高镁矿石酸浸降镁及浸出液综合利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于以严重蚀变的蛇纹石为主要脉石的镍、铜硫化矿或贵金属硫化矿,仅通过浮选等物理选矿难以获得易于冶炼的低镁优质精矿。这类矿石的选矿降镁难题至今仍未获得突破。本研究提出了酸浸降镁以解决上述高镁矿石选矿降镁难题的新方案。即用稀酸浸出的方法将蛇纹石中的MgO溶解以大幅降低最终精矿中MgO含量从而获得低镁优质精矿;同时,对进入浸出液的Mg、Fe等综合回收产出铁红、轻质氧化镁等产品。该方案不但能攻克高镁矿石选矿降镁难题,而且能提高矿石的资源综合利用率,产生明显的经济效益。
     本文对上述方案的可行性进行了理论分析与探讨,用热力学原理计算、分析研究了低酸浸出蛇纹石、各种含铁矿物及铜镍硫化矿物与稀酸的反应活性。结果表明,蛇纹石易与酸反应,其MgO可被稀酸完全浸出;含铁矿物中,铁的碳酸盐、硅酸盐、FeO等也将与MgO同时被浸出,磁黄铁矿(FeS)将部分被浸出,而Fe_2O_3、黄铁矿(FeS_2)则不会被浸出。黄铜矿、镍黄铁矿不易与稀酸反应。
     金宝山低品位铂钯矿是我国已探明的最大的独立铂族金属资源。但由于矿石所具有的“贫、细、杂、难”的特点,给选矿和铂族元素提取带来了巨大的困难,铂钯回收率偏低,尤其是浮选精矿含镁过高,于后续冶炼十分不利,一直阻碍着该资源的开发利用。
     在理论研究基础上,进行了低浓度硫酸浸出金宝山铂钯矿的试验研究,系统研究了酸浓度、浸出温度、浸出液固比、原矿细度等单因素条件与原矿中Mg、Fe浸出率间的关系,同时进行了浸出时间、酸浓度与Mg、Fe浸出率关系的正交实验。结果表明,上述因素均与Mg、Fe浸出率成正比关系;而酸浓度比浸出时间对Hg、FQ浸出率的影响显著得多。用25%左右浓度的硫酸,在常压下即可将金宝山铂钯矿中绝大部分MgO浸出。由于矿石经酸浸后其有用矿物的浮选活性大大提高,浸渣用简单流程少量药剂就可浮选出低镁优质铂钯精矿(MgO含量<3%),且Pt、Pd、Cu、Ni回收率较原矿浮选明显提高。这表明,
    
     酸浸一浸渣浮选是解决金宝山铂钮矿选矿降镁难题的一条有效途径,
     解决了该主贵资源的开发利用中的一个关键性难题。
     酸浸过程进入浸出液中的ag、ne可综合回收产出铁红、轻质氧
     化镁等产品。本研究中,用 F e’”水解法分离浸出液中的 M g、F e,滤饼
     经烘干、暇烧制备铁红:滤液再次净化后用纯碱将屿’”沉淀为碱式碳
     酸镁,碱式碳酸镁经烘干、懒烧制备轻质氧化镁,经权威机构检测,
     所制轻质氧化镁达国标优等品级。
     采用酸浸一浸渣浮选并对进入浸出液中的Mg、Fe综合回收产出
     铁红、轻质氧化镁等产品的新工艺开发利用金宝山铂铅矿,不但能很
     好解决其选矿降镁难题;同时还能大大提高其资源利用率及其开发利
     用的经济效益:浸渣中有用矿物的品位较原矿明显提高,因此采用该
     工艺可处理更低品位的原矿,可扩大金宝山铂铅矿的可采储量;浸渣
     浮选尾矿中 h。含量高达70%以上,且粒度细微,可进一步开发制备
     多孔硅如白碳黑等产品,因此有望实现整个工艺无尾矿产出,最终实
     现该矿资源的完全综合利用。
     硫酸法钛白生产中要产生大量废酸,每生产1吨钛白粉要产生浓
     度为 20%左右的废硫酸 8~10吨。如何治理、综合利用如此大量的废
     酸己成为硫酸法钛白生产企业迫切需要解决的重大难题。
     利用攀钢(集团)钛业公司钛白生产中产生的高浓度废酸(20%
     左右)作为浸出金宝山铂铅矿的浸取剂的试验研究结果表明,用钛白
     废酸作为金宝山铂铂矿的浸出用酸是完全可行的,这不但可以解决该
     I
     矿选矿降镁难题,进一步降低酸浸成本:而且也为硫酸法钛白生产中
     产牛的大量高浓度废酸找到了一条综合利用的有效途径。由于废酸中
     含有大量的Fe’”,酸浸液中Fe””浓度高,用水解法分离Mg、Fe,过滤
     困难。研究中采用黄铰铁矾法分离浸出液中的Mg、Fe,结果表明,
     该法很有效,沉淀易于过滤。所得黄镣铁矾沉淀可用于制备铁红:除
     铁余液经再次净化后可用较纯碱更廉价的混沉镁剂(NH.HO 与
     NHHCO的混合溶液)沉淀其中的Mg,所得碱式碳酸镁经洗涤、烘干、
     嫩烧制备轻质氧化镁,原矿中Mg()总收率达7O%以上,所得轻质氧化
     11
     3
    
     镁经检测达一等品级。回收Mg的余液还可产出硫酸镀。整?
If the main gangue in nickel-copper sulfide ores or precious metals sulfide ores is serpentine transformed from primary silicate minerals, it is difficult to get a high quality concentrate with lower MgO content that is suitable for smelting by physical mineral processing only such as floatation. This thesis put forward a new method to process this kind of ores. The MgO of serpentine is dissolved by diluted sulfuric acid so as to reduce MgO content of the final concentrate greatly. The ions of magnesium and iron dissolved in leaching solution can be utilized to produce iron oxide red and light magnesium oxide comprehensively. The new method not only can overcome the difficult problem about MgO's reducing of the ores with high MgO content by flotation, but also can raise the utilization ratio of the ores greatly. Therefore, treating the ores with the new method can lead obvious economic benefit.
