薄壁管数控弯曲成形过程失稳起皱的数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄壁管数控弯曲精确成形技术是管弯曲技术向先进塑性加工技术发展的必然趋势。然而这是一个多因素耦合交互作用下可能发生失稳起皱的复杂物理过程。特别是航空、航天高技术的发展要求弯管零件的壁更薄、口径更大、弯曲半径更小和成形精度更高,这使得对失稳起皱的预测和控制成为薄壁管精确弯曲成形技术研究与发展迫切需要解决的难题。因此本文采用有限元模拟技术与起皱能量预测准则相结合的方法,实现对薄壁管数控弯曲过程起皱缺陷的分析和预测,对提高薄壁弯管制品的质量,缩短产品开发周期,降低成本具有重要意义。
     本文系统深入地研究了薄壁管数控弯曲成形过程三维刚塑性有限元模拟分析中的关键技术问题,提出了有效的算法和处理方法:提出了相对自由度与绝对自由度相结合的壳单元,使得速度边界条件的处理可通过简单、有效的置“1”法或置大数法来实现;采用了三次因式法确定收敛因子,不仅提高了有限元求解过程的计算效率,同时也保证了有限元迭代过程的收敛性。
     本文提出了描述薄壁管弯曲过程中失稳起皱波形的数学模型;进而基于薄壳小挠度弯曲理论和最小能量原理建立了预测起皱的能量准则;将预测准则与有限元模拟系统有机结合,可实现对起皱的数值预测。
     本文自主开发了薄壁管数控弯曲成形过程的起皱数值预测系统TBWS-3D,包括模具型腔曲面的几何描述、管坯初始网格的自动划分、动态边界条件的处理和摩擦问题的处理、刚塑性有限元模拟分析、变形体几何构形与场变量的显示以及起皱预测等功能。该系统不仅可以实现对成形过程的数值模拟分析,而且可用于对成形过程中失稳起皱现象的数值预测。
     采用所开发的薄壁管数控弯曲成形过程起皱数值预测系统深入研究了铝合金和不锈钢薄壁管数控弯曲成形过程的变形特点,获得了以下的主要结果:(1)两种管坯材料的整体变形、等效应变场分布、塑性变形区分布、塑性变形能与
    
    西北工业大学博士学位论文
    起皱能比值随弯曲角度的变化规律及大小基本一致;而两者切向应力场分布随
    弯曲角度的变化规律一致,只是不锈钢管所受的切向应力值大于铝合金管所受
    的切向应力。(2)管数控弯曲成形过程中应力和应变中性层的内移现象不显著。
    (3)在成形的初始阶段管坯所受的最大切向压应力不断增加;但当最大切向压应
    力超过一定值后,管坯进入稳定变形阶段,最大切向压应力只在很小的范围内
    波动。(4)在变形初期管坯塑性变形区不断扩展;管坯进入稳定变形阶段以后,
    各变形阶段塑性区形状及尺寸基本保持一致,而已变形部分不断发生卸载。(5)
    塑性变形能与起皱能的比值随着管弯曲成形过程的进行是不断波动变化的,但
    存在一个最大值。
     应用所开发的起皱预测系统,对由失稳起皱所决定的管坯最小弯曲半径一成
    形极限进行了数值模拟研究,揭示了不同成形参数对管坯最小弯曲半径的影响
    规律:(1)当芯棒伸出长度足够时,弯曲半径对管坯失稳起皱的影响不大;而
    当芯棒长度不足时,随着弯曲半径的减小管坯发生起皱的趋势增加。芯棒伸出
    量的增加可提高管坯基于失稳起皱的成形极限;当芯棒伸出量足够时,即使得
    管坯弯曲时的压缩塑性变形区完全受到刚性芯棒的约束,其它成形参数不影响
    管坯的最小弯曲半径。(2)随着管径的增加,由起皱所决定的管坯最小弯曲半
    径成线性增长。(3)加工速度的变化对管坯成形极限的影响不大。(4)随着硬
    化指数值由小变大,管坯的最小弯曲半径先减后增。(5)应力强度系数的变化
    不影响管坯最小弯曲半径。(6)摩擦系数的变化将使得管坯最小弯曲半径在一
    定的范围内波动。
Precision forming process of thin-walled tube NC bending is showing an inexorable tendency to improve and develop tube-bending process into advanced plastic forming technology. However, it is a complex process with coupling; interactive multi-factor effects and the possibility of wrinkling initiation. Particularly, the development of aviation and aerospace requires bent parts much thinner in wall-thickness, larger in tube radius, smaller in bending radius and more precise in the forming process. The prediction and control of wrinkling have thus become a difficult and key problem urgent to be resolved in the research and development of the process. Consequently, a numerical method for predicting the wrinkling onset during the tube bending process, which combines the rigid-plastic FEM with energy criteria, is proposed in the paper. The method can predict the wrinkling phenomena quantitatively, thus achieving optimal processing parameters with less needed experiments. The main achievements of the project are as following:
    According to the practical NC tube bending process, a reasonable FEM model has been set up and the key techniques of 3D rigid-plastic FEM have been studied in the paper. A shell element with relative and absolute degree of freedom is put forward so that the velocity boundary conditions can be considered by setting "1" or large number in the finite element equations; cubic factor method is applied to calculate the deceleration factor in the FEM iteration which can increase the computation efficiency while ensuring the convergence.
    Mathematic description of the winkling wave initiated on the compressed wall of tube during the bending process is established. Prediction criteria for the wrinkling onset is derived based on the theory of thin-walled shell bending and minimum
    
