氧化铝气态悬浮焙烧集成优化控制指导系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,我国铝工业迅速发展,氧化铝产量已达1900万吨/年。围绕节能减排,开展氧化铝行业技术创新的需求日益迫切。氧化铝焙烧是对氧化铝产、质量和生产能耗有重大影响的工序之一,目前该工序已普遍采用气态悬浮焙烧工艺。众多气态悬浮焙烧生产表明,该工艺在设备配置、操作调节和过程控制等方面仍有很大改进潜力。对焙烧过程开展设备、操作和控制的优化研究有利于实现焙烧生产的增产、节能和降耗。
     本文在国家自然科学基金的资助下,以年产5万吨的气态悬浮焙烧炉为试验对象,集成应用FLUENT、人工神经网络、遗传优化、模糊控制、专家系统等技术,对氧化铝焙烧过程开展设备、控制和指导的整体优化。研究成果主要有:
     (1)针对焙烧燃烧系统缺少配置依据,开展炉体燃烧优化的仿真研究。采用FLUENT对主炉P04仿真研究得出:某燃料的最佳空燃比值(A/F)以及低氧完全燃烧对应的最佳操作条件;最佳下料区域为Ⅳ部炉体,最佳V08预热烧咀布置区域为Ⅱ部炉体;保持V08烧咀小比例投入燃料有利减少NO生成;提高空气预热温度节能效果明显。仿真得到NO_x、CO、CO_2等废气生成量,为生产操作提供重要参考。
     (2)针对焙烧旋风器工况分析的不足,开展气固分离研究。对预热旋风器P01采用雷诺应力输运模型求解气场,拉格朗日坐标求解颗粒运动轨迹。计算不同的工况风速、温度、漏风率和物理结构下旋风器分离效率,探讨了P01环流式旋风器和收尘锁气设备改造方案,为操作提供优化参考。
     (3)针对现有描述焙烧过程模型的缺乏,提出采用神经网络(ANN)、遗传算法(GA)、灰色模型(GM)优化建模,建立温度预测、废气软测量评价和产能评估三大过程模型。温度预测模型由GM(1,1)与ANN组合优化实现,绝对误差±5℃评价模型,预报命中率达90%以上,可以指导生产调节。废气软测量模型结构为ANN{3-5-4},用绝对误差小于1评价模型,预测准确率达88.6%。基于FLUENT仿真结果对新工况排废的预测,具二次仿真性。产能评估模型结构为ANN{3-9-1},用相对误差小于1%评价模型,预报准确率达96%。产能ANN模型比回归模型更能揭示系统关系。
     (4)针对焙烧过程常规、单一PID控制方式的不足,提出并建立了焙烧过程模糊专家控制系统。设计了一种Complex-PID控制器和空燃比专家调节器,并提出了一种焙烧过程分段调节控制策略。其中,控制器由FNN单元、PID单元和阈值调节单元组成,采用模糊方法、神经网络和遗传算法对PID进行调整,保证具有最优或次优控制参数。调节器综合数值模拟、视频监控和烟气氧量等反馈信息寻优调节。分段调节控制策略实现了不同工况下温度的优化控制,精度达±5℃,稳定了炉况。
     (5)针对焙烧生产和管理工作的不完善,提出并架构了焙烧过程ANNES指导系统。采用产生式规则表示过程显式知识,ANN模型表示隐式知识,两类知识由隶属函数实现转化。建立风机故障、燃烧调节和状态分析知识库,实现了燃烧和过程的分析和监测;建立GA-ANNES优化模型库,实现了过程能耗分析,解决了高产低耗参数优化问题;建立旋风器操作指导知识库,实现了旋风分离ANNES分析诊断和操作优化。
     (6)开发了基于PLC的SCADA系统和基于VC++、Matlab的集成优化系统。两系统间的通讯采用OPC技术、自定协议和DeviceNet总线方式实现。PLC系统实现基础控制,优化系统集成神经网络、遗传算法、专家系统实现过程的优化和控制。
     本文开发的集成优化系统在年产能5万吨气态悬浮焙烧炉工业试验中取得很好的优化效果:热耗降低了14.3%,达到了3.09MJ/kg;主炉温度降低了8.8%,控制在1040±5℃;含氧量降低了75%,控制在1~2%;NO排量降低了53.9%,控制在53ppm。
At present,the scale of China's alumina industry is developing rapidly and the productivity of alumina has been up to nineteen million tons per year.In order to achieve energy saving and emission reduction, it is imperative to carry out technological innovation.In the roasting procedure that affects the quality,yield and energy consumption,the gas suspension calcination process(G.S.C) which stands for the main developing trend in the fluidized calcinations has been widely adopted. Many applications indicate that it still has much improving space in the equipment configuration,manual adjustments and process control for the G.S.C.The optimization studies of equipment,operation and control can improve production and reduce energy consumption.
     This dissertation is supported by the National Natural Science Foundation of China and subjected in G.S.C with the productivity of fifty thousand tons per year,in which an integrated optimization strategy combining FLUENT,artificial neural networks,genetic optimization, fuzzy control and expert system technology is presented for equipment, operation and control optimization.The original research achievements of this paper are listed as follows:
     (1)In order to solve the problem of the scarcity in configuration information for combustion system,a three-dimension G.S.C model is studied by using a CFD software FLUENT.The obtained optimal results include:For a certain fuel,the optimal ratio of air to fuel(A/F) and optimal operation condition for low oxygen complete combustion are obtained;The optimal feeding inlet position is on partⅣand optimal fixing position of V08 igniter is on partⅡof G.S.C;By setting the ratio of V08 to V19,NO emission declines; With increased preheated air temperature,considerable energy can be saved.The quantity of NO_x,CO and CO_2 emission estimated through simulation can serve as a very good reference to the production.
     (2)As the operation of cyclone separator is not fully explored,a three-dimensional P01 Grid model obtained by hexahedral approach in Gambit was applied in the simulation.With Reynolds stress turbulent viscous model,the physical field distributions and the particle tracks were computed through the gas phase coupled with the discrete phase.The separation efficiency in different inlet winds velocity,operation temperature,air leakage rate and physical structure are obtained and the reconstruct of P01 adopted circumfluent cyclone separator and certain dust collection equipments are discussed,which provides important reference for the optimization of operation.
