落后输电杆塔和导地线的动力响应,进而分析研究塔线体系的安全性。结果表明,所研究线路在覆冰和脱冰跳跃过程中塔线体系是安全的。此外,将塔线耦合体系中导地线脱冰后的动力响应计算结果与不考虑杆塔变形的导地线模型模拟结果进行比较,得出杆塔变形对导地线脱冰动力响应影响很小的结论。
     利用导线模型模拟了不同参数条件和脱冰工况下导线的脱冰动力响应,得到耐张段档数、脱冰率、档距、覆冰厚度、风速、高差、绝缘子串长度、导线型号和子导线根数等因素对导线脱冰后最大冰跳高度和横向摆幅的影响规律。结果表明,最大冰跳高度和横向摆幅均随档距和脱冰率的增加而增大,而耐张段档数、高差、绝缘子串长度和子导线根数等对其值影响较小。基于数值模拟结果,得到导线脱冰后最大冰跳高度与其脱冰前后静止状态下弧垂差之间的线性关系,以及风荷载作用下导线脱冰后最大横向摆幅与其脱冰前后平衡状态下风偏改变量之间的线性关系,进而给出连续档覆冰导线最大冰跳高度和横向摆幅的简化计算公式。利用该简化计算公式可以简化高压输电线路导线之间以及导地线之间绝缘间隙的设计。
     研究了覆冰导线机械式除冰过程的数值模拟方法。用相互平行且共用节点的两层单元分别模拟导线和覆冰,实现导线覆冰状态的模拟。覆冰采用多孔弹性模型,考虑温度和孔隙率对其力学行为的影响,并引入拉伸破坏准则判断覆冰的失效。编写了ABAQUS有限元软件的用户材料子程序VUMAT,利用VUMAT定义覆冰的本构模型和删除破坏单元。模拟研究了不同孔隙率、环境温度、耐张段档数、档距、覆冰厚度、冲击载荷大小等条件下覆冰单导线的冲击除冰过程。模拟结果表明,覆冰孔隙率较小时可将其简化为弹性体,孔隙率较大时采用多孔弹性模型与实际更接近。温度变化对除冰效果的影响很小,而冲击载荷幅值、档距和覆冰厚度等对除冰效果的影响明显,在设计机械式冲击除冰装置时应予以考虑。
     提出一种覆冰四分裂导线机械式除冰装置设计原理,该装置可以替代冰区分裂导线的相内间隔棒,具有经济、安全等特点。实现该机械式除冰装置除冰过程的数值模拟方法,模拟研究了该装置的可行性和除冰效能。讨论了除冰装置张开位移、除冰装置安装个数、档距、覆冰厚度和耐张段档数等对除冰效果的影响规律,所得结果可以为四分裂导线机械式除冰装置的设计提供参考。
Ice-shedding from transmission lines under certain conditions may cause verticaljump and horizontal swing of the lines, and in turn may lead to flashover, trip, burningof conductors if the clearance between any two different phase conductors and/orbetween a conductor and a ground wire during vibration is smaller than the tolerableinsulation distance. It also may cause some mechanical problems such as rupture ofconductor and hardware fittings, failure of tower bolt or even collapse of the tower,which severely jeopardizes the safe operation of the high voltage transmission line.Therefore, the studies on the dynamic responses of transmission lines in ice zones afterice-shedding and de-icing of iced conductor behave great significance on theoretical andengineering practice.
     Firstly, the numerical simulation method of ice-shedding of iced conductor isinvestigated by finite software ABAQUS. Through setting the material to be ‘NoCompression’, a cable element with perfectly flexible in bending and torsion, which isused to simulate the conductor, is obtained. The static load generated by the ice accretedon the line and the dynamic loads induced by the ice-shedding from the electric lines aresimulated by means of the modification of the density and the gravity acceleration ofthe lines. The ice-shedding of an ice-shedding simulation test is numerically analyzed todemonstrate the efficiency of the presented method.
     The dynamic responses of typical section of500kV transmission tower-linesystem after ice-shedding are numerically investigated comprehensively in this thesis.The finite element models, including transmission towers, conductors, ground wires,insulators and spacers, of the transmission tower-line system are created inABAQUS/CAE. The stress distribution of the tower-line system under ice load and thedynamic responses of towers and electric lines after ice-shedding are obtained. Theresults indicate that the transmission tower-line system is safety. Moreover, throughcomparing the results of tower-line system with transmission line model, it is shownthat the deformation of tower have little effect on the jump height or horizontalamplitude of conductor after ice-shedding.