    
    
    energy principal; then how to combine the criteria with the FEM simulation system to make the numerical prediction of wrinkling into reality is also resolved in the paper.
    A numerical wrinkling prediction system TBWS-3D is developed for the NC thin-walled bending process. It includes modules for the description of die cavity, auto-meshing of tube being, treatments for dynamic boundary condition and friction condition, rigid-plastic FEM analysis, visualization of deformed tube and field variables and prediction of the wrinkling initial. The system can be used to both predict the wrinkling phenomena and analyze the bending process.
    The analysis of the bending process of aluminum and stainless tube has been carried out by the numerical system and the simulation results include: (1) the deformation, distribution of equivalent strain and plastic zone and variation of the ration of plastic forming energy and wrinkling energy of aluminum tube are same as those of stainless tube; the variation of stress distribution along the bending direction of these two tubes with bending angle is identical even though the stress of stainless tube is larger than that of aluminum tube. (2) the internal shift of the stress and strain neutrolayer is not noticeable for the bending process is a rotate bending process with booster. (3) the stress along the bending direction increases at the initial forming stage; the forming process comes into a stable process after the maximum compression stress along the bending direction exceeds some value and the stress just varies in a small scale. (4) the plastic forming area extends at the initial forming stage, while the area remains the same at the stable forming stage and the bended part of the tube being unloads continuously. (5) the ratio of plastic forming energy and wrinkling energy of the compressed part of the tube fluctuates and has a maximum value during the forming process.
    The influence of processing parameters on the forming limit determined by wrinkling is also researched with the above numerical prediction system. The results are as the following: (1) the bending radius has no effect on the wrinkling if the extension length of mandrel is enough to cover the plastic forming zone, but the te
引文
[1] 杨合,林艳,孙志超.面向21世纪的先进塑性加工技术与管成形研究发展.见:中国科学协会第二届学术年会文集,北京:科学技术出版社,2000:745~746
    [2] M. Murata, S. Yamamoto, etal.. Development of bending CNC machine for circular tube. Proceeding of the fourth conference on technology of plasticity. International Academic Publisher: Beijing, 1993(Ⅰ): 435~440
    [3] 航空制造工程手册.飞机板金工艺.《航空制造工程手册》总编委会.北京:航空工业出版社,1992
    [4] Yoshida K. Purposes and features of the Yoshida wrinkling test. Journal of the JSTP, 1983, 24(272): 901~908
    [5] B.D.Reddy. An experimental study of the plastic buckling of circular cylinders in tube bending. International Journal of Solids&Structure, 1979, 15:669~683
    [6] Matsuno K. Recent research and development in metal forming in Japan. Journal of Materials Processing Technology, 1997, 66:1~3
    [7] Hill L. A general theory of uniqueness and stability in elastic-plastic solids. Journal of the Mechanics and Physics of Solids, 1958, 6: 236~249;
    [8] Hutchinson J W. Plastic wrinkling. Advances in Applied mechanics, 1974, 14:67~144
    [9] Hutchison J.W., Neale K.W. Wrinkling of curved thin sheet metal. Plastic Stability. Presses ponts et Chaussees. Paris. 1976
    [10] Triantafyllidis N, Needleman A. An analysis of wrinkling in the Swfit cup test. Journal of Engineering Materials and Techniques, 1980, 102:241~248
    [11] Tugcu P. Plate wrinkling in the plastic range. International Journal of Mechanical Science, 1991, 33(1): 1~11
    [12] Tugcu P. On plastic wrinkling predictions. International Journal of Mechanical Science, 1991, 33(7): 529~539
    [13] Abdelmajid Fantnassi, Yoshihiro Tomita, Akio Shindo. Theoretical Investigation of Buckling Behavior of Axisymmetric Elastic-Plastic Membrane Shells
    