    This thesis has studied the feasibility about the new method .The thermodynamic calculation and analysis for the reactions of serpentine and all of minerals containing Fe in sulfide ores as well as copper-nickel sulfide minerals with diluted sulfuric acid have been studied. The results showed that serpentine can react with diluted sulfuric acid easily and the MgO can be dissolved completely. Carbonate and silicate of iron as well as FeO in the minerals containing Fe also would be dissolved with leaching of MgO. Pyrrhotite (FeS) would be dissolved partly, but pyrite (FeS2) and iron oxide (FezOs) could not be dissolved with leaching of MgO. Chalcopyrite and pentlandite can also not react with diluted sulfuric acid.
    Jinbaoshan Platinum-Palladium Mine is so far the China's largest independent platinum group metals ore deposit. However, the platinum-palladium grade in the ore is rather low, not only the dissemination particle size of valuable minerals in the ore is extremely fine, but also the composition of the ore is very complex, and the serpentine content is high to 75%, so mineral processing of the ore is very difficult. The MgO content of floatation concentrate of the ore is difficult to reduce to below 20%. It is also difficult to smelt for such a concentrate with so high MgO content. For this reason, there is still no effective method to utilize the mineral resources at the present. Based on the theoretical studies, it has been investigated systematically that Jinbaoshan platinum-palladium ore was leached by diluted sulfuric acid. The relationships between leaching rate of Mg or Fe and consistency of sulfuric acid and temperature and liquid/solid ratio as well as particle size of the sample have been tested simultaneously. The full factorial experiment of the relationship between the consistency of sulfuric acid, leaching time and leaching rate of Mg has also been
    
    
    
    tested. The test results showed that: all of the single factors mentioned above are in direct proportion to leaching rate of Mg or Fe; for leaching rate of Mg or Fe, the influence of consistency of sulfuric acid is more remarkable than that of leaching time. The most MgO in Jinbaoshan platinum-palladium ore could be dissolved by diluted sulfuric acid solution with the consistency of 25%. Because the process characteristics of the residue are improved obviously, the high quality platinum-palladium concentrate with very low MgO content ( <3%)can be obtained from the residue by floatation using simple processing and small amount floating reagent, the recovery of Pt or Pd or Cu or Ni raised obviously. Therefore, the new method processing Jinbaoshan platinum-palladium ore by leaching and residue's flotation is very effective.
