用于乙醇生产的同步闪蒸汽提发酵过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙醇是用途广、需求量大的化学品之一。随着农业生产的发展及环保的要求,石油资源的枯竭,可再生清洁能源受到了广泛的重视。其中燃料乙醇是当今研究的热点。目前燃料乙醇成本过高还无法与汽油竞争,优化工艺,强化过程是降低成本的重要途径之一。
     乙醇发酵是典型的产物抑制过程,发酵分离耦合技术,即在发酵过程中同时不断移出产物乙醇,是提高发酵强度的有效手段。为了提高乙醇的在位分离能力,从而提高发酵强度,本文集成闪蒸发酵和汽提发酵两种过程,提出了用于生产乙醇的同步闪蒸汽提发酵过程。实验和理论分析表明,同步闪蒸汽提发酵过程相比汽提发酵和闪蒸发酵,其发酵强度有明显的提高,而且可实现高底物浓度进料,从而节约用水和降低废水处理成本。另外,提高通气量、闪蒸罐进料速度等有关乙醇分离的操作参数,有利于提高发酵强度。实现高温发酵,更有利于显示该过程的优越性。为了实现同步闪蒸汽提发酵过程,本文设计了侧环式反应器,通过增加侧臂,解决闪蒸罐进料液体脱气的问题。本文还对微生物反应动力学进行研究,通过催化反应机理阐述Monod方程的物理意义,并由此引申提出新的细胞生长动力学模型。实验结果表明,新模型与实验值很好的吻合。
     基于新的动力学模型,建立了同步闪蒸汽提发酵的过程模型,包括对汽提过程的计算进行改进。由实验中发现,通气量的增大对细胞生长呈现先促进后抑制的现象,为此本文提出通气量因子的概念及表达形式,修正存在汽提条件下的细胞生长动力学方程,较好地解决了通气量对过程影响的准确预测问题。本文通过实验,实现了同步闪蒸汽提发酵过程的连续化,利用以上的方法进行计算,模拟预测的结果与连续同步闪蒸汽提发酵的实验值相一致。
Ethanol is one of the most widest used and heaviest demanded chemical, which may most possible become the substitute for gasoline. With the development of the agriculture and the requirement of environment protection ,the drying up tendency of gasoline resource, importance has been attached to the regenerate clean energies. Among them, the fuel ethanol is the focus of the research today. Ethanol can’t compete with the gasoline, due to the high production cost, which can be reduced by optimizing the process and intensifying the technology.
     Ethanol fermentation process is a typical product-inhibiting process. the in-site ethanol separating process processes can efficiently increases the productivity of the fermentation, basing on which a new ethanol fermentation process, coupled with gas stripping and vacuum flash and named as flash-strip fermentation, is proposed in this paper. This process is provided the advantages of both strip-fermentation and flash-fermentation, and improves the ethanol productivity by increasing the in-situ ethanol removal. The experiments and theoretically analysis indicate that the strip-flash fermentation process, comparing with the gas stripping or vacuum flash process, is more effective, and the sugar(substrate) can be fed at high level of concentration, thus the usage of water can be reduced and the cost in liquid waste disposal is cut. In addition, using the thermophilic yeast to raising the fermentation temperature, as well as increasing the gas flux or the rate of feeding to the flash tank can enhance the fermentation efficiency further.
     To insure that the strip-flash fermentation can work smoothly, a side-looptype bioreactor is designed. By extending side-arms, the problem of deaeration can be resolve.
     In this paper, the microorganism reaction kinetics is investigated. through using the catalyzed reactivity mechanism to explain the physical meaning of the Monod Equation, a new model of cell growth kinetics was propound. The result in experiments show that the new model inosculate accurately with the experiment value.
     In this paper, the ethanol fermentation process, which is coupled with gasstripping and vacuum flash, is modeled. Firstly, the method of striping calculation is improved. Secondly, it can be seen that in the experiment, with the increasing of gas flux, the cell growth process will be accelerated at the beginning and restrained later. By seeing the phenomenon, a gas flux factor is put forward and its expression is defined to modify the model of cell growth kinetics under the gas stripping condition. Using the method listed above, the simulation computing result is consistent with the result got in the experiment of the ethanol fermentation process coupled with continuous gas stripping and vacuum flash .