     The dynamic responses of transmission line with different structure parameters indifferent ice-shedding conditions are then numerically simulated, and the effects ofvarious factors, including number of spans, ice-shedding rate, span length, ice thickness, wind speeds, elevation difference, suspension length, conductor type and number ofsub-conductors on the maximum jump height and horizontal amplitude of the lines afterice-shedding are investigated. It is shown that the maximum jump height and horizontalamplitude of the lines after ice-shedding go up with the increases of the span length andice-shedding rate, and change very small with number of spans, elevation difference,suspension length and number of sub-conductors. A linear relation between themaximum jump height of a line after ice-shedding and the sag difference between twostatic states before and after ice-shedding, and a linear relation between the maximumhorizontal amplitude of the line after ice-shedding and the wind swing difference beforeand after ice-shedding are obtained according to the analysis on the numerical results.Based on the two linear relations, the simplified formulas for the jump height andhorizontal amplitude of electric lines with odd number of multi-spans after ice-sheddingare suggested for the design of the transmission lines in ice zones.
     The numerical simulation method of mechanical de-icing is investigated, andaccreted ice on the electric line is modeled as a separate pipe-beam element in parallelto each cable element by means of common nodes. The porous elastic constitutivemodels, in which the temperature and porosity are taken into account, are used todescribe the behavior of the ice accreted on conductors, and the tension failure criterionis employed to identify broken ice in the simulation of de-icing process. The usermaterial subroutine VUMAT of ABAQUS software is developed to describe theconstitutive relation of the ice and delete the broken elements. A large number ofde-icing scenarios are studied with the variables including ice porosity, temperature,number of spans, span length, ice thickness and different amplitudes of shock-loads,based on which the effects of adjacent span and insulator strings on the rate of de-icingare analyzed and discussed. The results indicate that the constitutive behavior of glazecan be described by elastic model because its porosity is very small and has small effecton its mechanical behavior, and the behavior of hard rime should be described by elasticporous medium model. The process of de-icing after loading is affected obviously by allthe above parameters except temperature. The obtained numerical results provide areference for the design of de-icing technique in practice.
     A mechanical de-icing device to remove the ice on quad bundle conductor isproposed. The de-icing device can be used to replace some of the spacers or all thespacers in a span, and it has the advantages of economy, safety, etc. The de-icingprocesses of iced quad-bundled conductor with the de-icing device are numerically studied with the variables including opening displacement of the de-icing device, thenumber of installed de-icing devices on the line, span length, ice thickness and numberof spans, based on which the potential of the new mechanical de-icing device isdemonstrated. The obtained numerical results provide a reference for the design andrealization of the mechanical de-icing device.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2001.
    [2]苑吉河,蒋兴良,易辉等.输电线路导线覆冰的国内外研究现状[J].高压电技术,2004,30(1):6-9.
    [3]李再华,白晓民,周子冠等.电网覆冰防治方法和研究进展[J].电网技术,2008,32(4):7-14.
    [4]肖正直.特高压输电塔风振响应及等效风载荷研究[D].重庆大学博士论文,2009.
    [5]刘和云.架空导线覆冰防冰的理论与应用[M].北京:中国铁道出版社,2001.
    [6]布琴斯基B.E.电线积冰图[M].北京:科学出版社,1957.
    [7]王守礼.影响电线覆冰因素的研究与分析[J].电网技术,1994,18(4):18-24.
    [8]赵若桥.110KV霍隰线覆冰事故的分析[J].电力学报,2001,16(2):94-96.
    [9]蒋兴良.输电线路导线覆冰机理和三峡地区覆冰规律及影响因素研究[D].重庆大学博士论文,1997
    [10]廖祥林.导线覆冰性质分类和密度浅析[J].电力建设,1994,15(9):17-25.
    [11]李庆峰,范峥,吴穹等.全国输电线路覆冰情况调研及事故分析[J].电网技术,2008,32(9):33-36.
    [12]蒋兴良,马俊,王少华等.输电线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30.
    [13]王守礼.云南高海拔地区电线覆冰问题研究[M].昆明:云南科技出版社出版,1996.
    [14]吴向东,徐天勇,艾智平.500kV线路高寒山区绝缘子覆冰故障[J].高电压技术,2002,28(7):55-57.
    [15]梁文政.架空电力线路抗冰(雪)害的设计与对策[J].电力设备,2008,9(12):19-22.