    Subjected to Axisymmetric Forming. Advanced Technology of Plasticity, 1984, 1: 611~616
    [14] L. C. Zhang, T. X. Tong, R. Wang. Investigation of Sheet Metal Forming by Bending—Part Ⅱ. Plastic Wrinkling of Circular Sheets Pressed by Cylindrical Punches. Int. J. Mech. Sci., 1989, 4(31): 301~308
    [15] M. Kawka, L. Olejnik, A. Rosochowski, etal. Simulation of wrinkling in sheet metal forming. Journal of Materials Processing Technology, 2001 (109): 283~289
    [16] J. B. Kim, J. W. Yoon, D. Y. Yang, etal. Investigation into wrinkling behavior in the elliptical cup deep drawing process by finite element analysis using bifurcation theory. Journal of Materials Processing Technology, 2001(111): 170~174
    [17] Kyriakides, S., Ju, G. T. Bifurcation and localization instabilities in cylindrical shells under bending Ⅱ predictions. International Journal of Solids and Structures, 1992, 29(9): 1143-1171
    [18] Kyriakides, S., Ju, G. T. Bifurcation and localization instabilities in cylindrical shells under bending Ⅰ experiments. International Journal of Solids and Structures, 1992, 29(9): 1117-1142
    [19] R. Peek. Wrinkling of tubes in bending from finite strain three-dimensional continuum theory. International Journal of Solids and Structures, 2002(39): 709~723
    [20] R. Peek. Axisymmetric wrinkling of cylinders with finite strain. J. Engng. Mech., 2000, 26(5):455~461
    [21] N. Triantafyllidis. Bifurcation phenomena in pure bending. J. Mech. Phys. Solids, 1980, 28:221~245
    [22] S. C. Batterman. Tangent modulus theory for cylindrical shells: buckling under increasing load. Int. J. Solids. Struct., 1967, 3:501~512
    [23] Senior B W. Flange wrinkling in deep-drawing operations. Journal of the Mechanics and Physics of Solids, 1956, 4:235~246
    [24] 梁炳文,胡世光.板料成形塑性理论.北京:机械工业出版社,1987
    [25] J.Endo, T. Murota, K. Cato, etal. Theoretical prediction on non-axisymmetric buckling tube nosing. Advanced Technology of Plasticity, 11:1347~1353
    
    
    [26] 吉田正敏,藤原昭文.中空矩形断面形材曲加工量予测.塑性加工,1997,38(440):29~34
    [27] 余同希,章亮炽.塑性弯曲理论及其应用.北京:科学出版社,1992
    [28] Frode Paulsen, Torgeir Welo, et. A design method for rectangle hollow section in bending. Journal of Materials Processing Technology, 2001, 113:699~704
    [29] Long-yuan Li, Roger Kettle. Nonlinear bending response and buckling of ring-stiffened cylindrical shells under pure bending. International Journal of Solids and Structure, 2002:765~781
    [30] P.Seide, V. I. Weingarten. On the buckling of circular cylindrical shell under pure bending. Journal of Applied Mechanics, 1961:112~116
    [31] B. F. Tatting, Z. Vasiliev. The Brazier effect for finite length composite cylinders under pure bending. International Journal of Solids and Structure, 1997: 1419~1440
    [32] Jian Cao. Prediction of plastic wrinkling using the energy method. Transactions of ASME, 1999(66): 646~652
    [33] Xi Wang, Jian Cao. On the prediction of side wall wrinkling in sheet metal forming processes. Int. J. Mech. Sci., 2000, 42(12): 2369~2394
    [34] Xi Wang, Jian Cao. Wrinkling limit in tube bending. Transaction of the ASME, 2001(123): 430~435
    [35] 钟志华,李光耀.薄板冲压成形过程的计算机仿真与应用,北京:北京理工大学出版社,1998
    [36] 杨济发,张子公.金属塑性成形研究方法综述.金属成形工艺,1990(2):55-59
    [37] A. Erman Tekkaya. State-of-the-art of simulation of sheet metal forming. Journal of Materials Processing Technology, 2000, 103:14~22
    [38] 邝国能.工程实用边界单元法,北京:中国铁道出版社,1989
    [39] Ahmetoglu A., Kinzel G., Altan T. Computer simulation for tool and process design in sheet forming. Journal of Materials Processing Technology, 1994, 46:421~441
    [40] Taylor L., Cao J., Karafillis A. P., etal. Numerical simulation of sheet metal forming. Journal of Materials Processing Technology, 1995, 50:168~179
    