引文
1. 魏述众主编,生物化学,中国轻工出版社,1999
    2. 章可昌主编,酒精与蒸馏酒工艺学,中国轻工业出版社,1995
    3. 孙福来 杨文 朱琴等,玉米挤压膨化酒精发酵的研究,江苏农学院学报,1997,18(3):68~72
    4. 池振明 刘自熔,利用低温蒸煮工艺进行高浓度酒精发酵,食品与发酵工业,1993,4:29~32
    5. L.Peeva and D.Vankov,Modelling of simultaneous hydrolysis and fermentation of maltodextrines to ethanol,Bioprocess Engineering,2000,22:397-401
    6. T.Montesinos and J.Navarro,Production of alcohol from raw wheat flour by Amyloglucosidase and Saccharomyces cerevisiae , Enzyme and Microbial Technology,2000,27:362-370
    7. Seinosuke Ueda, Cellia T. Zenin, Domingos A.Monteiro et al,Production of Ethanol from Raw Cassava Starch by a Nonconventional Fermentation Method,Biotechnology and Bioengineering,1981,23:291-299
    8. Katsuhiko Mikuni, Mitsuru Monma and Keiji Kainumal,Alcohol Fermentation of Corn Starch Digested by Chalara paradoxa Amylase Without Cooking,Biotechnology and Bioengineering,1987,29:729-732
    9. Mori Y and Inaba T,Ethanol Production from Starch in a Pervaporation Membrane Bioreactor Using Clostridium thermohydrosulfuricum,Biotechnol. Bioeng.,1990,36,849-853
    10. 池振明 刘自熔,生淀粉高浓度酒精发酵的研究,生物工程学报,1994,10(2):130-134
    11. 薛正莲,玉米原料无蒸煮酒精发酵工艺的研究,工业微生物,1999,29(4):31-36
    12. Toshiyuke Mural,Tomoko Yoshino, Mitsuyoshi Ueda et al, Evaluation of the Function Arming Yeast Displaying Glucoamylase on Its Cell Surface by Direct Fermentation of Corn to Ethanol,Jouranl of Fermentation and Bioengineering,1998,86(6):569-572
    13. G..Verma, Poonam Nigam, Dalel Singh et al,Biocenversion of starch to ethanol in a single-step process by coculture of amylolytic yests and Saccharomyces cerevisiae 21,Bioresource Technology,2000,72:261-266
    14. 文铁桥 赵学慧,酵母菌属间原生质体融合构建高温酵母菌株,微生物学报,1999,39,141-147
    15. J.R.Ernandes, M.Matulionis, S.H.Cruz et al,Isolation of new ethnol-tolerant veaste for fuel ethanol production from sucrose,Biotechnology Letters,1990,12(6):463-468
    16. 吕福英 闵航 陈美慈,嗜热性乙醇发酵的研究进展,工业微生物,1997,27(4):37-43
    17. Cysewski,G. R.,and Wilke, C. R.,Ethanol Fermentation Using Vacuum and Cell Recyele, Biotech. Bioeng.,1977,19;1125-1143
    18. Gulnur Birol, Pemra Doruker, Betul Kirdar et al,Mathematical description of ethanol fermentation by immobilised Sacharomyces cerevisiae , Process Biochemistry,1998,33(7):763-771
    19. 钟光祥、李祥麟,固定化酵母糖化醪生产酒精及其动力学研究,微生物学通报,1994,21(1):19~22
    20. Antonio R.Navarro, Maria C.Rubio and Danley A.S.Callieri,Production of ethanol by yeasts immobilized in pectin , Applied Microbiology and Biotechnology,1983,17:148-151
    21. 杨萍 董家灿 刘士清,酵母细胞固定化新方法——PVA 包埋-吸附,工业微生物,1992,22(6):12-19
    22. Ryo Ohashi, Yuya Kamoshita, Michimasa Kishimoto et al, Continuous production and separation of ethanol without effluence wastewater using a distiller integrated SCM-reacter system , Journal of Fermentation and Bioengineering,1998,86(2):220-225
    23. Iraj Nahvi Giti Emtiazi and Lila Alkabi , Isolation of a flocculating Saccharomyces cerevisiae and investigation of its performance in the fermentation of beet molasses to ethanol,Biomass and Bioenergy,2002,23:481-486