     (3)In order to extend the existing process description modes,artificial neural networks(ANN),genetic algorithms and grey theory model(GM) were adopted to optimize G.S.C modeling.A temperature combinatorial optimal prediction model,emission soft measurement model and productivity estimation model are obtained. The temperature model was established based on GM(1,1) and ANN. The forecast accuracy of combinatorial model is over 90%as the absolute error±5℃is adopted,which meets the requirements of production adjustment.The structure of emission soft measurement model is ANN{3-5-4} and its forecast accuracy is 88.6%as the absolute error less than 1 is adopted.The prediction of new operation conditions deduced by the emission ANN model based on FLUNET simulation results can be taken as secondary simulation.The productivity estimation model is ANN{3-9-1} and its forecast accuracy is 96%as the relative error less than 1 is adopted,which is more advanced in process expression than the existing regression model.
     (4)To improve the conventional PID control,a roasting process fuzzy-expert control system was established.A Complex-PID controller and an expert regulator for A/F are designed.The Complex-PID controller is composed of fuzzy neural network(FNN), PID and threshold switch unit,by which the optimal or suboptimal control parameters can be obtained with fuzzy rules,neural networks and genetic algorithms.With the expert regulator for A/F,the optimal A/F value can be deduced by combining numerical simulation results, image analysis and oxygen content feedback information.A set of roasting process subsection adjustment control strategy is presented to achieve various conditions optimization,of which temperature error is within±5℃so as to create stable furnace conditions.
     (5)In order to extend the existing production and management modes,a roasting process guidance system based on ANNES was built.In this system,the explicit information is expressed by production rules and the implicit information by ANN model.And the transform between the two kinds of information is achieved by Membership function.A fault information base for centrifugal blower and Roots blower and a state regulation information base for combustion and process analysis are established,to which process analysis and monitoring can be achieved.A GA-ANNES optimization model was built to achieve energy analysis and to provide a good solution for higher yield with lower consumption.A guiding information base for cyclones separator operation is created and cyclones diagnosis and analysis are performed by ANNES.
     (6)A calcination SCADA system based on PLC and an integrated optimization system based on VC++ and Matlab are developed.The communications between the two systems were performed by three kinds of modes:OPC technology,consumer defined protocol and DeviceNet Bus.The PLC system performs as basic control and optimization system integrated neural networks,genetic algorithms and expert knowledge achieves process control and optimization.
     In this paper,the integrated optimal control system has been applied in G.S.C with the productivity of fifty thousand tons per year and the industrial tests have achieved satisfactory results:the heat consumption ups to 3.09MJ/kg,a decrease of 14.3%;the furnace temperature is controlled within 1040±5℃,a decrease of 8.8%;oxygen content is controlled within 1-2%,a decrease of 75%;NO emission is around 53ppm,a decrease of 53.9%.
引文
[1]梅炽,殷志云,周萍,等.现代炉窑的全息仿真[J].中南工业大学学报,1999,30(6):592-596
    [2]杨重愚.氧化铝生产工艺学[M].北京:冶金工业出版社,1994
    [3]卫璜.氢氧化铝气态悬浮焙烧工艺整体优化研究:[硕士学位论文].沈阳:东北大学,2002
    [4]中国有色金属工业总公司职工教育教材编审办公室.氧化铝生产工艺[M].1990
    [5]Nielsen P B,Madsen J S,Coles C W.Retrofit works at St.Lawrence[J].Rock Products,1989,92(10):48-53