    The ions of magnesium and iron dissolved in leaching solution can be utilized to produce iron oxide red and light magnesium oxide comprehensively. Magnesium and iron in the leaching solution can be separated by hydrolysis method of Fe +, the iron oxide red can be produced from the hydrolyte by drying and calcining, the filter solution (MgSO4 solution) can be precipitated into magnesium carbonate (basic) with sodium carbonate and then
引文
[1]顾学民,铍碱土金属,《无机化学丛书》第二卷,科学出版社,1990年,83-103
    [2]金川镍钻研究所,峨眉郑州矿产综合利用研究所编著,金川镍矿工艺矿物与工艺关系,1987年
    [3]王致勇等,简明无机化学教程,高等教育出版社,1991年
    [4]F.A.Cotton,G.Wilkinson著,北京师范大学等译,高等无机化学,下册,人民教育出版社,1981年
    [5]孙传尧 印万忠著,硅酸盐矿物浮选原理,科学出版社,2001年
    [6]扬显万等编著,高温水溶液热力学数据计算手册,冶金工业出版社,1980
    [7]陈家镛等编著,湿法冶金中铁的分离与利用,冶金工业出版社,1991年
    [8]钟竹前等编著,湿法冶金过程,中南工业大学出版社,1988年
    [9]P.G. Shortridge et al. The effect of chemical composition and molecular weight of polysaccharide depressants on the flotation of talc, Int. J. Miner. Process. 59(2000),215-224
    [10]G.D. Senior et al. The selective flotation of pentlandite from a nickle ore, Int. J. Miner. Process. 43(1995), 209-234
    [11]Gordon E. Agar, Flotation of chalcoprite,pentlandite,pyrrhotite ores,Int. J. Miner. Process. 33(1981), 1~19
    [12]李冶华,含镁脉石对镍黄铁矿浮选的影响,中南矿冶学院学报,1996,24(1),37-41
    [13]郭昌槐等,六偏磷酸钠对含镍磁黄铁矿浮选的影响,有色金属(选矿部分),1985(6),15-19
    [14]李家庆,澳大利亚硫化镍矿选矿现状,甘肃有色金属,1993(3),6-14,42
    [15]愈瑞,铜镍硫化矿与磁黄铁矿浮选分离工艺,矿冶,1996,5(2),37-41,51
    [16]C.R. Edwards et al. THE EFFECT OF SLIME COATINGS OF THE SERPENTINE MINERALS, CHRYSOTILEANDLIZARDITE, ONPENLANDITE FLOTATION, Int. J. Miner. Process. 32(1980),33-42
    [17]旃习涵,国外蛇蚊石抑制剂的研究,国外金属矿选矿,1984(7),28-32
    [18]M.K.Rhodes,羧甲基纤维素药剂的物理性质对西澳大利亚硫化镍矿石氧化镁矿物的抑制作用的影响,国外金属矿选矿,1980(6),14-20
    [19]冯其明等,蛇蚊石对镍黄铁矿浮选的影响及其抑制剂研究现状,矿产保护与利用,1997(5),19-22
    [20]关杰等,有色金属,1985,37(4),29-36
    
    
    [21] J Corrans et al. The Recovery of Nickle and Gold from Suiphide Concentrates, X Ⅷ Intern. Miner. Proc. Congr, Sydey, 1993,1227-1231
    [22] 刘振中,金川铜镍矿浮选工艺流程的研究,有色金属(选矿部分),1985(6),19