    24. S.C.Oliveira , Continuous ethanol fermentation in a tower reactor with flocculationg yeast recycle:scale-up effects on process performance,kinetic parameters and model predictions,Bioprocess Engineering,1999,20:525-530
    25. 秦金来 白凤武 谢健等,絮凝颗粒酵母均匀悬浮体系生长动力学的研究,生物工程学报,1995,11(2):139-144
    26. 李东侠 白凤武 宋琪等,自絮凝颗粒酵母酒精连续发酵过程精馏废液循环回用工艺的研究,应用与环境微生物学报,1999,5(5):533-536
    27. 刘传斌 白凤武 邵梅等,自絮凝颗粒酵母酒精高浓度连续发酵的研究,微生物学报,2001,41(3):367-371
    28. Nakamura S K ,Sato S.Solid-State Ethanol Fermentation by Means of Inert Gas Circulation, Biotech. Bioeng,1985,27:1312-1319
    29. 杜秉海、曲音波、高培基,纤维废渣固态酒精发酵及纤维素-淀粉共发酵的研究,食品与发酵工业,1995,5:15~20
    30. Miorella B L Blanch H W and Wilke C R, Economic evaluation of alternative ethanol fementation processes, Biotechnology and Bioenginnering, 1984,26:1003-1025
    31. Maoorella B and Wilke C R, Energy requirements for the vacuferm process, Biotechnology and Bioenginnering, 1980,22:1749-1751
    32. Malorella B Blanch H W and Charles R, By-product inhibition effects on ethanolic fermentation by Saccharomyces cerevisiae, Biotechnol. Bioengin.,1983,25:103-121
    33. Bavouzet J M Christine L D and Fonade C,The effect of an abrupt stepwise reduction in pressure on the integrity of the eukaryotic and prokaryotic cell envelope, Enzyme Microb.Technol.,1995,17:712-718
    34. Ghose T K Roychoudhury P K and Ghosh P, Simultaneous saccharification and fermentation(SSF) of liqnocellulosics to ethanol under vacuum cycling and step feeding, Biotechnology and Bioenginnering, 1984,26:377-381
    35. Roychoudhury P K Ghose T K and Ghosh P, Operational strategies in vacuum coupled SSF for conversion of lignocelluse to ethanol, 1992,14:581-585
    36. K.Ishida and K.Shimizu,Novel repeated batch operation for Flash fermentation system:experimental data and matchematical modeling,J. Chem. Tech. Biotechnol.,1996,66:340-346
    37. Flavio L Honorato da Silva, Maria I Rodrigues and Francisco Maugeri,Dynamic modeling simulation and optimization of an extractive continuous alcoholic fermentation process,Journal of Chemical Technology and Biotechnology,1999,74:176-182
    38. Costa A C Atala D I P and Maugeri F et al, Factorial design and simulation for the optimization and determination of control structures for an extractive alcoholic fermentation, Process Biochemistry, 2001,37:125-137
    39. Costa A C and Filho R M, Evaluation of optimization techniques for an extractive alcoholic fermentation process, Applied Biochemistry and Biotechnology, 2004,113-116:485-496
    40. Miner M and Goma M,Ethanol production by extractive fermentation,Biotechnology and Bioengineering,1982,24,1565-1579
    41. Masatoshi M and Herbert M,Elimination of ethanol inhibition by perstraction,Biotechnology and Bioengineering,1986,28,534-541
    42. Toru Ikegami, Hiroshi Yanagishita, Dai Kitamoto et al,Concentration of fermented ethanol by pervaporation using silicalite membranes coated with silicone rubber,Desalination,2002,149:49-54
    43. Mikihiro Nomura, Tang Bin and Sin-ichi Nakao,Selective ethanol extraction from fermentation broth using a silicalite membrane,Separation and Purification Technology,2002,27:59-66
    44. Garcia H M and Jones P, Use of candida rugosa lipuse immobilized in a spiral wound membrane reactor for the hydrolysis of milkfat, Enzyme Microb. Tech.,1992,14:535-545