    [6]Karis L A.Upgrading existing preheater systems for energy conservation and increased capacity[A].IEEE Cement Industry Technical Conference[C],29th IEEE Cement Industry Technical Conference,San Francisco,CA.USA,1987:449-459
    [7]Lind-Nielsen B,Fenger J,Touborg J.KALKBRENNEN NACH DEM SCHWEBEGASVERFAHREN.left bracket Lime Burning in a Gas Suspension Calciner right bracket[J].Zem Kalk Gips,1980,33(10):493-497
    [8]桂康,江新民,都百顺,等.采用气态悬浮焙烧技术改造老式回转窑[J].有色冶金节能,2001,5:40-44
    [9]冯文洁,白永民,樊俊钊.流态化焙烧技术与国内发展情况[J].山西冶金,2004,2:65-68
    [10]包月天.氢氧化铝流态化焙烧技术应用现状与发展趋势[J].轻金属,1995,11:18-22
    [11]王剑锋,周爱萍.初论氢氧化铝流态化焙烧技术与国内应用[J].轻金属,1997,11:13-16
    [12]高贵超.改进氢氧化铝焙烧工艺节能增效保护环境[J].轻金属,1997,11:21-23
    [13]王文光.氢氧化铝流态化焙烧炉技术考察报告[J].轻金属,1994,6:11-14
    [14]Anon.Gas suspension calciner for Al2O3 production[J].World Mining,1980,33(10):52-55
    [15]Raahauge B E,Hansen P H,Theisen K G.,et al.Application of gas suspension calciner in relation to Bayer hydrate properties[A].Sydney Conference,1981, Australasian Institute of Mining and Metallurgy[C],1981:281-293
    [16]Yamada K,Harato T,Shiozaki Y,et al.Development of a fluid calciner with suspension perheaters[A].Light Metals:Proceedings of Sessions[C],AIME Annual Meeting(Warrendale,Pennsylvania),1983:159-171
    [17]Maersk B.Gas Suspension Calcination of Industrial Minerals:A Versatile Process for Carbonate and Hydroxide Raw Materials[J].Zement-Kalk-Gips,Edition B,1984,37(1):41-49
    [18]Smidth F L.GSC processing of carbonate rocks-Gas suspension calcinations of limestone,dolomite and magnesite[J].Ciments Betons Platres Chaux.1987,4(87):221-223
    [19]Ilkjaer J,Bastue L,Raahauge B E.Alumina calcination with the Multi Purpose Calciner[A].Light Metals:Proceedings of Sessions[C],TMS Annual Meeting (Warrendale,Pennsylvania),Light Metals,1997:107-111
    [20]Fenger J,Raahauge B E,Wind C B.Experience with 3×4500 TPD Gas Suspension Calciners(GSC) for alumina[A].TMS Light Metals[C],Light Metals 2005-Proceedings of the Technical Sessions Presented by the TMS Aluminium Committee,2005:245-249
    [21]王文光,路军.世界最大的气态悬浮焙烧炉在中国长城铝业公司投入生产[J].轻金属,1996,11:16-19
    [22]路军.1850t/d气态悬浮焙烧炉性能考核与设计问题分析[J].轻金属,1998,9:7-23
    [23]孙克萍,先晋聪,晋瑞清.氧化铝焙烧炉热耗分析及应用前景研讨[J].现代机械,2001,1:57-59
    [24]涂福炳,周孑民,马爱纯,等.气体悬浮焙烧炉节能措施分析[J].有色冶金节能,2007,5:24-28
    [25]曹广和.氧化铝流态化焙烧炉内衬设计及材料的国产化[J].轻金属,2005,1:17-21
    [26]阮克胜.气体悬浮焙烧炉点火器内衬材料的选择[J].工业加热,2001,3:54-55
    [27]王春.气体悬浮焙烧炉点火器内衬的改进[J].耐火材料,2002,5:303
    [28]王晏斌,陈步学.焙烧炉点火燃烧器站故障分析与解决方案[J].有色冶金节能,2002,19(1):20-22
    [29]董保才,姬学良,王永惠.气态悬浮焙烧炉燃烧装置对比分析[J].有色冶炼,2003,6:18-20
    [30]刘家瑞.气体悬浮焙烧炉在氧化铝生产中的应用及改造[J].轻金属,1995,1:17-20
    [31]程裕国.气态悬浮焙烧炉的改进和性能优化[J].轻金属,1998,9:13-17
    [32]张洁,冯国政.气体悬浮焙烧炉的应用和改进[J].矿产保护与利用,2002,6:42-46
    [33]代关锋.应用气体悬浮焙烧炉降低氧化铝焙烧温度的经济效益[J].世界有色金属,2002,4:18-20
    [34]冯长森,高贵超,邬春,等.氧化铝焙烧工序的余热利用方法[P].02135746.3,2002-10-29
    [35]原普轩,胡子龙.气态悬浮焙烧炉旋风分离器的改进及其效果[J].轻金属,1998,1:13-16
    [36]杨权平,张文晋,张娟莉,等.气态悬浮焙烧炉的优化改进[J].中国有色冶金,2004,2:42-45
    [37]冯文洁,樊俊钊,吴世哲,等.气态悬浮焙烧炉的应用及节能分析[J].有色冶金节能,2004,21(4):44-46
    [38]张文晋,张娟莉,姬学良.对气态悬浮焙烧炉的优化改进[J].轻金属.2004,6:19-22
    [39]王学诗.氢氧化铝焙烧炉电收尘回收料利用途径选优[J].轻金属,1996,6:7-19
    [40]李文超,于斌.提高氢氧化铝气态悬浮焙烧炉产能的几点看法[J].轻金属,1997,2:19-21
    [41]姬学良,胡红霞.提高氢氧化铝气态悬浮焙烧炉产能的措施[J].轻金属,2001,6:22-24
    [42]姬学良.氢氧化铝气态悬浮焙烧炉的技术改进[J].工业炉,2001,23(2):29-40
    [43]梅炽.有色冶金炉窑仿真与优化[J].有色设备,1998,6:1-4
    [44]杨卫宏.数值模拟在工业炉窑研究与开发中的应用:[博士学位论文].长沙:中南大学,2005
    [45]Hasegawa T,Tanaka R,Niioka T.Combustion with high temperature low oxygen air in regenerative burners[A].Proceedings of the First Asia-Pacific Conference on Combustion[C],Osaka,Japan May,1997:290-293
    [46]Yasuda T,Ueno C.Dissemination project of industrial furnace revamped with HTAC[A].Proceedings of the Second International Seminar on High Temperature Combustion in Industrial Furnace[C],Stockholm,Sweden, January.2000[ISBN 83-912395-4-3]
    [47]祁海鹰,李宇红,由长福,等.高温空气燃烧技术的国际发展动态[J].工业加热,2003,1:1-6
    [48]Sengrung W,Wenchen C,Jack C.Low NOx heavy fuel oil combustion with high temperature air[J].Fuel,2007,86:820-828