    [16] EPRI. Transmission Line Reference Book:115-138KV compact line design[M]. Palo Alto:Electric Power Research Institute,1978.
    [17] J. R. Stewart. Ice as an influence on compact line phase spacing[C]. Proceedings of IWAIS,Hanover, Mew Hampshire,1983:77-82.
    [18] V. T. Morgan, D. A. Swift. Jump height of overhead-line conductors after the sudden release ofice loads [J]. Proceedings IEE,1964,111(10):1736-1746.
    [19] A. Jamaleddlne. Weight-dropping simulation of ice-shedding effects on an overheadtransmission line model[C]. Proceedings of the7th IWAIS, Canada,1996:44-48.
    [20]陈勇,胡伟,王黎明等.覆冰导线脱冰跳跃特性研究[J].中国电机工程学报,2009,29(28):115-121.
    [21] A.Jamaleddine. Effects statiques et dynamigues du Delestage de la glace sur les lignesaeriennes de transport d energie electrique[D]. Universite de Montreal, Quebec, Canada,1994.
    [22] A.Jamaleddine, G.McClure, J.Rousselet, et al. Simulation of ice-shedding on electricaltransmission lines using ADINA [J]. Computers and Structures,1993,47:523-536.
    [23] M. Roshan Fekr, G. McClure. Numerical modeling of the dynamic response of ice shedding onelectrical transmission lines[C]. Proceedings of the7th IWAIS, Canada,1996:49-54.
    [24] M. Roshan Fekr, G. McClure. Numerical modeling of the dynamic response of overheadtransmission lines subjected to cable ice shedding[C]. Proceedings of International Symposiumon Cable Dynamics, Belgium,1995,10:53-60.
    [25] M. Roshan Fekr, G. McClure. Numerical modeling of the dynamic response of ice-shedding onelectric transmission lines [J]. Atmospheric Research,1998,46:1-11.
    [26]陈将,严波,陈科全.重冰区架空输电线脱冰振动的数值模拟研究[J].重庆大学学报(自然科学版),2007,30(专刊):46-48.
    [27] L. E. Kollar, M. Farzaneh, Vibration of bundled conductors following ice shedding[J]. IEEETrans. Power Delivery,2008,23(2):1097-1104.
    [28]候镭,王黎明,朱普轩等.特高压线路覆冰脱落跳跃的动力计算[J].中国电机工程学报,2008,28(6):1-6.
    [29]孟晓波,王黎明,侯镭等.特高压输电线路导线脱冰跳跃动态特性[J].清华大学学报(自然科学版),2010,50(10):1631-1636.
    [30] X.B. Meng, L.M. Wang, L. Hou, et al. Dynamic characteristic of ice-shedding on UHVoverhead transmission lines [J]. Cold Regions Sci. Tech.,2011,66:44-52.
    [31]李永平,苏攀,郑毅.架空导线覆冰及脱冰的数值模拟研究[J].水电能源科学,2010,28(12):133-135.
    [32]鲁元兵楼文娟李焕龙.输电导线不均匀脱冰的全过程模拟分析[J].振动与冲击,2010,29(9):47-50.
    [33]沈国辉,袁光辉,孙炳楠等.考虑脱冰速度效应的输电线路脱冰模拟[J].重庆大学学报,2010,33(9):132-138.
    [34]王昕,楼文娟.多跨输电线路脱冰动力响应研究[J].工程力学,2011,28(1):226-232.
    [35] G. McClure, M. Lapointe. Modeling the structural dynamic response of overhead transmissionlines [J]. Computers and Structures,2003,81:825-834.
    [36]尹鹏,李黎,张行.输电线路脱冰跳跃反应控制研究[J].电网和水力发电进展,2008,24(3):3-8.
    [37]李黎,夏正春,付国祥等.大跨越输电塔线在线路脱冰作用下的振动[J].振动与冲击,2008,27(9):32-34.
    [38]李雪,李宏男,黄连壮.高压输电线路覆冰倒塔非线性屈曲分析[J].振动与冲击,2009,28(5):111-114.
    [39]李正,杨靖波,韩军科等.2008年输电线路冰灾倒塔原因分析[J].电网技术,2009,33(2):31-35.
    [40]韩军科,杨靖波,杨风利等.电网冰灾典型线路段覆冰倒塔分析[J].电网与清洁能源,2010,26(3):31-35.
    [41]杨风利,杨靖波,付东杰等.塔线系统脱冰跳跃动力响应分析[J].振动工程学报,2010,23(1):86-93
    [42]杨风利,杨靖波,李正等.覆冰输电线路脱冰跳跃及抑制方法研究[J].振动与冲击,2010,29(5):20-25.