    45. Marek Gryta, Antoni Waldemar Morawski and Maria Tomaszewske,Ethanol production in membrane distillation bioreactor,Catalysis Today,2000,56:159-165
    46. Marek Gryta,The fermentation process integrated with membrane distillation,Separation and Purification Technology,2001,24:283-296
    47. N.Qureshi and H.P.Blaschek,Recovery of butanol from fermentation broth by gas stripping,Renewable Energy,2001,22:557-564
    48. P. K. Walsh, Liu C P, Findley M E et al,Ethnol separation form water in a two-stage adsorption process, Biotech. Bioeng. Symp,1983,13:629-647
    49. Lin J J Dale M C and Okos M R, Ethanol production by Zymomonus mobilis in an immobilized cell reactor separator, Process Biochemistry. 1990,4:61-66
    50. Dale M C Okos M R and Wankat P C, An immobilized cell reactor with simultaneous product separation 1 reactor design and analysis, Biotechnologyand Bioengineering, 1985,27,932-942
    51. Taylor F Kurantz M J and Goldberg N et al, Continuous fermentation and stripping of ethanol, Biotechnol. Prog., 1995,11:693-698
    52. Taylor F Kurantz M J and Goldberg N et al, Dry-grind process for fuel ethanol by continuous fermentation and stripping, Biotechnol. Prog, 2000,16,541-547
    53. Taylor F Kurantz M J and Goldberg N et al,Control of packed column fouling in the continuous fermentation and stripping of ethanol, Biotechnology and Bioengineering, 1996,51:33-39
    54. Taylor F Kurantz M J and Goldberg N et al,Effects of ethanol concentration and stripping temperature on continuous fermentation rate, Appl. Microbiol. Biotechnol., 1997,48:311-316
    55. Taylor F Kurantz M J and Goldberg N et al,Kinetics of continuous fermentation and stripping of ethanol, Biotechnology Letters, 1998, 20:67-72
    56. 岑沛霖 顾兵 王衍平等,COB2B循环、活性炭吸附酒精发酵的研究,化学反应工程与工艺,1988,4(1):30-35
    57. 张民权 赵学法 慎学峰等,同时进行发酵合分离的COB2B汽提、活性炭吸附乙醇发酵动力学研究(二)、(三),化学反应工程与工艺,1990,6(1):34-41
    58. Pham C B Motoki M and Matsumura M et al, Simultaneous ethanol fermentation and stripping process Coupled with rectification, J. Ferment. Bioeng., 1989,68:25-31
    59. 秦庆军 贾鸿飞 王宇新,乙醇汽提发酵与载气蒸馏耦合过程的实验,过程工程学报,2002,2(1):58-61
    60. Dominguez J M Cao N and Gong C S, Ethanol production from xylose with the yeast Pichia stipits and simultaneous product recovery by gas stripping using a gas-lift loop fermentor with attached side –arm(GLSA), Biotechnology and Bioengineering, 2000,67:336-343
    61. Hwai-shen Liu and Hsien-wen Hsu, Analysis of gas stripping during ethanol fermentation, in a continuous stirred tank reactor ,Chemical Engineering Science, 1990,45(5):1289-1299
    62. Lun H S and Hsu H W, Gas stripping during ethanol fermentation in a batch reactor, Journal of The Chin. I. Ch. E., 1991,22:357-364
    63. Lun H S and Hsu H W, Analysis of gas stripping during ethanol fermentation (2)a combined product-substrate inhibition case, Chemical Engineering Science,1991,46:2551-2565
    64. Shen W H Vincent V B and Xu X W, Dynamic analysis of gas stripping during ethanol fermentation in CSTR, Chinese J. of Chem. Eng., 1996,4:236-245