    [49]Gupta A K.Flame characteristics and challenges with high temperature air combustion[A].Proceedings of 2~(nd) International seminar on high temperature combustion in industrial furnaces[C],Stockholm,2000:17-18
    [50]关运泽,白皓,聂雄方,等.超低NOx高温空气燃烧技术在燃油室状锻造炉上的应用研究[J].工业炉,2001,23(2):5-7
    [51]张先棹,尹丹模.高温低氧燃烧方法的应用初探[J].工业炉,2002,24(1):13-17
    [52]李留恩,贾伟,苍利民.NOx的形成及降低NOx排放量的措施[J].真空电子技术,2002,6:28-29
    [53]宋伟蕊.高温空气燃烧的数值模拟:[硕士学位论文].沈阳:东北大学,2004
    [54]祁海鹰,李宇红,由长福,等.高温低氧燃烧条件下氮氧化物的生成特性[J].燃烧科学与技术,2002,8(1):17-22
    [55]张胤,李松汾,贺友多.氧含量对高温燃烧过程的影响研究[J].包头钢铁学院学报,2002,21(3):211-215
    [56]Rong H,Toshiyuki S,Makoto T,et al.Analysis of low NO emission in high temperature air combustion for pulverized coal[J].Fuel,2004,83:1133-1141
    [57]Yang W,Blasiak W.Mathematical modelling of NO emissions from high-temperature air combustion with nitrous oxide mechanism[J].Fuel Processing Technology,2005,86(9):943-957
    [58]蒋绍坚,艾元方,彭好义,等.工业炉内高温低氧反应气氛的建立[J].冶金动力,2000,4:1-3
    [59]Kremer H,May F,Wirtz S.The influence of furnace design on the NO formation in high temperature processes[J].Energy Conversion and Management,2001,42:1937-1952
    [60]Delabroy O,Haile E,Lacas F,et al.Passive and active control of NOx in industrial burners[J].Experimental Thermal and Fluid Science,1998,16:64-75
    [61]Weihong Y,Wlodzimierz B.Numerical study of fuel temperature influence on single gas jet combustion in highly preheated and oxygen deficient air[J]. Energy,2005,30:385-398
    [62]Konnov A A,Colson G,Ruyck D J.NO formation rates for hydrogen combustion in stirred reactors[J].Fuel,2001,80:49-65
    [63]Staiger B,Unterberger S,Berger R,et al.Development of an air staging technology to reduce NOx emissions in grate fired boilers[J].Energy,2005,30:1429-1438
    [64]Xu M,Azevedo J L T,Carvalho M G.Modelling of the combustion process and NOx emission in a utility boiler[J].Fuel,2000,79:1611-1619
    [65]林玮,王乃宁.旋风分离器内三维两相流场的数值模拟[J].动力工程,1999,19(1):72-76
    [66]Leschziner M A,Rodi W.Computation of strongly swirling axisymmetrical free jets[J].A IA AJ.,1984,22(12):1742-1747
    [67]魏志军,张平.旋风分离器气相流场的数值模拟[J].北京理工大学学报,2000,20(5):561-564
    [68]Chen Y S,Kim S W..Computation of turbulent flows using anextended k-εturbulence closure model[R].NASA CR-179204,1987
    [69]Emiliano I Q M.Numerical analysis of steay incompressible turbulent flow in a cyclone separator.Master Thesis,The University of Texas at Arlington,1996
    [70]Christian F.Exploratory experimental and theoretical studies of cyclone gasification of wood powder.PHD Thesis,Institution for Maskinteknik,1999
    [71]王海刚,刘石.不同湍流模型在旋风分离器三维数值模拟中的应用和比较[J].热能动力工程,2003,18(4):337-342
    [72]苏虎.循环流化床锅炉旋风分离器内部气固体两相流动的数值模拟:[硕士学位论文].西安:西安交通大学,2004
    [73]张佑林,刘伟华,谢尔宾纳.旋风预热器气固两相流场的数值模拟[J].中国水泥,2006,8:45-47
    [74]钱付平,章名耀.旋风分离器分离性能的经验模型与数值预测[J].东南大学学报(自然科学版),2005,35(1):35-39
    [75]钱付平,章名耀.温度对旋风分离器分离性能影响的数值研究[J].动力工程,2006,26(2):253-257
    [76]钱付平,章名耀.不同排尘结构旋风分离器的分离特性[J].燃烧科学与技术,2006,12(2):169-174
    [77]杨卫宏,萧泽强.双级旋风分离器特性的计算机预报[J].中南工业大学学报,1999,30(5):493-496
    [78]谷新春,王伟文,王立新,等.环流式旋风除尘器内流场的数值模拟[J].高校化学工程学报,2007,21(3):411-416
    [79]施圣荣,刘建辉.人工智能·专家系统·程序设计[M].沈阳:辽宁大学出版社,1992
    [80]项云伟,王耀南.复杂工业过程的智能控制和智能管理系统集成[J].湖南大学学报(自然科学版),2000,27(1):62-67
    [81]Zadeh L A.Fuzzy Sets.Informat control[J].1965,8:338-353
    [82]Mamdani E H.Applications of fuzzy alyorithms for simple dynamic plant[A].Proc.IEE,1974,121:1585-1588
    [83]王耀南.智能控制系统模糊逻辑、专家系统、神经网络控制[M].长沙:湖南大学出版社,1996
    [84]李松仁.选矿专家系统[J].金属矿山,1996,245(11):15-19
    [85]刘金琨,邓守强.专家系统发展的历史及趋势[J].计算机时代,1995,(5):20-21
    [86]杨龙.专家系统发展及其开发工具设计实践[J].2000,156(3):33-36
    [87]李少远,席裕庚,陈增强,等.智能控制的新进展[J].控制与决策,2000,15(2):136-140
    [88]蔡自兴,陈海燕,魏世勇.智能控制工程研究的进展[J].控制工程,2003,10(1):1-5
    [89]王雅琳.智能集成建模理论及其在有色冶炼过程优化控制中的应用研究:[博士学位论文].长沙:中南大学,2001
    [90]杜玉晓,吴敏,桂卫华.铅锌烧结过程的智能集成优化控制系统[J].中南大学学报(自然科学版),2003,34(4):345-349