    [43]沈国辉,袁光辉,孙炳楠等.覆冰脱落对输电塔线体系的动力冲击作用研究[J].工程力学,2010,27(5):210-217.
    [44]晏致涛,李正良,汪之松.重冰区输电塔-线体系脱冰振动的数值模拟[J].工程力学,2010,27(1):209-227.
    [45]胡伟,陈勇,蔡炜等.1000kV交流同塔双回输电线路导线脱冰跳跃特性[J].高电压技术,2010,36(1):275-280.
    [46]易文渊.特高压输电塔线体系脱冰动力响应数值模拟研究[D].重庆大学硕士论文,2010.
    [47]程皓月.重冰区超高压输电塔线体系安全性研究[D].重庆大学硕士论文,2011
    [48] J.R.Huang, Theo G. Keith Jr., Kenneth J. De Witt. Efficient finite element method for aircraftdeicing problems[J]. J.Aircraft,1993,30(5).
    [49] C. A.Martin, J.C.Putt. Advanced pneumatic impulse ice protection system (PIIP) for aircraft [J].J.Aircraft,1991,28(4):714.
    [50] J.T.Hindel, N. A.Weisend. Low energy ice protection for helicopters [P]. D:9203021159.
    [51] P. Personne, J. F. Gayet. Ice accretion on wires and anti-icing induced by joule effect [J].Journal of applied meteorology,1988,27(2):101-114.
    [52]陈及时.掌握导线覆冰临界电流做好预防措施[J].中国电力,1997,30(10):51-52.
    [53]刘和云,周迪,付俊萍等.防止导线覆冰临界电流的传热研究[J].中国电力,2001,34(3):42-44.
    [54]郭应龙.输电导线覆冰试验研究:500kV大跨越导线舞动的治理与研究鉴定资料[R].1989,20-25.
    [55] J.C. Polhman, P.Landers. Present state-of-the-art of transmission line icing [J]. IEEE Trans.Power Apparatus Syst.,1982,101(8):2443–2450.
    [56] J.L. Laforte, M.A. Allaire, J.L.Laflamme. State-of-the-art on power line de-icing [J].Atmospheric Research,1998,46:143–158.
    [57]辛建波.电网冰害减灾关键技术的发展动向[J].2008,32(2):1-7.
    [58]祈俊慧.500kV输电线路短路融冰可行性研究[J].湖北电力,2005,29(A12):8-10.
    [59]李培国,高继法,李永军等.输电线路除冰技术与装置[J].电力设备,2002,3(2):85-86.
    [60] C. R. Sullivan,V. F. Petrenko, J. D. McCurdy, et al. Breaking the ice(transmission line icing)[J].IEEE Trans on Industry Applications,2003,9(5):49-54.
    [61] J. Brochu, F. Beauregard, J. Lemay, et al. Application of the interphase power controllertechnology for transmission line power flow control [J]. IEEE Transaction on Power Delivery,1997,12(2):888-894.
    [62] R. Cloutier, A. Bergeron, J.Brochu. On-load network de-icer specification for a largetransmission network [J]. IEEE Transaction on Power Delivery,2007,22(3):1947-1955.
    [63]供电技术报导[R].湘中供电局,1978.
    [64]导线自动融冰新装置鉴定材料[R].湖南省高压送变电维修公司,1980.
    [65]重覆冰区线路覆冰综合措施的研究[R].武汉高压研究所,1990.
    [66] J.W. Hall. Ice storm management on an electrical utility system[C]. Proceedings of the7thIWAIS, Canada,1996:225-230.
    [67] S. Montambault, Cote St, M. Louis. Preliminary results on the development of a teleoperatecompact trolley for live-line working[C]. Proceedings of IEEE9th International Conference onTransmission and Distribution Construction,2000:21-27.
    [68] I. Robert, L. Robert, et al. An investigation of power line de-icing by electro-impulse methods[J]. IEEE Trans on Power Delivery,1989,4(3):1855-1861.
    [69] M.Landry, R.Beauchemin, et al. De-icing EHV overhead transmission lines usingelectromagnetic forces generated by moderate short-circuit currents[C].9th InternationalConference on Transmission and Distribution Construction,2000:94-100.
    [70] Shirmohamadi, Manuchehr. De-icer for suspended overhead lines [P].2007, Patent CA2444216.