    65. 沈文豪 束路,汽提法从发酵液中分离醇的无因次分析,上海大学学报,1997,3(2):194-199
    66. 沈文豪 肖希和 杭建忠等,发酵过程中汽提的动力学行为探讨,高校化学工程学报,2003,17(2):166-172
    67. T戚以政 汪叔雄 编著,生化反应动力学与反应器,化学工业出版社,1999
    68. 戚以政、夏杰 编著,生物反应工程,化学工业出版社,2004
    69. Luong J. Kinetics of ethanol inhibition in alcohol fermentation [J]. Biotechnol Bioeng, 1987, 29: 242-248.
    70. Aiba S Shoda M and Nagatani M, Kinetics of product inhibition in alcohol fermentation, Biotechnol Bioeng, 1968, 10, 845-654
    71. Maiorella B Blanch H W and Wilke C R, By product inhibition effect on ethanolic fermentation by Saccharomyces cerevisiae, Biotechnol Bioeng, 1983,25:103-121
    72. Lee J M Pollard J F and Coulman G A et al, Ethanol fermentation with cell recycling, Biotechnol Bioeng, 1983,25:497-511
    73. Jarzebski A B, Malinowski J J, Goma J. Modelling of ethanol fermentation at high yeast concentrations. Biotechnol Bioeng, 1989, 34:1225-1230
    74. Godia F Casas C and Sola, Batch alcoholic fermentation modeling by simultaneous integration of growth and fermentation equations, J. Chem. Tech. Biotechnol., 1988,41:155-165
    75. Starzak M, .Krzystek L. Macroapproach kinetics of ethanol fermentation by Saccharomyces cerevisiae: experimental studies and mathematical modeling. Chem Engr J, 1994, 54: 221-240
    76. Nannba A, Nishizawa Y. Kinetic analysis for batch ethanol fermentation of saccharomyces cerevisiae J Ferment Technol, 1987, 65(3):277-283
    77. Boulton R. The prediction of fermentation behavior by a kinetic model [J]. Am J Enol Vitic, 1980, 31:40-45
    78. Atala D L P Costa A C and Maciel R el al, Kinetics of ethanol fermentation with high biomass concentration considering the effect of temperature, AppliedBiochemistry and Biotechnology, 2001,91-93:353-365
    79. Bely M, Sablayrolles M, Barre P. Automatic detection of assimilable nitrogen deficiencies during alcoholic fermentation in oenological conditions. J Ferm Bioeng, 1990, 70:246-252
    80. Monteiro F, Bisson L F. Biological assay of nitrogen content of grape juice and prediction of sluggish fermentations. American Journal of Enology and Viticulture, 1991, 42: 47–57
    81. Spayd S E, Nagel C W, Edwards C G. Yeast growth in Riesling juice as affected by vineyard nitrogen fertilization. Am J Enol Vitic, 1995, 46: 49-55
    82. Amanda C C, Vlassides S, Block D E. Kinetic model for nitrogen-limited wine fermentations. Biotechnol Bioeng, 2002, 77:49-60
    83. Bisson L F. Stuck and sluggish fermentations. Am J Enol Vitic, 1999, 50: 107-119
    84. Holzberg R, Finn K, Steinkraus K H. A kinetic study of the alcoholic fermentation of grape juice. Biotechnol Bioeng, 1967, 6:413-427
    85. Oliveira S C Castro H F D and Visconti A E S et al, Continuous ethanol fermentation in a tower reactor with flocculating yeast recycle: scale-up effects on process performeance, kinetic parameters and model predictions, Bioprocess Engineering, 1999,20:525-530
    86. Bovee J P, Strehaiano P, Goma G, et al. Alcoholic fermentation: modeling based on sole substrate and product measurement. Biotechnol Bioeng, 1984, 24:328-334
    87. Xiong Z H and Zhang J, Neural network model-based on-line re-optimisation control of fed-batch processes using a modified iterative dynamic, Chemical Engineering and Processing, 2005, 44:477-484
    88. Harada L H P Costa A C and Filho R M, Hybrid neural modeling of bioprocesses using functional link networks, Applied Biochemistry and Biotechnology, 2002,98-100:1009-1023
    89. 张惟杰主编,糖复合物生化研究技术,浙江大学出版社,1999
    90. 张君 刘宏娟 刘德华,不同类型载气对乙醇汽提发酵的影响, 过程工程学报,2005,5(3):349-352