    [91]王耀南,张昌凡,刘治.专家模糊神经网络控制系统在复杂工业过程中的应用[J].电机与控制学报,2000,4(3):175-178
    [92]刘金棍,王树青.多智能体控制系统的设计与实现[J].控制理论与应用,1999,16(4):580-582
    [93]刘金琨,龚报钧,王树青.高炉分布式智能控制系统的研究[J].浙江大学学报(工学版),2000,34(2):194-199
    [94]赵利敏.电站锅炉炉况模糊诊断专家系统的研究[J].电站系统工程,1996,12(3):20-23
    [95]易金萍,文敦伟,邓胜祥,等.石灰炉炉况诊断专家系统的开发与应用[J].工业炉,2002,24(2):21-29
    [96]王庆,巴得纯,王晓冬,等.RH-KTB炉外精炼过程的故障诊断专家系统 [J].工业加热,2003,2:22-23
    [97]叶函,冯斌,姚群,等.燃煤电厂袋式除尘专家系统开发研究[J].工业安全与环保,2007,33(1):10-11
    [98]李俊基.基于模糊神经网络的热风回流炉温度控制:[硕士学位论文].天津:天津大学,2005
    [99]常莉莉.模糊神经网络在循环流化床中的应用:[硕士学位论文].北京:华北电力大学,2006
    [100]宁佃举.氢氧化铝循环焙烧炉的DCS控制系统[J].轻金属,1999,9:10-13
    [101]宁佃举.循环焙烧炉的自动控制系统[J].自动化仪表,2001,22(7):44-46
    [102]张斌.DCS系统在氧化铝焙烧过程控制中的应用[J].有色冶炼,2002,12(6):162-163
    [103]王春珍.DCS与PLC在氢氧化铝悬浮焙烧炉中的应用[J].有色金属设计,1998,25(2):19-23
    [104]樊兆民.回转窑生产高温氧化铝自控研究[J].世界有色金属,2006,5:21
    [105]韩秀琴.简论焙烧过程中的集散控制系统[J].轻金属,1995,9:6-9
    [106]韩国荣,吴刚,袁淑敏.国产DCS控制系统在氧化铝循环焙烧炉中的应用[J].自动化仪表,2005,26(6):56-58
    [107]李丰才,赵冰,杨波,等.气态悬浮焙烧炉自动控制系统[J].中南工业大学学报(自然科学版),2003,34(增2):147-149
    [108]韩国荣,袁淑敏.高温氧化铝焙烧控制系统的优化方案[J].自动化博览,2005,S2:49-50
    [109]张立强,李文超.关于Al(OH)3焙烧的几个数模的建立[J].有色冶金节能,1998,4:11-15
    [110]卫璜.Al(OH)3气态悬浮焙烧工艺参数与产能、消耗的关系[J].轻金属,2003,1:13-18
    [111]唐美琼,陆继东,金刚,等.循环流化床氢氧化铝焙烧系统的设计软件平台开发[J].有色金属(冶炼部分),2004,3:49-52
    [112]赵武壮.节能降耗减排是有色金属工业发展重点[J].中国有色金属,2007,2:24-25
    [113]林青,杜江洁.沸腾焙烧炉罗茨鼓风机故障分析及防范措施[J].有色设备,2001,1:28-30
    [114]关琦.丹麦史密斯公司的氢氧化铝焙烧技术[J].世界有色金属,2000,8:29-30
    [115]李欣峰.炼铜闪速炉熔炼过程的数值分析与优化:[博士学位论文].长沙:中南大学,2001
    [116]王天庆.降低气态悬浮焙烧炉热耗成本的实践[J].有色冶金节能,2004,21(4):91-94
    [117]王福军.计算流体动力学分析--CFD软件原理与应用[M].北京:清华大学出版社,2004
    [118]Benesch W,Kremer H.Mathematical Modelling of Fluid Flow and Mixing in Tangentially Fired Furnaces[A].20th Symp.(Int.) on Comb.[C].the Combustion Institute.1984:549-557
    [119]李长志,王莹,蓝鹏.湍流气固两相流动数值模拟理论研究的最新进展[J].电站系统工程,2002,18(3):19-20
    [120]Chen C J,Jaw S Y.Fundamentals of turbulence modeling.Taylor&Francis,Washington,1998
    [121]梅炽.有色冶金炉窑仿真与优化[M].北京:冶金工业出版社,2001
    [122]赵玉新.FLUENT使用说明[R].长沙:国防科学技术大学航天与材料工程学院资料,2004
    [123]Rodriguez N J,Davey K,Gaytan J L S.The control volume formulation to model the convective-diffusive unsteady heat transfer over the 1-D semi-infinite domain[J].Comput.Methods Appl.Mech.Engrg.2007,196:4059-4074
    [124]Patanker S V,Spalding D B.A calculation processure for heat,mass and momentun transfer in three-dimensional parabolic flows[J].Int J Heat Transfer,1972,15:1787-1860
    [125]Shih T M,Ren A L.Primitive variable formulations using nonstaggered grid[J].Numer.Heat Transfer,1984,7:413-428
    [126]Majumdar S.Role of underrelaxation on momentum interpolation for calculation of flow with nonstaggered grids[J].Numer.Heat Tranfer,1988,13:125-132
    [127]Launder B E,Spalding D B.Lectures in Mathematical Models of Turbulence [M].London:Academic Press,1972
    [128]范维澄,万跃鹏.流动及燃烧的模型与计算[M].合肥:中国科学技术大学出版社,1992
    [129]梅炽,李欣峰,殷志云,等.阳极焙烧炉燃烧室三场动态仿真[J].中南工业大学学报,1998,29(5):438-441
    [130]Cheng P.Two-Dimensional Radiating Gas Flow by a Moment Method[J].AIAA Journal,1964,2:1662-1664
    [131]Siegel R,Howell J R.Thermal Radiation Heat Transfer[M].Washington D.C.:Hemisphere Publishing Corporation,1992
    [132]Lockwood F C,Romo-Millares C A.Mathematical modelling of fuel-NO emission from PF burners[J].Journal of the Institute of Energy,1992,65:144-152
    [133]De Soete G G.Overall reaction rates of NO and N_2 formation from fuel nitrogen[A].In 15th Symp.on Combustion,The Combustion Inst.,1976:1093-1102
    [134]Dupont V,Pourkashanian M,Williams A,et al.Reduction of NOx formation in natural gas burner flames[J].Fuel,1993,72(4):497-503
    [135]钟水库,马宪国,赵无非,等.高温低氧燃烧过程中NO排放规律研究[J].热能动力工程.2004,19(5):483-486
    [136]王政民.高温低氧燃烧方法的热工规律和扩大应用[J].冶金能源,2003,22(2):24-29
    [137]YS/T4381.1-2001.砂状氧化铝物理性能测定方法[S]
    [138]朱鲜红.现行氧化铝粒度分析方法评述[J].中国有色冶金,2004,1:9-10
    [139]化学工程手册编委会.化学工程手册[M].北京:化学工业出版社,1989
    [140]张海红.旋风分离器流场与分离性能的数值模拟研究:[硕士学位论文].郑州:郑州大学,2004