    
    [41] Makiniuchi A. Sheet metal forming simulation in industry. Journal of Materials Processing Technology, 1996, 60:19~26
    [42] Hallquist J. O., Wainscoff B., Schweizerhof K. Simulation of thin-sheet metal forming using LS-DYNA3D on parallel computers. Journal of Materials Processing Technology, 1995, 50:144~157
    [43] Zhou D., Wagoner R. H. Development and application of sheet-forming simulation. Journal of Materials Processing Technology, 1995, 50:1~6
    [44] Hou T. R., Nakamachi E. Evaluation of the dynamic explicit finite element method in sheet metal forming simulation. Journal of Materials Processing Technology, 1995, 50:180~196
    [45] Prior A. M. Applications of implicit and explicit finite element techniques to metal forming. Journal of Materials Processing Technology, 1994, 45:649~656
    [46] Knoerr M., Lee J., Altan T. Application of the 2D finite element method to simulation of various forming processes. Journal of Materials Processing Technology, 1992, 33:31~55
    [47] Forde Paulse, Torgeir Welo. Application of numerical simulation in the bending of aluminum-alloy profiles. Journal of Materials Processing Technology. 1996(58): 274~285
    [48] 胡福泰.异型管材与型材无模弯曲工艺理论及实验研究.东北重型机械学院博士学位论文:1995
    [49] Jae-bong Yang, Byung-hee Jeon,, Soo-Ik Oh. The tube bending technology of a hydroforming process for an automotive part. Journal of Materials Processing Technology. 2001(111): 175~181
    [50] Liang-hao Han, Shu-yu He, Ying-pei Wang, etc. Limit moment of local wall thinning in pipe under bending. International Journal of Pressure Vessels and Piping, 1999:539~542
    [51] D. Boussaa, Dang Van, K. Labbé, P. Tang. Finite pure bending of curved pipes. Comput. Struct., 1996, 60(6): 1003~1012
    [52] R. D. Cook, Axisymmetric finite element analysis for pure moment loading of curved beams and pipe bends. Comput. Struct., 1989, 33(2):483~487
    [53] S. C. Tang, C. C. Chun, K. S. Yeung. Collapse of long, noncircular, cylindrical
    
    shells under pure bending. Comput. Struct., 1985, 21 (6): 1345~1353
    [54] Marcal P V, King I D. Elastic-plastic analysis of two-dimensional stress system by the finite element method. Int. J. Mech. Sci., 1967, 9:143~155
    [55] Yamada Y, Yoshimura N, Sakurai T. Plastic stress-strain matrix and its application for the solutions of elastic-plastic problems by the finite element method. Int. J. Mech. Sci., 1967, 10:343~354
    [56] G. J. Li and S. Kobayashi. Rigid-plastic finite element analysis of plane strain rolling. Trans. ASME, J. Eng. Ind., 1982:104~115
    [57] S. Kobayashi. A review on the finite element method and metal forming process modeling. J. Appl. Metal working, 1982, 2:163~170
    [58] G. J. Li and S. Kobayashi. Spread analysis in rolling by the rigid plastic finite element method, in: J. F. T. and I. Pittman. Eds. Numerical Methods in Industrial Forming Processes, Swansea, UK, Pineridge Press, 1982:777~786
    [59] S. Kobayashi. Thermo-viscoplastic analysis of metal forming problems by the finite element method, in: J. F. T. and I. Pittman. Eds. Numerical Methods in Industrial Forming Processes, Swansea, UK, Pineridge Press, 1982:17~25
    [60] S. I. Oh, J. J. Pak, S. Kobayashi and T. Altan. Application of FEM modeling to simulate metal flow in forging a titanium alloy engine disk. Trans. ASME. J. Eng. Ind. 1983:105~251
    [61] J. X. Sun and S. Kobayashi. Analysis of block compression with simplified three-dimensional element. Adv. Tech. Plasticity-Proc.1st ICTP. TOKYO, 1984, 2: 1027~1034
    [62] S. Kobayashi. The role of finite element method in metal forming technology. Adv. Tech. Plasticity-Proc. 1st ICTP. TOKYO, 1984, 2:1035~1040
    [63] S. Kobayashi. Thirty-four years at Berkeley. Adv. Tech. Plasticity-Proc. of the third ICTP. TOKYO. 1990, 4:1637~1640
    [64] Lee C H, Kobayashi S. New solutions to rigid-plastic deformation problems using a matrix method. Trans. ASME. J. Engr. Ind., 1973, 95:865~873
    [65] O. C. Zienkiewicz and S. Nakazawa et al., Finite element in forming processes. Adv. Tech. Plasticity-Proc. 1st ICTP. TOKYO, 1984, 2:104~110
    [66] O. C. Zienkiewicz, Y. C. Lin and G. C. Huang. Error estimation and adaptivity in
    