    [71] H.Roger. Means and method for removing extraneous matter like ice/snow an overheadline[P].2004, Patent US2004065458.
    [72] A.Nourai, R.M.Hayes. Power line ice-shedder [P].2003, U.S Patent6660934
    [73] J.L.Laforte, M.A.Allaire, C.Laforte. Demonstration of the feasibility of a new mechanicalmethod of cable de-icing[C]. Proc. of11th International Workshop on Atmospheric Icing ofStructures, Canada,2005:1–6.
    [74] A. Leblond, B. Lamarche, D. Bouchard, et al. Development of a portable de-icing device foroverhead ground wires[C]. Proceedings of the11th IWAIS, Canada,2005:399-404.
    [75] Jun Sawada. A mobile robot for inspection of power transmission lines [J]. IEEE Transactionson Power Delivery,1991,6(1):309-315.
    [76]吴功平,肖晓辉等.架空高压输电线自动爬行机器人的研制[J].中国机械工程,2006,17(3):237-240.
    [77]王超,魏世民,廖启征.高压输电线上除冰机器人的系统设计[J].机械工程与自动化,2010,(1):148-149.
    [78]谷山强,陈家宏,蔡炜等.输电线路激光除冰技术试验分析及工程应用设计[J].高电压技术,2009,35(9):2243-2249.
    [79]陈胜,张贵新,徐曙光等.电网中激光除冰技术分析[J].2011,51(1):47-52.
    [80] T.Kálmán, M.Farzaneh, G. McClure. Numerical analysis of the dynamic effects ofshock-load-induced ice shedding on overhead ground wires [J]. Computers and Structures,2007,85(7-8):375-384.
    [81] F.Mirshafiei. Modelling the dynamic response of overhead line conductors subjected toshock-induced ice shedding [D]. McGill University,2010.
    [82]陈继东,张予,刘晓虎.输电线路机械震动除冰装置仿真研究[J].电瓷避雷器,2009,(5):5-8.
    [83]张宏雁,陈科全,周松等.冲击载荷作用下导线脱冰过程数值模拟[J].重庆交通大学学报(自然科学版),2009,28(sup):362-365.
    [84]蒋兴良,张丽华.输电线路除冰防冰技术综述[J].高电压技术,1997,23(1):73-76.
    [85]武汉高压研究所.输电线路导线除冰综合研究[C].1990.
    [86]山霞.关于架空输电线除冰措施的研究[J].高电压技术,2006,32(4):25-27.
    [87]李成榕,吕玉珍,崔翔等.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(4):14-22.
    [88] B.Michel. Ice Mechanics [D]. Les Presses de I Universitie laval(Quebec), Canada,1978.
    [89] M.Eskandarian. Ice shedding from overhead electrical lines by mechanical breaking: A ductilemodel for viscoplastic behaviour of atmospheric ice [D]. University of Quebec,2005.
    [90] J.A.Richter-Menge. US research in ice mechanics:1987-1990[J].Cold region science andtechnology,1992,20:231-246.
    [91] I.Hawkes, M.Mellor. Deformation and fracture of ice under uniaxial stress [J].Journal ofGlaciology,1972,11(61):103–131.
    [92] J.Schwarz, Frederking, et al. Standardized testing methods for measuring mechanical propertiesof ice [J]. Cold Regions Science and Technology,1981,4:245–253.
    [93] E.M.Schulson, N.P.Canon. The effect of grain size on the compressive strength of ice [J]. IAHRIce Symposium,1984:109–117.
    [94] D. M.Cole. Strain-rate and grain-size effects in ice [J]. Journal of Glaciology,1987,33(155):274-280.
    [95] M.S.Wu, J.Niu. Micromechanical prediction of the compressive failure of ice: modeldevelopment [J]. Mechanics of Materials,1994,20:9–32.
    [96]周迪,黄素逸.覆冰导线风动脱冰研究[J].长沙电力学院学报(自然科学版),2002,17(2):54-56.
    [97] Druez.The adhesion of glaze and rime on aluminum electric conductors [J]. Transactions CSME,1979,5(4):215-220.
    [98] Phan. Adhesion of rime and glaze on conductors protected by various materials [J].Transactions CSME,1976,4(4):204-208.
    [99] Laforte. Adhesion of ice on aluminum conductor and crystal size in the surface layer[J].CRREL Special Report,1983:83-91.
    [100] J. Druez, D. D. Nguyeh, Y. Lavoie. Mechanical properties of atmospheric ice [J]. ColdRegions Science and Technology,1986,13:67–74.