    [141]何廷树,嵇鹰,徐德龙.下料管处漏风导致旋风筒分离效率降低幅度的影响因素研究[J].水泥,1998,6:9-11
    [142]李昌勇.漏风对洪堡型旋风预热器工作性能的影响[R].南京化工学院内部资料,1987
    [143]时铭显,吴小林.旋风分离器大型冷模试验研究[J].化工机械,1993,187-192
    [144]关世太.我国旋风分离技术取得突破性进展[N].中国化工报,2005-7-1/T00
    [145]谭永梅.影响旋风预热器实际分离效率的因素[J].内蒙古石油化工,2003,29:11-14
    [146]李建隆,王伟文,王立新.环流式旋风除尘器的结构与性能[A].中外防腐蚀和分离工程新技术、新产品应用推广大会论文集[C].北京:中国化工学会,2004,237-243
    [147]周学林,王政,王伟文,等.环流式旋风除尘器的开发(Ⅰ)实验研究与工 业放大[A].中国化工学会第九届全国化学工程科技报告会论文集[C].北京:中国化工学会,1998,549-552
    [148]周学林,王政,王伟文,等.环流式旋风除尘器的开发(Ⅱ)分离效率的数学模型[A].中国化工学会第九届全国化学工程科技报告会论文集会[C].北京:中国化工学会,1998,552-557
    [149]李建隆,王伟文,王立新,等.环流式旋风除尘器的结构改进与优化[J].化工进展,2005,24:143-146
    [150]樊文贞.气态悬浮焙烧炉电收尘器的改造[J].太原理工大学学报,2001,32(1):57-59
    [151]李永胜,赵俊惠,鲁玉弟.引进气体悬浮焙烧炉返灰系统的改造及应用[J].有色设备,2001,5:29-30
    [152]Honglin L.A hybrid AI optimization method applied to industrial processes[J].Chemometrics and Intelligent Laboratory Systems,1999,45:101-104
    [153]Li C,Paul B,Zhongke S.The strongest schema learning GA and its application to multilevel thresholding[J].Image and Vision Computing,2008,26:716-724
    [154]Holland J H.Adaptation in natural and artificial systems[M].Ann Arbor,MI:Univ.Michigan Press,1975
    [155]Chingchang L,Shinghwang D.Evolutionary selection of model for time constrained decision problems:A GA approach[J].Expert Systems with Applications,2008,34:1886-1892
    [156]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996
    [157]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2000
    [158]ITO Y.Representation of functions by superposition of a step or sigmoidal functions and their applications to neural network theory[J].Neural Networks,1991,4:385-394
    [159]Kolmogorov A N.On the representation of continuous functions of many variables by superposition of continuous functions of one variable and addition[J].Doklady Akademi Nauk USSR,1957,114:953-956
    [160]蔡自兴.智能控制(第二版)[M].北京:电子工业出版社,2004,236-302
    [161]Carroll S M,Dickinson B W.Construction of neural nets using the radon transform[A].Neural Networks,International Joint Conference on[C].1989,1:607-611
    [162]Cybenko G.Approximation by superpositions of a single function[J].Math.Of Control,Signals and Systems,1989,2:303-314
    [163]武妍,张立明.神经网络的泛化能力与结构优化算法研究[J].计算机应用研究,2002,6:21-25
    [164]魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001,27(6):806-815
    [165]张鸿宾.训练多层网络的样本数问题[J].自动化学报,1993,19(1):71-77
    [166]Baum E B,Haussler D.What size net gives valid generalization?[A].NIPSI[C],San Mateo,CA,1989:81-90
    [167]Partridge D.Network generalization difference squantified[J].Neural Networks,1996,9(2):263-271
    [168]Cohn D.Improving generalization with active learning[J].Machine Learning,1994,15:201-221
    [169]An G.The effect of adding noise during backpropagation training on a generalization performance[J].Neural Computation,1996,8:643-671
    [170]Mezard M,Nadal J P.Learning in Feedforward Layered Networks:the Tiling Algorithm[J].Journal of Physics,A:Math.Gen.,1989,22:2191-2203
    [171]Frean M.The Upstart Algorithm:A Method for Constructing and Training Feedforward Neural Network[J].Neural Computation,1990,2:198-209
    [172]Fahlman S E,Lebiere C.The Cascade-correction Learning Architecture[A].Advances in Neural Network Using Processing System 2(Touretzky,D.S.Ed.)[C],1990:524-532
    [173]Mikko L.Modified Cascade-Correlation Learning for Classification[J].IEEE Trans.on Neural Networks,2000,11(3):795-798
    [174]Reed R.Pruning Algorithms-A Survey[J].IEEE Trans.Neural Networks,1993,4:74027471
    [175]Bebis G;Georgiopoulos M.Feed-dorward Neural Networks[J].IEEE Potentials,1994,13(4):27-31
    [176]Karnin E D.A Simple Procedure for Pruning Back-propagation Trained Neural Networks[J].IEEE Trans.on Neural Networks,1990,1(2):239-242
    [177]王士同.神经模糊系统及其应用[M].北京:北京航空航天大学出版社,1998
    [178]雷鸣,尹申明,杨叔子.神经网络自适应学习研究[J].系统工程与电子技术,1994,3:19-27
    [179]申东日,冯少辉,陈义俊.BP网络改进方法概述[J].化工自动化及仪表,2000,27(1):30-32