    [23] 周积元,金川二矿区富矿石选矿工艺研究,甘肃有色金属,1988(4),7-13
    [24] 周世伯 方启学,金川二矿区矿石一产品方案选矿新工艺研究,甘肃有色金属,1990(2),17-19
    [25] 张新红 周世伯,金川二矿区矿石两产品方案选矿新工艺研究,甘肃有色金属,1990(4),9-13
    [26] 康纪珊 周世伯,提高金川镍精矿质量的研究,甘肃有色金属,1988(1),5-9
    [27] 金大安,金川铜镍矿闪速浮选工业试验后的思考,矿冶,1999,8(1)35-38,18
    [28] 法克清等,应用闪速浮选技术处理某铜镍矿石的研究,有色金属(选矿部分),1998(2),11-14
    [29] 金自木,硫化镍矿选矿现状及进展,甘肃有色金属,1992(2),15-20
    [30] 阴宪卿等,降低镍精矿中氧化镁含量的研究,矿冶,2001(2),42-44,54
    [31] 徐亚飞等,镍闪速炉合理渣型的研究,云南冶金,1999(2),36-39
    [32] 路长喜,提高二矿区富矿石精矿品位的研究与实践,甘肃有色金属,1993,(1)16-19
    [33] 曾新民,金川镍矿二矿区富矿石选矿新工艺研究,有色金属(选矿部分),1994(2),6-10
    [34] 曾新民,金川镍铜矿选矿降镁工艺研究与生产实践,有色金属(选矿部分),1996(1),1-5
    [35] 曾新民,金川镍矿二期选矿工艺研究与生产实践,有色金属(选矿部分),1998(2),1-5
    [36] 甘经超等,金川二矿区贫矿选矿工艺研究的讨论,有色金属(选矿部分),1998(4),1-5
    [37] 孟悦礼,金川镍铜矿选矿降镁难易程度探讨,有色金属(选矿部分),1996(4),1-5
    [38] 彭先淦等,金川镍矿选矿的技术进步,国外金属矿选矿,1998(4),30-32
    [39] 夏述良,金川二矿区富矿石提高镍精矿品位降低精矿氧化镁含量的研究和应用,国外金属矿选矿,1998(4),27-29
    [40] 黄开国,甘肃金川镍矿可持续发展选矿问题浅谈,国外金属矿选矿,2001(1),31-32
    [41] 张存福,金川二期工程选矿新工艺流程的研究,全国第二届镍钻学术会议论文集第五册,1992
    [42] 赵韶华,提高金川一矿区富矿石精矿品位降低氧化镁的试验研究,全国第二届镍钴学术会议论文集第五册,1992
    [43] 方启学等,提高金川一矿区矿石选矿精矿质量研究,全国第二届镍钴学术会议论文集第五册,1992
    [44] 李建军,金川镍选矿受充填料影响的研究,全国第二届镍钴学术会议论文集第六册,1992
    [45] 张广忠,金川二矿区矿石——产品方案应用碱性介质连续浮选效果研究,全国第二届镍钴
    
    
    [46] 杜万民等,金川镍闪速炉建成投产,甘肃有色金属,1994(1),17-21,5
    [47] V.Kirjavainen等,控制蛇纹石中硫化矿浮选因素的研究,国外金属矿选矿,1998(1),3-8
    [48] M. C. Pietrobon, et al. Recovery Mechanisms for Pentlandite and MgO-Bearing Gangue Minerals in Nickel Ores from Western Australia, Minerals Engineering, 1997,10(8),775-786
    [49] 昆明理工大学,金宝山低品位铂钯矿综合利用选矿工艺阶段研究简报,1998年4月,内部资料
    [50] 昆明理工大学,金宝山铂钯矿选矿工艺及新药剂研究(研究报告),1998年8月,内部资料
    [51] Huanbin Song, Process Characteristics Diagnosis and Beneficiability Study of the Ore in Jinbaoshan Platinum-Palladium Mine, phD Dissertation, 1999
    [52] 梁冬云,西南部低品位铂钯矿石中铂钯赋存状态研究,有色金属(选矿部分),2001(1),1-4
    [53] 唐敏,金宝山微细粒铂钯硫化矿的浮选研究,硕士论文,1999年
    [54] 云南省计委,云南省金宝山低品位铂钯矿资源综合利用,“九五”国家重点科技项目(攻关)计划可行性研究报告,内部资料
    [55] “九五”国家重点科技(攻关)项目年度进展情况总结汇报:云南金宝山低品位铂钯矿资源综合利用,1998年11月,内部资料