    [101] J. Druez, J. L. Laforte, C.Tremblay. Experimental results on the tensile strength of atmosphericice[C]. The8th International Conference on Offshore Mechanics and Artic Engineering Hague,Netherlands,1989,405–410.
    [102] M. Kermani, M.Farzaneh, R.Gagnon. Bending strength and effective modulus of atmosphericice[J]. Cold Regions Science and Technology,2008,53:162–169.
    [103] M. Kermani, M.Farzaneh, R.Gagnon. Compressive strength and effective modulus ofatmospheric ice [J]. Cold Regions Science and Technology,2007,49:195–205.
    [104]沈国辉,袁光辉,邢月龙等.导线覆冰脱落的数值模拟和参数分析[J].振动与冲击,2012,31(5):55-59.
    [105]孟遂民,单鲁平等.输电线脱冰跳跃过程仿真研究[J].水电能源科学,2010,28(2):149-151.
    [106]沈国辉,徐晓斌,楼文娟等.导线覆冰脱冰有限元模拟方法的适用性分析[J].工程力学,2011,28(10):9-15.
    [107] GB50545-2010,110kV~750kV架空输电线路设计规范[S],2010.
    [108] GB50135-2006,高耸结构设计规范[S],2007.
    [109] GB50009-2001,建筑结构载荷规范[S].北京:中国建筑工业出版社,2002.
    [110]张相庭.结构风工程[M].北京:中国建筑工业出版社,2006.
    [111]邵天晓.架空送电线路的电线力学计算[M].北京:中国电力出版社,2003.
    [112] Y.M. Desai, N. Popplewell, A.H. Shah, et al. Geometric nonlinear static analysis of cablesupped structures [J]. Computers and Structures,1988,29(6):1001-1009.
    [113]刘小会.架空高压输电线路风偏数值模拟研究[D].重庆大学硕士学位论文,2007.
    [114] Bo Yan, Xuesong Lin, Wei Luo, et al. Numerical study on dynamic swing of suspensioninsulator in overhead transmission line under wind load [J]. IEEE Transactions on PowerDelivery,2010,25(1):248-260.
    [115] N. Barbieri, Honorate De Souaz Junior O, R. Barbieri. Dynamic analysis of transmission linecables Part II–damping estimation [J]. Mechanical Systems and Signal Processing,2004,18:659-669.
    [116] Hibbitt, Karlsson&Sorensen, Inc. ABAQUS User Subroutines Reference Manual, volumes,version6.4[M/OL],2003.
    [117]李黎,张行,尹鹏.大跨越输电线路脱冰跳跃反应的控制研究[J].振动与冲击,2008,27(10):61-64.
    [118] M.Farzaneh. Atmospheric icing of power networks [M]. Netherlands: Springer,2008.
    [119] H. Oertli. Oscillations de cables electriques aeriens apres la chute de surcharges [J]. Bull.Assoc. Suisse Elect.,1950,41:501.
    [120] K. Lips. Die Schnellhǒhe von Freileitungsseilen nach Abfallen von Zusatzlastcn [J]. Bull.Assoc. Suisse Elect,1952,43:62.
    [121] P. Van Dyke, D. Havard, A. Laneville, et al. Chapter5: Effect of ice and snow on the dynamicsof transmission line conductors [M]. Atmospheric icing of Power Networks,2008,219-222.
    [122]国家电力公司东北电力设计院.电力工程高压送电线路设计手册[M].北京:中国电力出版社,2003.
    [123]黄新波,刘家兵,蔡伟等.电力架空线路覆冰雪得国内外研究现状[J].电网技术,2008,32(4):23-28.
    [124]陈科全,严波,张宏雁等.冲击载荷下导线覆冰脱落过程的数值模拟[J].应用力学学报,2010,27(4):761-766.
    [125] C.Stephen, Cowin. Anisotropic poroelasticity: fabric tensor formulation [J]. Mechanics ofMaterials,2004,36:665-677.
    [126]严波,陈科全,祖正华等.覆冰四分裂导线除冰过程模拟研究[J].振动与冲击,2011,30(11):101-105.
    [127] J. J.Petrovic. Review: Mechanical properties of ice and snow [J]. Journal of Materials Science,2003,38:1-6.
    [128] M. Zheng, X. Zheng, Z. J.Luo. Fracture strength of brittle porous materials [J]. InternationalJournal of Fracture,1992,58:51-55.
    [129]程应镗.送电线路金具的设计安装试验和应用[M].水利电力出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700