    [180]远祯,罗波.BP网络的改进研究[J].信息技术,2006,2:88-91
    [181]Rumelhart D E,Hinton G E,Williams R J.Learning representations by back propagating errors[J].Nature,1986,323:533-536
    [182]胡耀垓,李伟,胡继明.一种改进激活函数的人工神经网络及其应用[J].武汉大学学报(信息科学版),2004,29(10):916-919
    [183]李建平.小波分析与信号处理--理论、应用及软件实现[M].重庆:重庆出版社,1997
    [184]胡峰,孙国基.基于多项式拟合的容错平滑与容错微分平滑[J].工程数学学报,2000,17(2):53-57
    [185]李明河,查烽炜.粉煤喷吹速率测量数据的平滑处理[J].安徽工业大学学报,2005,22(3):262-265
    [186]邓聚龙.灰色控制系统(第二版)[M].武汉:华中理工大学出版社,1997
    [187]何小荣,陈丙珍,赵晓光,等.改善BP网络检验效果的研究[J].清华大学学报,1995(3):31-36
    [188]Kamel S M.New algorithms for solving the fuzzyc-means clustering problem[J].Pattern Recognition,1994,27:421
    [189]安良,胡勇,胡良梅,等.一种改进的模糊C-均值(FCM)聚类算法[J].合肥工业大学学报(自然科学版),2003,26(3):354-358
    [190]刘思峰,郭天榜,党耀国,等.灰色系统理论及应用[M].北京:科技出版社,1999
    [191]Grossmann A,Morlet J.Decomposition of hardyfunctions into square integrable wavelets of constant shape[J].SIAM J.MATH.ANAL.,1984,15(4):723-736
    [192]Grossmann A,Morlet J.Transformsas sociated to square integrable group representations,I:general results[J].Math.Phys.,1985,26(10):2473-2479
    [193]Meyer Y.Wavelets and applications[A].Proceedings of the International Conference[C],Marseiile,France,1989
    [194]Tzuli T.A research on the prediction of machining accuracy by the deterministic grey dynamic model DGDM(1,1,1)[J].Applied Mathematics and Computation,2005,161:923-945
    [195]Trivedi H V,Singh J K.Application of grey system theory in the development of a runoff prediction model[J].Biosystems Engineering,2005,92(4):521-526
    [196]方崇智,萧德云.过程辨识[M].北京:清华大学出版社,1988
    [197]Cubillos F A,Lima E L.Real-time optimization systems based on grey-box neural models[J].Computer Aided Chemical Engineering,2003,14:395-400
    [198]Xianggang Yin,Weidong Yu.The virtual manufacturing model of the worsted yarn based on artificial neural networks and grey theory[J].Applied Mathematics and Computation,2007,185:322-332
    [199]李媛媛,牛东晓.基于最优可信度的月度负荷综合最优灰色神经网络预测模型[J].电网技术,2005,29(5):16-19
    [200]顾曦华,邢棉,牛东晓.多因素影响的灰色神经网络组合电力负荷预测[J].华东电力,2006,34(7):6-9
    [201]Sungyong P,Chonghun H.A nonlinear soft sensor based on multivariate smoothing procedure for quality estimation in distillation columns[J].Computers and Chemical Engineering,2000,24:871-877
    [202]Xianzhong D,Wancheng W,Yuhan D,et al."Assumed inherent sensor"inversion based ANN dynamic soft-sensing method and its application in erythromycin fermentation process[J].Computers and Chemical Engineering,2006,30:1203-1225
    [203]刘载文,王正祥,王小艺,等.过程神经元网络学习算法及软测量方法的研究[J].系统仿真学报,2007,19(7):1456-1459
    [204]赵征,刘吉臻,田亮.基于数据融合的燃料量软测量及煤质发热量在线校正[J].热能动力工程,2007,22(1):42-45
    [205]吴德荣,杨泽耒,周家骅.工业炉及其节能[M].北京:机械工业出版社,1990
    [206]刘克非.气态悬浮培烧护烘护操作要领[J].轻金属,1996,8:19-23
    [207]张化光,孟祥萍.智能控制基础理论及应用[M].机械工业出版社,2005
    [208]诸静.模糊控制原理与应用[M].北京:机械工业出版社,1995
    [209]王耀南,张昌凡,李孟秋.复杂工业过程的模糊神经网络自适应控制[J].电子测量与仪器学报,2006,14(2):46-51
    [210]易继锴,侯媛彬.智能控制技术[M].北京工业大学出版社,1999
    [211]张建国.PID控制器自整定技术的发展及实现[J].漳州职业大学学报,2004,1:56-61
    [212]何颖,鹿蕾,赵争鸣.PID参数自整定方法概述[J].现代电子技术,2004,24:20-23
    [213]牟赟,侯力,王炳炎,等.基于Matlab的2种Fuzzy2PID控制器的设计 与仿真[J].机械与电子,2007(1):70-72
    [214]黄坚,宋丽蓉.Fuzzy+参数模糊自整定PID控制调速系统及其仿真研究[J].苏州大学学报(工科版),2004,24(4):17-20
    [215]赵日晖,边立秀.PID参数模糊自整定循环流化床床温控制系统[J].自动化技术与应用,2003,22(8):52-58
    [216]匡和碧,刘海峰,蔡维由,等.FUZZY自整定PID参数控制器在水轮机调速器中的应用[J].中国农村水利水电,2002,8:32-34
    [217]朱鹰屏,王耀南,黄芷定.基于模糊PID原理的液位控制器的设计[J].自动化与仪表,2004(5):48-50
    [218]王万召,王增欣.BP神经网络PID控制器在汽温控制中的应用[J].自动化仪表,2006,27(12):31-33
    [219]柴燕,杨博媚,张文英,等.基于BP神经网络的PID智能温度控制器设计[J].中国仪器仪表,2006,5:66-68
    [220]文汉云.硫化氢燃烧的神经网络控制及其仿真[J].自动化与仪器仪表,2006,1:24-26
    [221]张雪峰,王芳林,陈龙.遗传算法在电石炉系统参数优化中的应用[J].自动化仪表,2006,27(12):29-30
    [222]杨建新,户秀琼,杜永贵.遗传算法在PID自适应控制中的应用[J].太原理工大学学报,2006,37(1):108-110
    [223]陈文修.工业炉[M].长沙:中南工业大学出版社,1990
    [224]张克良.基于模糊神经网络的锅炉燃烧控制方法的研究:[硕士学位论文].天津:天津大学电气与自动化工程学院,2004
    [225]樊波,齐渊洪,严定鎏,等.热风炉燃烧控制技术的研究[J].钢铁,2005,40(4):17-20