    [56] P.W. Bartlett, et al. Platinum_Palladium Concentrate Smelting and Pressure Leaching, Pecious Metals'89(proc. Conf.) Las Vegas, Nevada, USA. 1989
    [57] Lake Malcolm Jonh, et al. Process for recovering platinum group metals from ores also containing nickel, copper and iron, US patent, US4108639,1978
    [58] Peasley Edward R, et al. Recovery of platinum_group metals from ores, US patent,US4337226,1982
    [59] 邓崇新等,低品位铂钯资源湿法综合回收利用新工艺,贵金属,1997增刊,260-263
    [60] 世界有色金属,1996(5),11-8
    [61] 梁国兴等,镁盐生产现状及发展方向,国外金属矿选矿,1999(6),7-9
    [62] 云南化工信息中心,镁盐产品市场现状及分析(调研报告),2001年6月,内部资料
    [63] 周相廷等,水合碱式碳酸镁的组成及其形成机制的研究,无机盐工业,1993(1),26-28
    [64] 翟学良等,MgCO_3.3H_2O水热分解产物及其组成,应用化学,1996(5),79-81
    [65] 邹志毅等,蛇纹石化学处理的研究历史和现状—蛇纹石综合利用评述,矿产综合利用,1993(5),15-19
    [66] 杨智宽,蛇纹石粉矿综合利用研究,环境科学进展,1997(2),32-36
    
    
    [66] 杨智宽,蛇纹石粉矿综合利用研究,环境科学进展,1997(2),32-36
    [67] 刘绪庆等,用湿法从蛇纹石废粉矿制取轻质氧化镁的研究,无机盐工业,1995(1),2-5
    [68] S.Acharya,从金伯利岩尾矿中回收镁(MgO、MgSO_4)的研究,国外金属矿选矿,1992(12),17-22
    [69] 于少明等,蛇纹石综合利用的方法及其发展,环境与开发,1998(1),18-19
    [70] 郑岩锋等,蛇纹石制轻质氧化镁和白炭黑,无机盐工业,1993(2),16-18
    [71] 黄万抚等,从蛇纹石矿中综合回收镁、镍,中国物资再生,1992(9),8-10
    [72] 代原全等,从蛇纹石制备轻质碳酸镁和轻质氧化镁的扩试研究,四川师范大学学报(自然科学版),1998(2),192-195
    [73] 商蓉生,蛇纹石制镁盐及活性SiO_2的应用探讨,无机盐工业,1996(2),9-11
    [74] 韩廷信,喷雾焙烧法从蛇纹石中制取轻质氧化镁,无机盐工业,1999(3),10-11
    [75] 杨保俊等,蛇纹石硫酸浸出过程动力学研究,硅酸盐学报,1999(1),65-69
    [76] 杨保俊等,硫酸浓度对蛇纹石中氧化镁浸出反应速率的影响,应用化学,2001(3),197-199
    [77] 许金木等,食用级碱式碳酸镁生产工艺研究,现代化工,1997(5),37-38
    [78] Douglas S. Flett,Solution purification,Hydrometallurgy,30(1992),327-344
    [79] M.Nagamori,et al.Purification of magnesium salt solutions with ferrous salts and magnesium hydroxide,Hydrometallurgy,30(1992),499-513
    [80] S.Agatzini-Leonardou,et al.Removal of magnesium from Sulphate solutions by chemical precipitation,Mineral processing and Extractive metallurgy,107(1998),c123-c129
    [81] D.SHELL.A,et al.Precipitation of Magnesium Carbonate,Hydrometallurgy,22(1989),249-258
    [82] A.I.Fernandez,et al.Kinetic study of carbonation of MgO Slurries,Hydrometallurgy,53(1999),155-167