    91. 尚龙安 范代娣 Chang H N, 高密度 Ralstonia eutropha 细胞培养过程中二氧化碳的生产及其抑制作用,高校化学工程学报,2004,18(5):633-637
    92. Knutson B L Strobel H J and Nokes S E et al, Effect of pressurized solvents on ethanol production by the thermophilic bacterium Clostridium thermocellum, Journol of Supercritical Fluids, 1999, 16:149-156
    93. Lacoursiere A Thompson B G and Kole M M et al, Effects of carbon dioxide concentration on anaerobic fermentations of Escherichia coli, Appl Microbiol Biotechnol, 1986, 23:404-406
    94. Huriyama H Mahkarnchanakul W and Matsui S et al, The effects of pCOB2B on yeast growth and metabolism under continuous fermentation, Biotechnology Letters, 1993, 15(2):189-194
    95. Mori H Kobayashi T and Shimizu S, Effect of carbon dioxide on growth of microorganisms in fed-batch cultures, J Ferment Technol., 1983, 61(2):211-213
    96. Jones R P and Greenfield P F, Effect of carbon dioide on yeast growth and fermentation, Enyzme Microb. Technol., 1982,4:210-223
    97. Karl D W Roth K M and Schendel F J et al, Carbon dioxide effects on fuel alcohol fermentation[M], American Chemical Society, 1997, 93-109
    98. 刘增然 李树立 张光一,酿酒酵母的糖转运机理研究进展,食品与发酵工业,2004,30(11):65-69
    99. 黑姆斯 胡珀 著,王镜岩等译,生物化学,科学出版社,2004
    100.李绍芬 主编,反应工程,化学工业出版社,2000
    101.Damore T and Stewart G G, Ethanol tolerance of yeast, Enzyme Microb.Technol., 1987,9:322-330
    102.Penalver E Lucero P and Moreno E et al, Catabolite inactivation of the maltase transporter in nitrogen-starved yeast could be due to the stimulation of general protein turnover, FEMS Microbiol Lett, 1998, 166:317-324
    103.沈文豪,汽提法从发酵液中分离醇的模拟实验,上海大学学报,1996,2(2):212-218
    104.张君 唐昌平 刘德华等,指数流加模型在乙醇汽提发酵过程中的应用研究,食品与发酵工业,2004,30(7):43-47
    105.Williama L A, Theory and modeling of ethanol evaporative losses during batch alcoholic fermentation, Biotechnol. Bioeng., 1983,25:1597-1612
    106.张元兴 许学书 编著,生物反应器工程,华东理工大学出版社,2001
    107.Beyenal H and Tanyolac A, A combined growth model of Zoogloea ramigeraincluding multisubstrate, pH, and agitation effects, Enzyme Microb. Technol.,1997,21:74-78
    108.Diaz M Garcia A I and Garcia L A, Mixing power, external convection and effectiveness in bioreactors, Biotechnol. Bioeng., 1996,51:131-140
    109.Converti A Borghi M D and Ferraiolo G et al, Mechanical mixing and biological deactivation: the role of shear stress application time, The Chemical Eengineering Journal, 1996,62:155-167
    110.Toma M K Rukisha M P and Vannags J J et al, Inhibition of microbial growth and metabolism by excess turbulence, Biotechnol. Bioeng., 1991,38:552-556
    111.Dunlop E H and Ye S J, Micromixing in fermentors : metabolic changes in Saccharomyces cerevisiae and their relationship to fluid turbulence, Biotechnol. Bioeng., 1990,36:854-864
    112.Roychoudhury P K Ghose T K and Ghosh P et al, Vapor liquid equilibrium behavior of aqueous ethanol solution during vacuum coupled simultaneous saccharification and fermentation, Biotechnol. Bioeng., 1986,28:972-976
    113.Tan T C Teo W K and Ti H C, Vapour liquid equilibria of ethanol-water sstem saturated with glucose at subatmospheric pressures, Chem. Eng. Res. Des., 1988,66:75-83
    114.俞俊棠 唐孝宣 主编,生物工艺学(上册),华东理工大学出版社,2002
    115.Park C H and Geng Q, Simultaneous fermentation and separation in the ethanol and ABE fermentation, Separation and Purification Methods,1992,21(2):127-174
    116.Kennedy J Eberhart R, Particle swarm optimization, proc. IEEE. Int Conf on Neural Networks, 1995,1942-1948

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700