    [226]施鸿宝,王秋荷编.专家系统[M].西安:西安交通大学出版社,1990
    [227]Shuhsien L.Expert system methodologies and applications-a decade review from 1995 to 2004[J].Expert Systems with Applications,2005,28:93-103
    [228]Huichun C,Gwojen H.A Delphi-based approach to developing expert systems with the cooperation of multiple experts[J].Expert Systems with Applications,2008,34:2826-2840
    [229]Musa J,Bahill A T.Interactive verification of knowledge based systems[J].IEEE Expert,1993,8(1):43-47
    [230]Sanders D A,Hudson A D,G.E.Tewkesbury,S.Mason.Automating the design of high-recirculation airlift reactors using a blackboard framework[J].Expert Systems with Applications,2000,18:231-245
    [231]Chunhsien C,Occe(?)a L G.Knowledge decomposition for a product design blackboard expert system[J].Artificial Intelligence in Engineering,2000,14:71-82
    [232]Shunchieh L,Shianshyong T,Chiawen T.Dynamic EMCUD for knowledge acquisition[J].Expert Systems with Applications,2008,34:833-844
    [233]Osvaldo C.KAMET:A comprehensive methodology for knowledge acquisition from multiple knowledge sources[J].Expert Systems with Applications,1998,14:1-16
    [234]Steven W.Knowledge acquisition and knowledge representation with class:the object-oriented paradigm[J].Expert Systems with Applications,1998,15:235-244
    [235]王兵,莫建军.基于一种灵活、通用知识表达的知识获取工具设计[J].计算机应用与软件,2003,(10):47-49
    [236]赵卫东,李旗号.启发式知识获取方法研究[J].计算机工程,2002,28(1):62-64
    [237]Xingdong W,Uipani D.Induction by Attribute Elimination[J].IEEE Transaction on Knowledge and Data Engineering,1999,11(5):805-812
    [238]张吉锋,承安,贾洁之.专家系统与知识工程引论[M].北京:清华大学出版社,1988.14-15
    [239]吴海桥,刘毅,丁运亮.基于关系数据库的知识库的建立[J].微型电脑应用,2001,11(17):52-54
    [240]李晓强,崔德光.基于关系数据库的知识库结构设计[J].计算机工程与应用,2001,24:101-103
    [241]吴顺祥,吉国力.数据库系统与知识库系统的对比分析[J].计算机工程与应用,1999,9:83-85
    [242]张晶,曾宪云.基于神经网络的专家系统的应用研究[J].微计算机信息,2002,18(10):1-2
    [243]江丽,甄少华.基于BP神经网络的液压系统故障诊断专家系统[J].机床与液压,2002,4:160-225
    [244]郭震.基于神经网络的专家系统实现研究[J].红水河,2003,22(3):62-65
    [245]龙德应.人工神经网络专家系统应用研究[J].广东工业大学学报,2000,17(3):44-47
    [246]吴今培,肖健华.智能故障诊断与专家系统[M].北京:科学出版社,1997, 189-212
    [247]方瑞明.神经网络推理机制的电机调整设计专家系统[J].华侨大学学报(自然科学版),2006,27(2):201-204
    [248]郑林峰,霍豫璞.锅炉引风机常见故障及处理方法[J].中国科技信息,2005,14:136
    [249]连潮生.引风机运行中发生失速的原因及预防措施[J].水利电力机械,2006,28(6):19-20
    [250]黄新元.电站锅炉运行与燃烧调整[M].北京:中国电力出版社,2002
    [251]伍伯俊,解焕民.试用火用平衡法探讨工业窑炉的节能途径[J].水泥技术,1994,6:10-12
    [252]王忠金,周德成,戴万福.工业炉窑节能原理的数学表达及节能分析[J].工业炉,2004,26(5):1-3
    [253]赵兵涛,沈恒根,许文元,等.旋风分离器内气固分离模型的研究进展[J].中国粉体技术,2003,6:45-48
    [254]Rosin P,Rammler E,Intelmann W.Grundlagen und grenzen der zyklonentstaubung[J].Z Ver Dtsch Ing,1932,76(16):433-438
    [255]Lapple C E.Gravity and centrifugal separation[J].Ind HygQ,1950,1:40-45
    [256]Stairmand C J.The design and performance of cyclone separators[J].Trans Inst Chem Eng,1951,29:356-383
    [257]Barth W.Design and layout of the cyclone separator on the basis of new investigations[J].Brennst Waerme Kreft,1956,8:1-9
    [258]井伊谷刚一.除尘装置的性能[M].马文彦[译].北京:机械工业出版社,1981
    [259]Leith D,Licht W.The collection efficiency of cyclone type particle collectors-a new theoretical approach[J].AI ChE Syrup Ser,1972,126:196-206
    [260]金国淼.除尘设备设计[M].上海:上海科学技术出版社,1985
    [261]陈冬梅,王晓峰.高温级旋风筒的分离效率与预热器系统热耗关系的研究[J].中国建材装备,1999,3:9-11
    [262]胡峪,刘静.VC++高级编程技巧与示例[M].西安:西安电子科技大学出版社,2001
    [263]刘慧敏.新一代工业控制系统--PAC[J].中国科技信息,2006,1:71
    [264]李传淮,吕文义.氧化铝生产过程中的燃烧控制[J].自动化仪表,2002,23(3):48-50
    [265]何海江.OPC客户端关键技术的实现[J].微计算机信息,2003,19(7): 76-78
    [266]马增良,兰斌.OPC数据访问服务器实现机制研究[J].计算机工程与应用,2003,39(21):65-67
    [267]惠鸿忠.利用VC++6.0实现上位机与PLC的串行通信[J].微计算机信息,2005,21(12):47-49
    [268]郭伟,金施群.基于VC++的S7-200和工控机的自由口通讯[J].工业计量,2007,17(1):16-19
    [269]Rockwell.DeviceNet specification.Release2.0,2002
    [270]徐达银,胡仁杰.DeviceNet通讯产品开发[J].工业控制计算机,2003,16(2):27-48
    [271]田旭东,舒国汀,朱文灏,等.DeviceNet仅限组2从站的报文端口管理[J].低压电器,2003,6:38-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700