    flow formulation for forming problems. Int. J. Num. Meth. in Eng., 1988, 25(1): 23~42
    [67] O. C. Zienkiewicz, G. C. Huang and Y. C. Liu. Adaptive FEM computation of forming processes-application to porous and non-porous materials. Int. J. Num. Meth. in Eng.,1990, 30:1527~155
    [68] S. I. Oh. Finite element analysis of metal forming processes with arbitrary shaped dies. Int. J. Mech. Sci., 1982, 24:479~487
    [69] Yang Qingchun, Zhu Qi and Qu Shengnian. Studies on finite element simulation techniques of metal forming processes, in: Z. R. Wang and He Yuxin eds. Advanced Technology of Plasticity-Proceedings of the Fourth ICTP. Beijing, International Academic Publishers, 1993, 2: 1077-1081
    [70] 范建文.复合挤压的的数值模拟及缺陷预测.西北工业大学博士学位论文,1998
    [71] 赵国群,阮雪榆.轴对称锻造过程金属流动规律的有限元模拟.模具技术,1991,(5):1~8
    [72] 赵国群,阮雪榆等.链轨节锻造过程的有限元分析.模具技术,1991,(4):1~9
    [73] 刘庆斌.模拟技术和人工神经网络在锻造过程中的应用.西北工业大学博士学位论文,1996
    [74] 卫原平.金属塑性成形过程的有限元数值模拟.上海交通大学博士学位论文,1995
    [75] 詹梅.面向带阻尼台叶片精锻过程的三维有限元数值模拟研究.西北工业大学博士学位论文,2000
    [76] 刘郁丽.叶片精锻过程的三维有限元分析.西北工业大学博士学位论文,2001
    [77] S. Kobayashi, S. I. Oh and T. Altan. Metal Forming and the Finite Element Method. New York Oxford: Oxford University Press, 1989
    [78] 吕丽萍.有限元法及其在锻压工程中的应用.西安:西北工业大学出版社,1989
    [79] 陈如欣,胡忠民.塑性有限元法及其在金属成形中的应用.重庆:重庆大学出版社,1989
    [80] 王勖成,邵敏.有限单元法基本原理与数值方法.北京:清华大学出版社,
    
    1998
    [81] 汪大年.金属塑性成形原理.北京:机械工业出版社,1995
    [82] 王祖唐,关廷栋,肖景容等.金属塑性成形理论.北京:机械工业出版社,1989
    [83] 薛明德,王和慧.闪蒸罐的应力分析与强度评定.压力容器,1999(3):24~29
    [84] Kanok-Nukulchal, Taylor R. L., Hughes T. J. R. A large deformation forming for shell analysis by the finite element method. Computers & Structures, 1981(13): 19~30
    [85] 林艳,杨合.一种可应用于板壳成形过程模拟的绝对-相对自由度壳单元.机械科学与技术,2003(1):121~123
    [86] 傅沛福,王忠金等.考虑材料参数的刚粘塑性有限元初始速度场的自动生成方法.塑性工程学报,1995,2(4):12~17
    [87] 左旭,陈军,卫原平,阮雪榆.塑性成形三维数值模拟中模具几何描述技术.锻压技术,1997(6):59~61
    [88] 孙家广,陈玉健等.计算机辅助几何造型技术.北京:清华大学出版社,1990
    [89] 谢水生,王祖唐.金属塑性成形工步的有限元数值模拟.北京:冶金工业出版社
    [90] 张新泉.三次因子法——一种加快刚塑性有限元法迭代收敛的新算法.塑性工程学报,1996,3(2):24~31
    [91] 鲜飞军.板带不均匀压下面内弯曲过程失稳起皱及成形极限的研究.西北工业大学博士学位论文,2001
    [92] 刘鸿文.板壳理论.杭州:浙江大学出版社,1987
    [93] 胡世光.板料冷压成形原理.北京:国防工业出版社,1979
    [94] 梁炳文,胡世光.弹塑性稳定理论.北京:国防工业出版社,1983
    [95] 王同海.管材塑性加工技术.北京:机械工业出版社,1998
    [96] 吴诗惇.冲压工艺学.西安:西北工业大学出版社,1987
    [97] 孙志超.管轴压精密成形过程中无模约束自由变形规律的研究.西北工业大学硕士学位论文,2000
    [98] 孙志超,杨合,蔡旺,林艳.一种确定管材塑性本构关系的反算法.重型机械,2000(3):43~46

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700