    [83] 杨宗志,拜耳公司硫酸法钛白的无公害生产,中国涂料,1996(4),42-44
    [84] 张玉林,硫酸法钛白粉生产中三废的综合治理,化工环保,1992(12),244-245
    [85] Thumn, et al. Reduction of waste acid in the Titanium dioxde industry,Recycl Int.,4th 1984,1074-1077
    [86] 葛龙桂等,钛白废酸中硫酸亚铁的分离及废酸回收,化工环保,1989,9(3),141-149
    [87] 王家琪等,利用钛白废硫酸生产工业硫酸锰,化工环保,1993(13)
    [88] 姚福琪,利用生产钛白粉的废酸和低品位软锰矿生产硫酸锰,河北化工,1992(4),22
    [89] 张玉林,钛白废酸用于硫酸铝生产,无机盐工业,1993(4),37-38
    
    
    [90] 卫志贤等,硫酸法生产钛白粉废液的综合利用,钛工业进展,1997(5),32-36
    [91] 杨宗志,国外钛白工业的近况和发展,钒钛,1994(1),31
    [92] 薛循生,用钛白废酸和菱苦土制取硫酸亚铁镁,无机盐工业,1996(1),41
    [93] 汪镜亮,近期钛白和钛矿物生产的发展,钒钛,1995(5-6),55
    [94] 张兆麟等,钛白废酸和副产绿矾生产硫酸铁铵,化工环保,1993(18),39
    [95] 袁经勇,钛白废酸用于磷肥生产的预处理,化肥工业,1990(5),42-44
    [96] 刘正清,钛白废酸作稀释剂生产普钙的探讨,湖北化工,1994(2),48-49
    [97] 徐铜文,钛白母液的综合利用,环境工程,1993,11(2),51-53
    [98] 段伟,利用废酸液制备脱硫剂,化工环保,1996(2),89-91
    [99] Mauer Josef, et al. Process for the reuse of spent sulfuric acid, European patent,EP0392211,1990
    [100] Mikami Yasuite, et al. Process for recovering acid from metal sulfate_containing waste sulfuric acid, European patent, EP0541002,1993
    [101] Cameron, Process for recovery of waste sulphuric acid, US patent, US5603839, 1997
    [102] Lailach, et al. Process for separation metal sulphates from sulphuric acid, US patent, US4952387
    [103] Papailhau Jean_Louis, Process for treating an acidic effluent, France patent,FR2632205,1989
    [104] 易思齐,以废硫酸为原料生产建筑材料,湖南化工,1990(2),61-63
    [105] 袁经勇,钛白废酸用于磷肥生产的预处理,化肥工业,1990(5),42-44
    [106] 蓝元祯,利用钛白废酸、绿矾与软锰矿制取硫酸锰和碳酸锰,广西化工,1991(2),28-31
    [107] 刘国燕等,硫酸法钛白废酸的浓缩,矿冶工程,1998,18(1),53-56,59
    [108] Hody D, et al. Recovery of residual acids, Tech. Mod. 1988, 80(7-8),46-48
    [109] Schuiling R.D, et al. A potential process for the neutralization of industrial waste acids by reaction with olivine, Geol. Mijinbouw 1986, 65(3), 243-246
    [110] Rothe U, Recycling of spent acid in titanium dioxide production, Surf. Coat 1992,29(10),16,18-19

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700